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Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as “shuttles” in nature for oxygen transfer
to provide intermediates or products comprising N-O functional groups such asN-hydroxy, oxazine, isoxazolidine, nitro, nitrone,
oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-
containing enzymes and transferred to initially obtainN-hydroxy compounds, which can be further functionalized. In this review,
we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites,
such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can
interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of
importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific
substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is
also described. Overall, flavin-dependentN-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and
amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles
as well as synthetic applications are highlighted.

Key points
• N-O and N-N comprising natural and (semi)synthetic products are highlighted.
• Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed.
• Applications in natural product formation and synthetic approaches are provided.

Keywords Biotransformation . N-Hydroxylases . Flavoproteins . Siderophores . Bioactive compounds . Biocatalysis .

Monooxygenases . Phylogenetics

Introduction

Nature provides access to numerous complex molecules with
a variety of activities. The respective function is based on the
molecular character of individual compounds and often
shaped by their functional groups (Waldman et al. 2017;
Davison and Sperry 2017). Among those, many comprise
heteroatoms as N, O, S, and P or even a combination thereof.
Because heteroatom-containing functional groups not vastly
abundant in biological systems usually provide special func-
tions, they have been moving into the focus of recent biotech-
nological research due to their potential for novel applications
(Sulzbach and Kunjapur 2020). Herein, we will focus espe-
cially on N-O containing functional groups (mainly N-hy-
droxy; others are oxime, azoxy, oxazine, nitrone, C-nitroso,
N-nitroso, S-nitroso, nitro, isoxazolidine), which are often
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found in secondary metabolites. Those natural products are
interesting for many reasons, as they comprise antibiotics,
bioactive agents, flavor and fragrance molecules, food addi-
tives, pharmaceutical precursors or products, siderophores and
metallophores, enzyme inhibitors, and toxins, among others.

The formation of the various N-O linkages (Fig. 1) in or-
ganic molecules is often based on the conversion of soft nu-
cleophilic amines by a form of activated (molecular) oxygen
and combined with potential maturation reactions.
Sometimes, overoxidation alone leads to a mixture of N-O
functional groups in a compound. Nevertheless, a variety of
enzymes have evolved to selectively activate oxygen to trans-
fer it onto target compounds, e.g., onto amino groups. Here,
especially flavin-dependent monooxygenases, heme-
dependent P450 monooxygenases, peroxygenases, and other
metal-dependent mono- and dioxygenases can be mentioned.
Successive oxidation reactions might change the redox state
of respective compounds to yield the final N-O or in other
cases N-N functionality containing molecules.

In this review, we mainly focus on the properties of flavin-
dependent N-hydroxylating monooxygenases (NMOs) and
present recent findings about these enzymes since the last
reviews six and more years ago (Olucha and Lamb 2011;
Robinson and Sobrado 2012; Huijbers et al. 2014).

We first depict the catalytic mechanism and structural
properties of NMOs, followed by recent advances and results
from in-depth enzymology studies especially in the context of
siderophore synthesis, where NMOs catalyze the N-hydroxyl-
ation of defined small substrates (i.e., diamino acids and di-
amines) at the beginning of biosynthetic pathways. Here,
structural diversification typically happens in variable down-
stream conversions. Furthermore, we highlight NMOs that

accept more complex substrates, as late diversification stages
of complex molecules or involved in the metabolization of
bioactive compounds. Lastly, we describe NMOs involved
in the formation of N-N and N=N bonds and reveal which
common biological pathways are used by microorganisms to
produce this great structural diversity. Few NMOs are current-
ly exploited for biotechnological applications, leaving the vast
majority of known—but hitherto uncharacterized in terms of
enzymatic performance—enzymes as potential research target
aiming at the production of complex chemical compounds.

Catalytic mechanism of flavin-dependent
NMOs

Flavin-dependent NMOs (EC 1.14.13.x) produce numerous
important products, but only a few family members have been
thoroughly characterized to date. NMOs belong to the single-
component group B flavoprotein monooxygenases (Fraaije
and van Berkel 2006; van Berkel et al. 2006; Olucha and
Lamb 2011; Huijbers et al. 2014). It needs to be mentioned
that some related group B enzymes are also able to perform N-
hydroxylations. Those enzymes are typically designated as
FMOs, a term which has been introduced for flavin-
containing monooxygenases being involved in mammalian
detoxification processes (EC 1.14.13.8) (Ziegler 1988; van
Berkel and Müller 1991; Ziegler 2002; van Berkel et al.
2006; Huijbers et al. 2014; Mascotti et al. 2015). Therefore,
the abbreviation FMO is not synonymous to NMO but repre-
sents a specific subgroup of (mostly) eukaryotic group B
flavin-containing enzymes that catalyze the monooxygenation
of carbon-bound reactive heteroatoms including nitrogen,

Fig. 1 N-O functional groups in
representative and already used
naturally occurring or bio-
produced compounds. The for-
mation of N-N bonds can also be
initially promoted by intermediate
N-O bond formation, and thus,
more complex structures can be
obtained (vide infra). These
structures are only representatives
and often many derivatives occur
due to natural diversity or syn-
thetic modifications to provide
more significant effects in desired
fields
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sulfur, phosphorous, selenium, and iodine (van Berkel et al.
2006). Also, the group of YUCCA and related enzymes from
plants form a subgroup of group B flavin-containing
monooxygenases and thus are related to type I BVMOs,
NMOs, and FMOs (Huijbers et al. 2014).

Members of group B flavoprotein monooxygenases con-
tain two Rossmann-type dinucleotide binding domains to har-
bor the flavin adenine dinucleotide (FAD) and nicotinamide
adenine dinucleotide (NAD(P)H) cofactors and keep the pyr-
idine nucleotide bound during the oxidative half-reaction. In
general, the mechanism of NMOs is similar to that of group B
Baeyer-Villiger monooxygenases (BVMOs) (Ryerson et al.
1982; Sheng et al. 2001; Ballou and Entsch 2013) and can

be described as follows (Fig. 2a) (Olucha and Lamb 2011;
Bufkin and Sobrado 2017):

In its resting state, the enzyme harbors an oxidized FAD
(FADox), as determined for SidA from Aspergillus fumigatus
(Alfieri et al. 2008; Chocklett and Sobrado 2010; Romero
et al. 2012a; Franceschini et al. 2012; Robinson et al. 2013;
Robinson et al. 2014b) and PvdA from Pseudomonas
aeruginosa (Meneely et al. 2009). Catalysis is initiated by
the binding of NADPH to FADox. Then, FADox is reduced
to FADH− (FADred) (Fig. 2a). For both SidA and PvdA, this
step is among the slowest in the overall catalysis
cycle (Meneely et al. 2009; Mayfield et al. 2010; Romero
et al. 2012a). Furthermore, PvdA is highly specific for

M101

K107

R144

Q256

E260

N293

S469

a

b

Fig. 2 a Catalytic mechanism of
flavin-dependent NMOs as re-
ported for SidA and PvdA. The
order of entry of oxygen and or-
nithine, and the ease of formation
of FADHOOH from FADHOO-

depends on the enzyme (for de-
tails see text). b Three-
dimensional model of the crystal
structure of SidA from
A. fumigatus (PDB code: 4B69)
(Franceschini et al. 2012). The
SidA structure is colored accord-
ing to secondary structural ele-
ments. The FAD cofactor is
shown in yellow and the substrate
ornithine in marine blue. A zoom
into the active site indicates, next
to the flavin and the substrate,
several important amino acid
residues
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NADPH (Meneely and Lamb 2007), whereas SidA accepts
both coenzymes with a preference for NADPH (Chocklett and
Sobrado 2010).

Generating the FADred-NADP
+ complex allows bind-

ing and activation of molecular oxygen to form the stable,
long-lived C4a-hydroperoxflavin (FADHOOH, Fig. 2a)
(Massey 1994). The rate of formation of this oxygenation
species is moderately enhanced by the binding of orni-
thine (Frederick et al. 2011). In PvdA, the formation of
FADHOOH from C4a-peroxyflavin (FADHOO-) is depen-
dent on substrate binding (Meneely et al. 2009), while in
SidA, FADHOOH immediately forms independent of sub-
strate binding (van Berkel et al. 2011; Frederick et al.
2011; Romero et al. 2012b). Based on solvent kinetic
isotope effects, density functional theory analysis, and
the structural arrangement of the active site, it was argued
that in SidA, the 2’OH of the ribose of NADP+ delivers
the proton for the conversion of FADHOO- into
FADHOOH (Robinson et al. 2014b).

Formation of the ternary complex between FADHOOH,
NADP+, and substrate allows the selective N-hydroxylation
of the substrate (Fig. 2a). In the case of SidA and PvdA,
ornithine is oxidized toN5-hydroxyornithine. During this step,
hydroxy-FAD (FADHOH) is formed, which decays to FADox

and H2O. Finally, after the release ofN
6-hydroxyornithine and

NADP+, FADox is ready for the next cycle.
The stabilization of the reactive C4a-hydroperoxyflavin

is crucial for this mechanism in order to prevent unproduc-
tive formation of hydrogen peroxide (designated as
uncoupling) and wasting the reducing equivalents of
NADPH. In the case of SidA and PvdA, which are both
highly specific for the N5-hydroxylation of L-ornithine,
uncoupling occurs with a range of substrate analogs, in-
cluding among others D-ornithine, L-arginine, and L-lysine.
Structural studies of PvdA indicated that an optimal orien-
tation of the amino group of the substrate is required to
prevent uncoupling (Olucha et al. 2011). The bound
NADP+ plays a critical role here, because upon FAD re-
duction, its nicotinamide ring changes position, thereby
creating a pocket for the formation and stabilization of
the C4a-hydroperoxyflavin (Olucha et al. 2011).

The lysine hydroxylase MbsG from Mycobacterium
smegmatis features a somewhat different kinetic mechanism
(Robinson et al. 2014b). Here, lysine binds before the pyridine
nucleotide, resulting in a substrate-NADPH-FADox ternary
complex. Substrate binding slightly decreases the rate of fla-
vin reduction, but hardly influences the rate of the reaction
with oxygen. Another difference between SidA and PvdA is
that MbsG has a slight preference for NADH (Robinson and
Sobrado 2012).

The crystal structure of PvdA (PDB code 3S5W) was the
first NMO structure solved (Olucha et al. 2011). This structure
of the ternary complex with bound L-ornithine and NADP(H)

revealed that the active site is located at the interface of three
domains. Next to the FAD- and NADPH-binding domains,
the enzyme contains a small helical domain for binding the
ornithine substrate. The PvdA structure also revealed that
Arg240 and Ser286 were in H-bond distance of the 2′-phos-
phate group of the adenosine ribose in NADPH, thereby de-
termining the coenzyme specificity.

Crystallographic analysis of the SidA tetramer allowed the
three-dimensional structure determination of seven SidA-
ligand complexes, including the binary and ternary complexes
of FADox and FADred bound to ornithine, lysine, arginine, and
NADP+ (Franceschini et al. 2012). The structure of the
enzyme-substrate complex as depicted in Fig. 2b is highly
similar to the corresponding complex of PvdA (Olucha et al.
2011). For more details about the function of the active site
residues highlighted in Fig. 2b, we refer to the original articles,
which gave clues about the strict selectivity of both enzymes
for L-ornithine, the essential role of NADP+ in stabilizing the
C4a-hydroperoxyflavin, and the active site environment
where the hydroxylation of the substrate takes place.

Site-directed mutagenesis of SidA was then used to inves-
tigate the predicted role of certain critical residues. Changing
Ser257, involved in binding the pyrophosphate moiety of
NADPH, to Ala revealed that this serine was important for
the correct positioning of NADP+, thereby stabilizing the C4a-
hydroperoxyflavin (Shirey et al. 2013). Replacement of
Arg279, which interacts with the 2′-phosphate of NADPH,
by Ala or Glu resulted in a different coenzyme specificity
and strong uncoupling of hydroxylation. The R279A variant
showed no coenzyme preference, while R279E preferred
NADH as coenzyme. The fact that the changes in coenzyme
preference were mainly due to changes in coenzyme binding
strength corroborated the hypothesis that the positive charge at
position 279 is crucial for the tight binding of NADPH
(Robinson et al. 2014a).

Four residues involved in ornithine binding were indi-
vidually changed to Ala (Robinson et al. 2015). The
Lys107Ala variant lost its hydroxylation activity, indicat-
ing that the ionic interaction between Lys107 and the sub-
strate carboxylate is essential for catalysis. Mutation of
Asn293 and Ser469 to Ala strongly weakened the binding
of ornithine. A similar effect was observed with the N323A
variant. Besides interacting with the substrate, Asn323 also
interacts with the nicotinamide ribose of NADPH. The
crystal structure of the N323A variant complexed with or-
nithine and NADP+ revealed a disordered binding mode of
the nicotinamide ribose group, while kinetic experiments
showed that this mutated variant was much faster than
wild-type SidA in reducing the flavin cofactor. The fact
that Asn323 facilitates substrate binding at the expense of
hindering flavin reduction clearly demonstrates the deli-
cate balance of the enzyme-ligand interaction network in
the SidA active site.
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NMOs involved in siderophore biosynthesis

Siderophores (greek: sidero = iron; phore = carrier) are sec-
ondary metabolites produced by many organisms (plant, bac-
teria, and fungi) to sequester iron in a physiological context
(Kem and Butler 2015; Carroll and Moore 2018; Hofmann
et al. 2020). Often stress, such as iron limitation or ecological
pressure, leads to a response of producing and secreting sec-
ondary metabolites. Other related natural compounds are spe-
cific for zinc, gold, or vanadium or even unspecific with re-
spect to the target metal or metalloid and are thus often called
metallophores (Johnston et al. 2013). All these metal-
chelating natural products can be synthesized by two different
routes. One involves non-ribosomal peptide synthetases
(NRPSs), whereas the other one is NRPS-independent and
thus designated as NIS-pathway. Many secondary metabo-
lites, including some siderophores, are synthesized through
NIS-routes, which can start from simple precursors such as
amino acids. The most prominent compound to be mentioned
as representative for biosynthesis and application is
desferrioxamine B (DFOB) (Fig. 3a). It is produced by various
actinobacteria and often the major component of a metabolite
cocktail of related desferrioxamines or bisucaberins secreted
by the producer strain (Senges et al. 2018; Schwabe et al.
2018; Proença et al. 2019). The production starts from lysine
via cadaverine as a substrate of an N-hydroxylating flavopro-
tein to yield N5-hydroxycadaverine. Subsequently, a
substrate-relaxed acyl-transferase comes into play and pro-
duces various intermediates, which result in a variety of
DFOB- or bisucaberin-like molecules via an ATP-
consuming assembly line (Ronan et al. 2018).

We focus here on routes involving flavoproteins as one
of the first biosynthetic steps. Enzymes studied so far are
listed in Table 1. Typical precursors to bacterial
siderophores are the amino acids ornithine and lysine.
These and their decarboxylation products, cadaverine and
putrescine, can selectively be hydroxylated by NMOs.
Their mechanism of action is similar to the above example
for N-hydroxylating ornithine monooxygenases. The
resulting N-hydroxy-diamines and amino acids can be fur-
ther acetylated by corresponding (typically formyl
tetrahydrofolate-dependent) acetyltransferases to prevent
overoxidation towards nitro functions, or directly used in
the assembly line of siderophores, as presented for DFOB
in Fig. 3a. Besides formyl tetrahydrofolate–dependent
formylation (e.g., in coelichelin or rhodochelin), down-
stream biosynthetic routes enclose acylation or condensa-
tion by NRPS pathways towards various products.

The enzymes mentioned in Table 1 can be classified
according to their amino acid sequence and clustered in
phylogenetic trees as done earlier (Franke et al. 2013;
Esuola et al. 2016) and presented comprehensively in
Fig. 4.

On the basis of amino acid sequences, one can distinguish
lysine from ornithine N-hydroxylases (Fig. 4). Only one en-
zyme with a close relation to lysine N-hydroxylases accepts
ornithine as a substrate: VbsO (Heemstra et al. 2009). This
enzyme converts solely L-ornithine, while the D-form and both
lysine enantiomers yield no product. Lysine acts as a non-
substrate effector of VbsO, leading to the uncoupling of hy-
droxylation (see also Fig. 2).

Among the lysine N-hydroxylases, two groups exist:
one of mycobacterial and nocardia strains and another
from Escherichia coli and related bacteria. Both are clear-
ly separated, and the mycobacterial representatives seem
most distant to all other N-hydroxylases. Another group
of enzymes, diamine accepting N-hydroxylases (Table 1
and Fig. 4), seems closely related to the lysine N-hydrox-
ylating NMOs from E. coli and related strains. Thus, we
propose an evolutionary linkage that could be experimen-
tally validated through mutagenesis studies to switch their
substrate spectrum from diamine to amino acid or vice
versa. Furthermore, among all NMOs, the relation is de-
pendent on the origin of these enzymes. Thus, fungi,
mycobacteria, pseudomonads, Burkholderia and E. coli
(always with closely related microorganisms) form small
subgroups in the phylogenetic tree.

Many enzymes share a similar pattern of activity, and
the final product of metabolic pathways they are part of is
typically defined by the subsequent enzymatic steps and
respective substrates. Functional groups that connect
NMO-based routes, often N-O bonds, are crucial for bio-
logical function. This is true for all the siderophores pro-
duced via such a route since the N-O bond is usually part
of a hydroxamate functional unit that allows metal chela-
tion. This hydroxamate unit can be located terminally as
an open or ring-like structure or simply in the middle of a
siderophore molecule, and several such units can be pres-
ent in one single molecule.

Recently, the biosynthesis of albachelin was described
(Fig. 3b) (Kodani et al. 2015). This siderophore is produced
by an actinobacterium named Amycolatopsis alba under iron
starvation. The involved NMO is designated AMO and pre-
fers ornithine as substrate and NADPH as an electron donor.
NADH does bind and allows conversion but yields only un-
productive hydrogen peroxide formation. The same is true for
lysine, which is only an effector and increases uncoupling as
reported for other ornithine converting NMOs, such as VbsO
(vide supra).

The biosynthesis of malleobactin A–D involves the NMO
MbaC and leads to products with various N-O functional units
such as N-hydroxy, C-nitroso, nitro, and azoxy (Fig. 3c)
(Franke et al. 2013; Hedges and Ryan 2020). MbaC produces
N5-hydroxy ornithine, which is used to assemble different
malleobactins. An interesting example constitutes 2-amino-
5-nitropentanoic acid, produced from ornithine as an
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intermediate to malleobactin A in Burkholderia pseudomallei
(Franke et al. 2013). Interestingly in this case, the formation of
a terminal nitro group is made possible, even though this ox-
idation would typically be circumvented in other metabolic
pathways by immediate acetylation of the formed N-hydroxy
group, thereby also creating a bidentate ligand for metal che-
lation. It is postulated that the NMO in this case does support

the conversion of N-hydroxy group towards the nitro group
(Fig. 4b) (Franke et al. 2013).

The diverse nature of siderophores and their structural as well
as functional elements provide access towards many applica-
tions, as has been extensively reviewed (Saha et al. 2016; Su
et al. 2018; Albelda-Berenguer et al. 2019; Řezanka et al. 2019;
Hofmann et al. 2020) and will not be discussed in detail here.

a

b

c

Fig. 3 a Biosynthesis of
desferrioxamine B and its iron
chelation product ferrioxamine. b
First, the pyridoxal phosphate
(PLP)–dependent decarboxylase
(DC) provides the substrate for
the flavin N-hydroxylase (NMO),
which activates molecular oxygen
via reduced FAD. Then, activated
acyl or succinyl residues are
transferred to provide the sub-
strate for the NRPS-independent
ATP utilizing synthetase (NIS). b
Biosynthesis of albachelin. A
flavin-dependent N-hydroxylase
(AMO) catalyzes the production
of N5-hydroxyornithine, multiple
subsequent steps follow. c
Malleobactins are synthesized by
the pathogenic bacterium
Burkholderia pseudomallei in
which the activity of the NMO
MbaC leads to four different
siderophore structures
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NMOs with structurally complex substrates

While flavin-based NMOs related to siderophore biosynthesis
typically employ the same “simple” substrates to build up
highly complex structures, other NMOs have been disclosed
that are able to employ structurally quite diverse substrates,
ranging from small nonproteinogenic amino acids to large and
complex units. The investigation of these enzymes can reveal
valuable insights for future biotechnological applications in
hitherto unexploited fields.

NMOs for diverse bacterial substrates

A flavin-dependent NMO named AtFMO1 from the plant
Arabidopsis thaliana hydroxylates pipecolic acid to N-
hydroxypipecolic acid (Hartmann and Zeier 2018; Hartmann
et al. 2018). This reaction is part of a pathogen-inducible cat-
abolic pathway of lysine that has a central function in systemic
acquired resistance (Fig. 5a).

Recently, the groups of Zhao and Nair disclosed the crystal
structure and characterization of an FAD-dependent NMO
from Streptomyces rubellomurinus, FrbG, that catalyzes the
hydroxylation of an aminopropylphosphonate unit within a

more complex CMP conjugate (Nguyen et al. 2019). FrbG
shares structural similarities with group B FMOs and takes
part in the biosynthesis of the antimalarial agent FR-900098,
which requires a hydroxamate (Fig. 5b).

The structure obtained from crystallization of FrbG con-
tains an FAD prosthetic group and NADPH coenzyme co-
crystallized together, displaying a proper orientation of the
nicotinamide ring stacking with the flavin isoalloxazine moi-
ety for optimal hydride transfer. Contrary to group B FMOs
(Fig. 2b), the NADPH-binding domain also confers substrate
recognition, with the cytidine-5′-monophosphate moiety be-
ing crucial for substrate specificity. A conformational reorga-
nization likely occurs after flavin reduction by NADPH
(Nguyen et al. 2019), similar to the “moonlighting” effect
observed with group B FMOs, i.e., their ability to take over
more than one function (Alfieri et al. 2008). The discovery of
new types of N-hydroxylases such as FrbG through cloning
and sequencing of biosynthetic gene clusters paves the way
for metabolite synthesis.

Another bacterial NMO called XiaK, identified from the
biosynthetic gene cluster of the indolosesquiterpene xiamycin
A (XMA) from a Streptomyces strain, catalyzes the hydroxyl-
ation of XMA (Fig. 5c). The groups of Zhang and Liu

Fig. 4 Minimum evolution
distance tree of N-hydroxylating
flavoprotein monooxygenases
from bacteria and fungi in
analogy to earlier studies (Franke
et al. 2013; Esuola et al. 2016).
Evolutionary distances were
computed using the JTT matrix–
based method and are given in the
units of the number of amino acid
substitutions per site (see scale
bar). The accession numbers and
protein designations are given ac-
cording to Table 1 and references
cited therein. It is worth to men-
tion the most intensively studied
representatives: Aspergillus
fumigatus SidA (E9QYP0) and
Pseudomonas aeruginosa PvdA
(Q51548), respectively. The sub-
strate of each NMO is given and
respective parts of the tree are
color-coded
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confirmed XiaK to be a flavin-dependent enzyme functioning
a s a n N - h y d r o x y l a s e i n t h e b i o s y n t h e s i s o f
indolosesquiterpene intermediates (Zhang et al. 2017).
Recombinant expression and characterization of XiaK
showed that it only catalyzed the hydroxylation of XMA
and that the N-hydroxylated product decomposed to other
compounds in a possible enzyme free radical–mediated mech-
anism. This highlights the possibility that isolated compounds
from microorganisms may not be “true” secondary metabo-
l i tes but non-enzymatic derivative products of a
biosynthesized compound.

FMOs from human/mammalian cells with NMO
activity

The human family of FMOs includes five known enzymes,
hFMO1–5. As already introduced above, these FMOs belong
to the same group of flavoprotein monooxygenases and are
able to oxygenate carbon-linked heteroatoms (van Berkel
et al. 2006). The five hFMO enzymes exhibit a tissue-
specific expression pattern in adults (Perez-Paramo et al.
2019): hFMO1 is expressed in kidneys and hFMO3–5 in the
liver, whereas hFMO2 is mainly expressed in the lungs.
hFMO5, which was shown to catalyze Baeyer-Villiger oxida-
tion reactions (Fiorentini et al. 2016; Fiorentini et al. 2017), is
now commercially available (Gecco Biotech B.V.).

Recently, hFMO3 was reported to exhibit activity towards
nicotine (Fig. 5c) (Perez-Paramo et al. 2019). The substrate
versatility of this enzyme makes it an attractive catalyst for
future applications with complex substrates and towards the
synthesis of drug metabolites. Other hFMOs are also involved
in nicotine detoxification processes through N-oxygenation in
CYP2A6-deficient humans, with hFMO1-3 displaying higher
activity and hFMO4-5 lower activity (Perez-Paramo et al.
2019). Furthermore, hFMO1 catalyzes the N-oxygenation of
imipramine, among others (Fig. 5c) (Furnes and Schlenk
2004).

A drawback of using hFMOs in biocatalytic applications is
their low production levels using recombinant expression in
Escherichia coli. Nevertheless, Hanlon et al. managed to pro-
duce a sufficient amount of hFMO3 for preparative biotransfor-
mation with a large-scale cultivation of recombinant E. coli har-
boring the gene encoding for hFMO3 (Hanlon et al. 2012). In
this way, the authors were able to produce milligram amounts of
the drug metabolite moclobemide-N-oxide (Fig. 5c). Such dis-
tinctly produced drugmetabolites can e.g. be used in the detailed
study of metabolites’ mode of action, among others.

Another example is the anti-inflammatory drug
benzydamine, metabolized by an FMO located in the lungs,
possibly hFMO2 (Fig. 5c) (Störmer et al. 2000). Benzydamine
was recently used as a substrate to observe pulmonary FMO
activity in rats to assess its metabolic fate (Yilmaz et al. 2019).

a

b

c

Fig. 5 a AtFMO1-catalyzed
hydroxylation of pipecolic acid to
N-hydroxypipecolic acid, which
provides systemic acquired
resistance for plants. b FrbG-
catalyzed hydroxylation of the N-
acetyl-3-
aminopropylphosphonate in the
biosynthetic pathway towards the
antimalarial agent FR-900098. c
Xiamycin A (XMA) is N-hy-
droxylated by XiaK. hFMO1 cat-
alyzes the N-oxygenation of
imipramine, whereas hFMO3
catalyzes the N-oxygenation of
nicotine as well as of
moclobemide to produce the hu-
man drug metabolite
moclobemide-N-oxide. N-oxy-
genation of the anti-inflammatory
drug benzydamine by a flavin-
containing monooxygenase lo-
cated in the lungs produces
benzydamine-N-oxide
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NMOs promoting the formation of N-N bonds

N-N bonds are abundant in countless biological compounds
(Blair and Sperry 2013; Waldman et al. 2017). Diazo com-
pounds especially have versatile biological functions and are
present in numerous biological systems, as has recently been
extensively reviewed (Nawrat and Moody 2011; Mix et al.
2016). There are many ways of producing N-N and N=N
bonds; NMOs are involved in some of them in different man-
ners. It is especially interesting to see that the biocatalytic
pathways of N-N bond containing biomolecules, and thus,
the involved enzymes have only been scarcely explored in
the past and are gaining increasing attention in recent litera-
ture. General pathways have been explored, leading to bio-
molecules with diverse structures and functions, of which a
few are highlighted here.

Amino acid N-hydroxylation and subsequent nitrous
acid production

One of the most prominent ways in which NMOs are involved
in the generation of N-N bonds is by liberation of nitrous acid
starting from theN2-hydroxylation of aspartic acid (Fig. 6a). A
stepwise over-oxidation of the amino group to a nitro function
by a flavin-based NMO results in the formation of
nitrosuccinic acid via the instable N2-hydroxyaspartic acid
intermediate (Wang et al. 2018). The oxidation step is follow-
ed by a lyase reaction, resulting in cleavage of the nitro group
and producing fumaric acid as a second product. The liberated
nitrous acid is discussed to react with a primary amine of a
second substrate molecule in a non-enzymatic way, thus
forming a hydrazine-like intermediate with an N-N bond
which can be further modified to produce manifold products.
Both the NMO and the lyase are well conserved and wide-
spread in different organisms. It should be mentioned that not
only flavin-containing NMOs are capable of liberating small
NO compounds; there is a variety of biosynthetic processes
that involve “free” NO throughout organisms (Caranto 2019).
Several nitrous acid-derived products have recently been re-
ported involving this general biosynthetic pathway, most of
them having potential activities as antibiotics or even anti-
proliferative agents (Fig. 6c, Table 2, section A).

Cremeomycin (Fig. 6c) is one of the best-investigated ex-
amples of an antibiotic with a diazo function (Waldman et al.
2015; Sugai et al. 2016). Initially isolated from Actinomyces
cremeus (NRRL3241), it adversely affects Gram-positive and
Gram-negative bacteria and has antifungal and even antitumor
activities (Bergy and Pyke 1967). The diazo-containing moi-
ety of cremeomycin is built up by a late-stage diazotization of
an amino function by nitrous acid, itself generated by the
typical cascade: aspartic acid is hydroxylated/over-oxidized
by the NMO CreE; the formed nitrosuccinic acid liberates

nitrous acid by aid of the lyase CreD (Waldman and Balskus
2018).

Fosfazinomycins and kinamycins (Fig. 6b, c) are two anti-
biotic classes produced by and initially isolated from
Strep tomyces s t ra ins (S. lavendofo l iae 630 and
S. murayamaensis, respectively) (Ito et al. 1970; Kuroda
et al. 1980). Despite their structural diversity, they share the
same initial steps of biosynthesis (Fig. 6b) (Wang et al. 2018).
Aspartate is hydroxylated by the NMO FzmM to
nitrosuccinate in two oxidative stages; liberation of nitrous
acid is catalyzed by FzmL, a 3-carboxymuconate
cycloisomerase. In multiple subsequent enzymatic steps, the
central intermediate glutamylhydrazine is generated via
hydrazinosuccinate and acetylhydrazine (Huang et al. 2016).
The identified FzmM shows homology to an FAD(NAD)-de-
pendent oxidoreductase from Streptomyces davawensis JCM
4913 (WP_015660731; 56% amino acid identity, 65% simi-
larity) (Gao et al. 2014).

Lomaiviticins (Fig. 6c) are structurally similar to
kinamycins, making their biosynthetic origin very likely sim-
ilar. They are regarded as highly potent antitumor active
agents and were initially isolated from Salinispora pacifica
(Mix et al. 2016). A potential gene cluster for lovamaiviticin
biosynthesis was found in Salinispora tropica CNB-440. The
gene strop2198 was assumed to code for a putative FAD-
dependent monooxygenase based on homology to
Streptomyces albaduncus JagF (CBH32087; 61% amino acid
identity 52% similarity) (Kersten et al. 2013).

Azamerone (Fig. 6c) is another compound with an uncom-
mon N-N bond. The potential topoisomerase inhibitor was
first isolated from actinomycetes MAR4 (Cho et al. 2006).
The biosynthesis of azamerone was initially believed to occur
homologous to pyridazomycin (cf. below), but isotope label-
ing studies indicated that the origin of the diazo function in
confirmed precursors to the compound stems from nitric acid,
therefore involving the N2-hydroxylation of aspartic acid by
an NMO (Winter et al. 2009).

In the case of streptozotocin (Fig. 6C), an anticancer anti-
biotic known since the 1950s, it is also believed that the nitro-
samine functional group originates from a central nitrous acid
as intermediate. However, the biocatalytic pathway has not
been elucidated to date (Le Goff and Ouazzani 2014).

N-Hydroxylation and condensation with amino or
hydroxy functions

The second typical way to generate N-N bonds in biosynthesis
with the aid of flavin-NMOs is the condensation of an NMO-
generated hydroxylamine with carboxy functions. Subsequent
rearrangement steps can result in new N-N bond containing
molecules (Table 2, section B).

Piperazic acid is one of the most common N-N containing
building blocks of natural products, being found in numerous
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natural compounds with activities ranging from antibiotics to
immunosuppressants. All piperazic acid-containing molecules
known to date come from Actinomycete bacteria isolated
from diverse environments (Morgan et al. 2019), but the struc-
tural and functional variety is remarkable: kutznerides,
padanamides, himastatins, monamycines, polyoxypeptin and
sanglifehrins, to name a few, contain piperazic acid (Fig. 7a).
A recent review demonstrates the versatile incorporation of
piperazic acid into natural products (Morgan et al. 2019).

The synthesis of piperazic acid starts with the N5-hydrox-
ylation of ornithine by a flavin-based NMO (Fig. 7a)
(Neumann et al. 2012). N5-hydroxyornithine itself does not
cyclize spontaneously (Le Goff and Ouazzani 2014).

Instead, a heme-dependent protein, typically termed
piperazate synthase, fuses the two nitrogen atoms in a conden-
sation reaction, creating piperazic acid (Du et al. 2017). The
enzymatic pair is highly conserved in the gene clusters respon-
sible for the synthesis of different piperazic acid–containing
molecules (Morgan et al. 2019).

Depending on the final product, the enzyme nomenclature
varies. The best-described case, with a detailed functional and
structural investigation of the flavin-based NMO, is probably
the production of kutznerine (Fig. 7d) by Kutzneria sp. 744,
where the two enzymes are designated as N-hydroxylase KtzI
and piperazate synthase KtzT (Neumann et al. 2012; Setser
et al. 2014; Du et al. 2017). A recent bioinformatic study

a

b

c

Fig. 6 a Release of nitrous acid
from aspartic acid, promoted by a
double hydroxylation and lyase
reaction. b Biosynthesis of
fosfazinomycins and kinamycins
via the same initial intermediates.
c Examples of biomolecules for
which biosynthesis involves the
NMO-driven generation of ni-
trous acid
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revealed, next to numerous stand-alone enzyme pairs, the ex-
istence of 11 chimeric two-enzyme pairs with unique position-
specific amino acid utilization patterns compared with the
stand-alone homologs (Hu et al. 2019).

Furthermore, derivatives of piperazic acid, such as 5-hy-
droxy-, 5-chloro-, and dehydro-piperazic acid can be pro-
duced and incorporated into more complex structures such
as piperazimycins. There are two theories about how these
derivatives are produced from glutamic acid (Fig. 7b)
(Miller et al. 2007): the central intermediate 2,5-
diaminopent-4-enoic acid is hydroxylated at the N5 position
and, subsequently, addition of a heteroatom to the double
bond occurs. Alternatively, N-hydroxylation takes place after
the addition of the heteroatom to the double bond (Oelke et al.
2011; Handy and Sello 2017). Alternatively, downstream

modification of piperazic acid has been discussed after it has
been synthesized from ornithine in its cyclic form (Jiang et al.
2011).

Hydrazinoacetic acid is another building block which has
been reported in different biosynthetic pathways. It is pro-
posed to be an intermediate in the biosynthesis of a complex
natural compound s56-p1, isolated from Streptomyces
lividans through heterologous expression (Fig. 7c). It is built
from lysine, which is transformed into N6-hydroxylysine by
the flavin-dependent hydroxylase Spb38, followed by con-
densation with glycine through Spb40. The intermediate hy-
drazine adduct is then oxidized at the C6-N bond by Spb39,
which was identified as flavin-dependent D-amino acid oxi-
dase homolog. This reaction results in liberation of
hydrazinoacetic acid, which is expected to be directly

a

b

c

d

Fig. 7 aBiosynthesis of piperazic
acid. bBiosynthesis of substituted
piperazic acids via two proposed
pathways. c Biosynthesis of
hydrazinoacetic acid as a building
block for more complex
biomolecules. d Diverse N-N
bond containing biomolecules:
s56-p1 is derived from
hydrazinoacetic acid, kuznerides,
and padanamides contain
piperazic acid building blocks.
Valanimycin and pyridazomycin
are further recently investigated
examples
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incorporated into the target compound s56-p1 (Matsuda et al.
2018). The gene cluster was identified and annotated based on
homology annotation, with the closest homology for all three
genes originating from Catenulispora acidiphila DSM 44928
(Sbp38: 85% amino acid identity, 90% similarity to the re-
spective lysine monooxygenase) (Matsuda et al. 2017).

For valanomycin (Fig. 7d), a versatile azoxy compound
from Streptomyces viridifaciens MG456-hF10, biosynthesis
involves the decarboxylation of valine and N-hydroxylation
of the intermediate isobutylamine. Based on functional and
homology annotation, the VlmH/R enzyme pair was denoted
as FAD/NADPH-dependent isobutylamine hydroxylase and
FAD reductase, respectively. Here, vlmH encodes for an en-
zyme of 378 amino acids homologous to an isobutylamine N-
hydroxylase from Streptomyces avermitilis (BAB69230, 51%
amino acid identity and 67% similarity) (Garg et al. 2002). In
subsequent steps to generate the -N+(O−)=N- unit, different
mechanisms have initially been proposed for a reaction of
isobutylhydroxylamine with serine (Tao et al. 2003; Garg
et al. 2008; Garg et al. 2009); the condensation of the N-OH
function with the serine-carboxy function and successive re-
arrangement has been widely accepted in the literature (Le
Goff and Ouazzani 2014).

The biosynthesis of pyridazomycin (Fig. 7d) is not well
understood, but it is believed that pyridazomycin originates
from ornithine, oxaloacetate, and glycine, making the inter-
mediate formation ofN5-hydroxyornithine which condensates

with oxalacetate a very probable hypothesis (Bockholt et al.
1994; Wermuth 2011).

Compounds with more than one NMO
involved in biosynthesis

Triacsins are another class of compounds with highly interest-
ing properties and peculiar biosynthetic origin first isolated
from Streptomyces aureofaciens ATCC 31442 (Twigg et al.
2019). The compounds bear an N-hydroxytriazene unit termi-
nally bound to a poly-unsaturated C11 alkyl chain (Fig. 8a).
The compounds therefore structurally mimic fatty acids and
bear multifaceted biological functions, ranging from acetyl-
CoA-synthetase inhibition to antimalarial and antiviral activi-
ties. For the biosynthesis of the N-hydroxytriazene functional
group, two independent N-hydroxylation steps are required
(Fig. 8a). Using [15N] isotope labeling and homology annota-
tion, the enzyme Tri21 was recently identified as a flavin-
dependent NMO, putatively catalyzing aspar tate
overoxidation finally leading to nitrous acid liberation
(Twigg et al. 2019). The second N-hydroxylation step was
ascribed to Tri26, a putative lysine monooxygenase.
Subsequent condensation of the N6-hydroxy function with
glycine produces first an internal hydrazine unit and next
hydrazinoacetic acid. The fatty acid backbone and the two
nitrogen components are then assembled in multiple, not yet

a

b

Fig. 8 a The biosynthesis of
triacsins involves two N-
hydroxylation steps catalyzed by
two different NMOs. b Two N-
hydroxylase-catalyzed reaction
steps are also involved in the
biosynthesis of alanosine
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fully understood steps. Both NMOs involved in this pathway
were annotated as flavin-dependent N-hydroxylases, with
Tri21 showing homology to an FAD/NAD(P) binding protein
from Salinispora pacifica (WP_018723641; 67% amino acid
identity, 75% similarity) and Tri26 being homologous to N-
hyd roxy l a s e Mb tG in S t r ep t omyce s i pomoeae
(WP_009311506, 81% amino acid identity, 89% similarity)
(Krithika et al. 2006).

Another important intermediate in the biosynthesis of more
complex structures is the non-proteinogenic amino acid
alanosine, itself discussed to have antibiotic, antiviral and an-
ticancer activities (Fig. 8b) (Ng et al. 2019). Its biosynthesis
was elucidated from the alanosine pathway in Streptomyces
alanosinicus sp. (Ng et al. 2019; Wang et al. 2020). A gene
pair alnM/N was identified with homology to the above-
described creD/E and fzmM/N pairs, with AlnM being anno-
tated as aspartate-converting amine hydroxylase, eventually
promoting the liberation of NO2

−. The gene alnM was found
as 76% identity homolog to a similar gene from Streptomyces
kanamyceticus (WP_055544225). Interestingly, a second N-
hydroxylation step is discussed within the biosynthesis path-
way involving enzymes denoted as AlnG and AlnL. The for-
mer was described as a putative flavin-dependent acyl-CoA
dehydrogenase, which operates in the oxidative direction to
activate oxygen for N4-hydroxylation of a diaminopropane
unit (Wang et al. 2020). AlnG was found as 89% identity
homo log to a gene f rom S t r ep tomyce s h i r s tu s
(WP_055594947). Overall, 14 gene clusters with relation to
the L-alanosine gene cluster were identified in Streptomyces
and Saccharothrix sp., all containing genes similar to alnG but
none with genes for the alnM/N pair (Wang et al. 2020).

Perspectives

In this review, we focused on the remarkable ability of flavin-
dependent enzymes to hydroxylate nitrogen-containing com-
pounds, leading to a myriad of possible functional groups
which play a major role in the bioactivity of secondary me-
tabolites. The detailed understanding of ornithine-converting
NMOs and their mode of action has set the basis for focused
research efforts to include this enzyme class in biocatalytic
processes. These efforts have especially stimulated processes
employing NMOs from the siderophore biosynthetic
pathways.

Here, we highlighted the versatility in substrate scope some
recently divulged NMOs can have and showcased their broad
occurrence in different biosynthetic surroundings. It is espe-
cially noteworthy that many of these NMOs have just been
discovered from genomics and/or proteomics studies and that
they have not been characterized in an enzymological or bio-
catalytic context. We thus see great potential in these recent
developments: From substrate scope to applications, flavin-

dependent NMOs are key enzymes that we expect to play an
even more prominent role in biotechnology in the near future.
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