Skip to main content
Log in

Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Targeted gene mutation by allelic replacement is important for functional genomic analysis and metabolic engineering. However, it is challenging in mutating the essential genes with the traditional method by using a selection marker, since the first step of essential gene knockout will result in a lethal phenotype. Here, we developed a two-end selection marker (Two-ESM) method for site-directed mutation of essential genes in Saccharomyces cerevisiae with the aid of the CRISPR/Cas9 system. With this method, single and double mutations of the essential gene ERG20 (encoding farnesyl diphosphate synthase) in S. cerevisiae were successfully constructed with high efficiencies of 100%. In addition, the Two-ESM method significantly improved the mutation efficiency and simplified the genetic manipulation procedure compared with traditional methods. The genome integration and mutation efficiencies were further improved by dynamic regulation of mutant gene expression and optimization of the integration modules. This Two-ESM method will facilitate the construction of genomic mutations of essential genes for functional genomic analysis and metabolic flux regulation in yeasts.

Key Points

A Two-ESM strategy achieves mutations of essential genes with high efficiency of 100%.

• The optimized three-module method improves the integration efficiency by more than three times.

• This method will facilitate the functional genomic analysis and metabolic flux regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23(5):399–405

    Article  PubMed  CAS  Google Scholar 

  • Anderson MS, Yarger JG, Burck CL, Poulter CD (1989) Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J Biol Chem 264(32):19176–19184

    Article  PubMed  CAS  Google Scholar 

  • Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666–677

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Clastre M, Courdavault V, O'Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 112(11):3205–3210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Compagno C, Boschi F, Ranzi BM (1996) Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol Prog 12(5):591–595

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156

    Article  PubMed  CAS  Google Scholar 

  • Donald K, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63(9):3341–3344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan X, Ma X, Li S, Zhou Y (2019) Free fatty acids promote transformation efficiency of yeast. FEMS Yeast Res 19(7):foz069

    Article  PubMed  CAS  Google Scholar 

  • Ebert BE, Czarnotta E, Blank LM (2018) Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. FEMS Yeast Res 18(8):foy077

    Article  CAS  Google Scholar 

  • Eichenberger M, Hansson A, Fischer D, Durr L, Naesby M (2018) De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res 18(4):foy046

    Article  CAS  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10(3–4):201–206

    Article  PubMed  CAS  Google Scholar 

  • Fenton AW, Blair JB (2002) Kinetic and allosteric consequences of mutations in the subunit and domain interfaces and the allosteric site of yeast pyruvate kinase. Arch Biochem Biophys 397(1):28–39

    Article  PubMed  CAS  Google Scholar 

  • Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108(8):1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DRJN (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartmann M (1998) Plant sterols and the membrane environment. Trends Plant Sci 3(5):170–175

    Article  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77(1):51–59

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Park S-H, Kim S, Kim S-W, Hahn J-S (2019) Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol 103(1):211–223

    Article  PubMed  CAS  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3(5):298–306

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Jakociunas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD (2018) CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab Eng 48:288–296

    Article  PubMed  CAS  Google Scholar 

  • Jennings SM, Tsay YH, Fisch TM, Robinson GW (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A 88(14):6038–6042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Looke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50(5):325–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luttik MAH, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10(3–4):141–153

    Article  PubMed  CAS  Google Scholar 

  • Lv Y, Edwards H, Zhou J, Xu P (2019) Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica. ACS Synth Biol 8(3):568–576

    Article  PubMed  CAS  Google Scholar 

  • Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NG, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JM (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15(2):fov004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mans R, Wijsman M, Daran-Lapujade P, Daran J-M (2018) A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Res 18(7):foy063

    Article  PubMed Central  CAS  Google Scholar 

  • Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537(7622):694–697

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, Halkier BA (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14(2):104–111

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KYJS (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Kainou T, Matsuda H, Kawamukai M (1998) Biological significance of the side chain length of ubiquinone in Saccharomyces cerevisiae. FEBS Lett 431(2):241–244

    Article  PubMed  CAS  Google Scholar 

  • Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7(3):413–421

    Article  PubMed  CAS  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sato K, Nishikawa SI, Hirata A, Kato JI, Nakano A (1999) The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodescis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 19(1):471–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng 14(2):91–103

    Article  PubMed  CAS  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    Article  PubMed  CAS  Google Scholar 

  • Solis-Escalante D, Kuijpers NG, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126–139

    Article  PubMed  CAS  Google Scholar 

  • Szkopiñska A, Plochocka D (2005) Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim Pol 52(1):45–55

    Article  PubMed  Google Scholar 

  • Szkopińska A, Grabińska K, Delourme D, Karst F, Rytka J, Palamarczyk G (1997) Polyprenol formation in the yeast Saccharomyces cerevisiae: effect of farnesyl diphosphate synthase overexpression. J Lipid Res 38(5):962–968

    Article  PubMed  Google Scholar 

  • Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11(6):355–366

    Article  PubMed  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501–517

    Article  PubMed  CAS  Google Scholar 

  • Wijsman M, Swiat MA, Marques WL, Hettinga JK, van den Broek M, Torre Cortes P, Mans R, Pronk JT, Daran JM, Daran-Lapujade P (2019) A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res 19(1):foy107

    Article  CAS  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980–990

    Article  PubMed  CAS  Google Scholar 

  • Wong L, Engel J, Jin E, Holdridge B, Xu P (2017) YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun 5:68–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8–18

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Edwards H, Xu P (2020) CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab Eng Commun 10:e00112

    Article  PubMed  Google Scholar 

  • Yu T, Zhou YJ, Huang M, Liu Q, Pereira R, David F, Nielsen J (2018) Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174(6):1549–1558

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Liu G, Engqvist MKM, Krivoruchko A, Hallström BM, Chen Y, Siewers V, Nielsen J (2015) Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain. Microb Cell Factories 14(1):116

    Article  CAS  Google Scholar 

  • Zhao J, Bao X, Li C, Shen Y, Hou J (2016) Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(10):4561–4571

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Li C, Zhang Y, Shen Y, Hou J, Bao X (2017) Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb Cell Factories 16(1):17

    Article  CAS  Google Scholar 

  • Zhou YJ, Yang F, Zhang S, Tan H, Zhao Z (2011) Efficient gene disruption in Saccharomyces cerevisiae using marker cassettes with long homologous arms prepared by the restriction-free cloning strategy. World J Microb Biot 27(12):2999–3003

    Article  CAS  Google Scholar 

  • Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134(6):3234–3241

    Article  PubMed  CAS  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Z, Zhou YJ, Kang MK, Krivoruchko A, Buijs NA, Nielsen J (2017) Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab Eng 44:81–88

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Jens Nielsen (Chalmers University of Technology) for kindly sharing the plasmid pECAS9-gRNA-KanMX-tHFD1 carrying the Cas9 encoding gene and Prof. Jack Pronk (Delft University of Technology) for sharing the pROS10 and the amdSYM encoding gene.

Funding

This study was funded by the National Key Research and Development Program of China (2018YFA0900300), National Natural Science Foundation of China (21877111), LiaoNing Revitalization Talents Program (XLYC1807191), and the DICP&QIBEBT program (DICP & QIBEBT UN201706).

Author information

Authors and Affiliations

Authors

Contributions

SY conducted the experiments and wrote the manuscript. XC assisted the construction of the CRISPR-Cas9 system. WY and SL assisted the designing part of experiments and revised the manuscript. YJZ conceived the study, designed the experiments and revised the manuscript.

Corresponding author

Correspondence to Yongjin J. Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Additional information

Dedicated to the 70th anniversary of Dalian Institute of Chemical Physics, Chinese Academy of Sciences

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Cao, X., Yu, W. et al. Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 104, 3037–3047 (2020). https://doi.org/10.1007/s00253-020-10405-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10405-5

Keywords

Navigation