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Abstract
Lanthanum is an important rare earth element and has many applications in modern electronics and catalyst manufacturing.
However, there exist several obstacles in the recovery and cycling of this element due to a low average grade in exploitable
deposits and low recovery rates by energy-intensive extraction procedures. In this work, a novel method to transform and recover
La has been proposed using the geoactive properties of Aspergillus niger. La-containing crystals were formed and collected after
A. niger was grown on Czapek-Dox agar medium amended with LaCl3. Energy-dispersive X-ray analysis (EDXA) showed the
crystals contained C, O, and La; scanning electron microscopy revealed that the crystals were of a tabular structure with terraced
surfaces. X-ray diffraction identified the mineral phase of the sample as La2(C2O4)3·10H2O. Thermogravimetric analysis trans-
formed the oxalate crystals into La2O3 with the kinetics of thermal decomposition corresponding well with theoretical calcula-
tions. Geochemical modelling further confirmed that the crystals were lanthanum decahydrate and identified optimal conditions
for their precipitation. To quantify crystal production, biomass-free fungal culture supernatants were used to precipitate La. The
results showed that the precipitated lanthanum decahydrate achieved optimal yields when the concentration of La was above
15 mM and that 100% La was removed from the system at 5 mMLa. Our findings provide a new aspect in the biotransformation
and biorecovery of rare earth elements from solution using biomass-free fungal culture systems.
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Introduction

Rare earth elements (REE) are vital to the world’s fastest
growing markets including renewable energy, electric vehi-
cles, telecommunication and defence technologies and the
demand for them has risen year on year (Goodenough et al.
2018). Lanthanum is moderately abundant in the Earth’s crust
and represents a group of REE that include 14 lanthanides
that have multiple industrial applications such as additives in
the production of high-performance alloys and as catalysts in
glass and ceramics manufacturing and in the refinement of
crude oil (Kilbourn 1987; Tyler 2004; Massari and Ruberti
2013). Lanthanum oxide (La2O3) is an important material in
microelectronics as it exhibits the best electrical properties in
metal oxide semiconductor field effect transistors and could

be the ideal substitute for SiO2 in CMOS integrated circuits
(Leskelä and Ritala 2003; Kakushima et al. 2007). Another
potential application in environmental technology is that it
can be used as a highly efficient absorbent for the removal
of phosphorus from polluted water (Zhang et al. 2011; Xie
et al. 2015). REE primarily occur in associated minerals that
are scattered among other mineral-containing ores, meaning
that mining can be costly and ineffective due to a lack of
economically exploitable deposits worldwide, with the aver-
age grade of REE-containing ores being usually less than
10% (Humphries 2010). Traditional physico-chemical
methods involve multiple steps of leaching with a combina-
tion of hazardous chemicals, e.g. nitric acid and butyl phos-
phonate, with a huge amount of energy consumption only
achieving a recovery rate of approximately 1% (Preston
et al. 1996). This is very low when compared with other
industrially important elements such as platinum group
metals (PGMs) where average recovery rates can amount to
96% or even higher (Patel and Dawson 2015). Therefore,
new approaches for the recovery of REE from mines, leach-
ates and waste materials need to be proposed, which could, if
adopted for commercial use, greatly alleviate the shortage of
supplies of these metals.
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Through the mechanism of biologically induced minerali-
zation (BIM) (Gadd 2010), whereby organisms create
favourable conditions for extracellular chemical precipitation
of mineral phases by modifying their extracellular microenvi-
ronment, metal-containing compounds can be formed.
Aspergillus niger is a common soil fungus and an important
industrial microorganism for the production of citric acid
(Currie 1917; Kubicek and Rohr 1985; Mattey 1992;
Papagianni 2007). It is also noted for producing various other
organic acids including gluconic and oxalic acids, and all
these can have a huge role in geomicrobial transformations
of minerals and metal speciation (Gadd 1999; Gadd et al.
2014). The application of oxalic acid is an effective means
by which certain metals can be precipitated in the form of
insoluble metal oxalates of general formula Mx(C2O4)y·
zH2O. Bioprecipitation of metals mediated by oxalic acid-
producing fungi, such as A. niger, can provide a potentially
useful mechanism for metal biorecovery from solution (Ilyas
et al. 2017; Liang and Gadd 2017). The recovery of elements
is an indispensable step in the bioleaching process for both
REE-bearing ores and waste materials (Ilyas et al. 2017).
Some approaches to recovering REE from La-containing ores
and electronic wastes by involving microbial participation
have also been reported, e.g. bioleaching, bioaccumulation
and biosorption (Ismail et al. 2015; Ayora et al. 2016; Park
et al. 2016). Some previous studies have shown that REE can
be mobilized from solid materials such as spent catalysts and
luminescent powder from cathode ray tubes by sulphur-
oxidizing bacteria, such as Acidithiobacillus ferrooxidans,
A. thiooxidans and Leptospirillum ferrooxidans (Barmettler
et al. 2016). In a separate study, 50% of the total REE was
released from spent fluid catalytic cracking catalyst by 4-day-
old cell-free supernatant of Gluconobacter oxydans, indicat-
ing that organic acid-producingmicroorganisms can effective-
ly induce bioleaching and improve the recovery of REE from
waste materials (Reed et al. 2016). Hopfe et al. (2017) discov-
ered that significant amounts of REE were leached from
lanthanide-containing fluorescent phosphor material using
both a biomass-free supernatant and living culture of a mix-
ture of yeasts and acetic acid bacteria. Some preliminary re-
search has reported the dissolution of commercial lanthanide
oxides (Schwartz and Näveke 1980), by different strains of
A. niger, which confirmed the accessibility of lanthanides to
Aspergillus species. Supernatants of cultures of A. niger,
A. ficuum and A. terreus have been used by some researchers
to study bioleaching of REE from natural sources, such as
carbonaceous shales, monazite sand, red mud and Th–U con-
centrate (Hassanien et al. 2013; Amin et al. 2014; Qu et al.
2015; Brisson et al. 2016; Desouky et al. 2016; Keekan and
Jalondhara 2017). REE in ores can be recovered as oxides
through several steps including acid leaching, filtration, pre-
cipitation using oxalic acid and calcination, and this has been
in practice as a part of the recovery process for some minerals

such as bastnasite and monazite (Sinha et al. 2016). Despite
fungi exhibiting a significant role in biogeochemical cycles
for metals and metalloids (Gadd 2007), few studies have clar-
ified interactions of fungal species with REE. Therefore, more
information on the mechanisms and conditions effecting the
biotransformation of REE is clearly needed. The present study
examines the bioprecipitation of lanthanum oxalate by
A. niger and adds new knowledge about the microbial bio-
transformation of lanthanides.

Materials and methods

Microorganism and media

The fungal strain used in this study was Aspergillus niger
(ATCC 1015), which was routinely maintained in Petri dishes
containing commercial malt extract agar (MEA) (Lab M
Limited, Bury, Lancashire, UK) at 25 °C in the dark.
Modified Czapek-Dox medium (MCD) contained the follow-
ing substances (l−1 Milli-Q H2O): glucose 30 g, NaNO3 3 g,
Na2HPO4 1 g, MgSO4·7H2O 0.5 g, KCl 0.5 g and FeSO4·
7H2O 0.01 g. Where required, 15 g of agar no. 1 (Lab M,
Bury, UK) was added to make solid agar medium. The final
pH of MCD medium was adjusted to pH 5.5 using 1 M HCl/
NaOH prior to autoclaving for 15 min at 115 °C. To achieve
higher oxalate precipitation yields, nitrate (NO3

−) was used as
the nitrogen source in modified AP1 medium, composed of
the following (l−1 Milli-Q H2O): NaNO3 3 g, KH2PO4 0.5 g,
MgSO4·7H2O 0.2 g, CaCl2·6H2O 0.05 g, NaCl 0.1 g, FeCl3·
6H2O 0.0025 g, trace metals (ZnSO4·7H2O 0.004 g, MnSO4·
4H2O 0.004 g and CuSO4·5H2O 0.0004 g) and glucose 20 g.
The medium was adjusted to pH 5.5 using 1 M HCl/NaOH
prior to sterilization at 115 °C for 15 min. For preparation of
solid plates, 15 g of agar no. 1 was applied to 1000 ml of
medium.

Lanthanum biotransformation

Lanthanum chloride heptahydrate (99.9%) (Sigma-Aldrich, St
Louis, MO, USA) was used as the La source in experiments
using solid agar plates. A 500-mM LaCl3 stock solution was
prepared and sterilized through a Minisart Syringe Filter (pore
size 0.2 μm) (Sartorius Lab Instruments GmbH & Co.,
Goettingen, Germany) before use. Each Petri dish contained
25-ml La-spiked medium, which was prepared by pipetting
appropriate amounts of the La stock solution into the nutrient
agar when cooled to 55 °C after autoclaving at 115 °C. The
surface pH of the plates was measured using a flat-tipped pH
probe (VWR International, Lutterworth, England, UK). A 90-
mm-diameter cellophane membrane (Focus Packaging and
Design Ltd., Louth, UK), which was treated by washing with
Milli-Q water and autoclaving at least three times in Milli-Q
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water at 121 °C for 15 min, was placed on top of the agar
surface to separate the fungal biomass from the medium.
Plugs (6 mm diameter) were cut from the leading edge of a
vigorously growing A. niger colony using a sterile cork borer
and transferred to La-containing plates and incubated in the
dark at 25 °C until the colony reached the edge of the plate.
Colony diameter was measured daily in two directions across
the colony. To recover the biomass, the fungal colony growing
on the membrane was removed from the surface, washed three
times with Milli-Q water and oven-dried at 105 °C until con-
stant weight. Biomass yield was determined by measuring the
dry weight; the surface pH after fungal growth was measured
as described previously. A tolerance index (TI) was calculated
according to the following formula: TI = (dry weight of La-
exposed biomass/dry weight of control biomass × 100%)
(Sayer et al. 1995; Wei et al. 2013). Growth was presented
as colony expansion rates, growth rates being defined as
millimetres per day, calculated according to a linear regression
equation. Each treatment was conducted at least in triplicate.

Crystals that were formed in the agar were recovered by
gently homogenizing the agar in 50 ml Milli-Q water at 80 °C
in a crystallizing dish (Sayer and Gadd 1997; Li et al. 2015).
After sedimentation and washing at least three times with cool
Milli-Q water, the extracted crystals were stored in a desicca-
tor until constant weight, and accurately measured using an
HR-150A analytical balance (A&D Instruments Ltd.,
Abingdon, Oxfordshire, UK).

For lanthanum biotransformation experiments in liquid
medium, A. niger was inoculated on MEA slants and grown
for a few days until profuse growth resulted. To obtain a spore
suspension, 20 ml of sterile 0.1% (v/vaq) Tween 80 was added
to the slants and mixed well by vortexing. The resulting sus-
pension was then filtered through sterile muslin cloth to re-
move mycelia from the suspension. The spores were washed
three times using sterile Milli-Q water to remove remaining
Tween 80 by centrifugation at 2553×g for 30 min. Serial di-
lution was carried out to obtain a spore concentration of 1 ×
108 ml−1; 1 ml of this inoculumwas transferred to 99ml liquid
medium in a 250-ml Erlenmeyer flask, which was maintained
in a shaking incubator (Infors Multitron Standard, Rittergasse,
Switzerland) at 125 rpm in the dark at 25 °C for 7 days. For
harvesting, the culture was aseptically filtered through sterile
63-μm nylon mesh (John Staniar & Co. Ltd., Manchester,
UK) to obtain a biomass-free supernatant which was stored
at 4 °C prior to experiments. Supernatant pH was measured as
described previously.

La biotransformations by fungal supernatants were per-
formed in 15 ml centrifuge tubes, incubated on a roller mixer
(Stuart Equipment, Stone, Staffordshire, UK) at room temper-
ature for 24 h, prepared by adding 1 ml sterile LaCl3 of the
desired concentration into 9ml fungal supernatant to achieve a
final volume of 10ml and La concentrations of 0, 1, 3, 5, 7, 11,
15, 20, 30, 40 and 50 mM. After precipitation, minerals

produced were collected by sedimentation and removal of
the supernatant and then washed three times with Milli-Q
water before being dried in a desiccator at room temperature
until constant weight, in order to calculate crystal yield. Each
treatment was performed at least in triplicate.

Crystal yield and La assay

To accurately estimate precipitation yield and removal of La
from the supernatant after precipitation, dried crystal samples
were accurately weighed as previously described. After fungal
supernatant reactions with LaCl3, resulting supernatants were
collected by centrifugation (2553×g, 30 min) prior to mea-
surement of lanthanum concentrations using the Arsenazo
III colorimetric method (White and Gadd 1990; Rohwer
et al. 1995; Ivanov and Ermakova 2001) and an Ultrospec
2100 pro spectrophotometer (Biochrom Ltd., Holliston, MA,
USA) at an optical density of 658 nm. This was achieved by
pipetting 1-ml sample into a test tube with 1 ml 0.02% (w/v)
Arsenazo III (Sigma-Aldrich, St. Louis, USA) in pH 2.8 po-
tassium hydrogen phthalate buffer with a final volume of
10 ml made up by adding Milli-Q water. The concentration
of lanthanum in the solution was calculated based on a cali-
bration curve created using a series of standard solutions at 0,
1.44, 3.60, 7.20, 10.80 and 14.40 μmol l−1 La. The La remov-
al rate was defined as RLa = (m1 −m2) × 100%, where m1 is
the amount of La added to the reaction system and m2 that of
the remaining La in the supernatant after reaction.

Geochemical modelling

Geochemical modelling was carried out to analyse interac-
tions of lanthanum with oxalate and pH in the aqueous state
using Geochemist’s Workbench (GWB) edition 12.0
(Aqueous Solutions LLC, Urbana-Champaign, USA), which
is mainly comprised of two subprograms, i.e. SpecE8 for cal-
culating species activities and Act2 for creating stability dia-
grams (Ceci et al. 2015a, b; Li and Gadd 2017). The stability
diagrams of both (C2O4)2

− and La3+ activities as a function of
pH were constructed using Act2 to simulate changes in the
mineral species under ideal conditions; all ion activities were
calculated using SpecE8 according to their concentrations in
the liquid medium. As A. niger was found to secrete ~ 25 mM
oxalic acid after 12-day growth in a previous study (Ceci et al.
2015b), the activity of oxalate was calculated based on 25mM
(C2O4)2

− in the equilibrium system, while that of lanthanum
was set at 1 mM La3+, which was found to be an effective
concentration to precipitate La as oxalate. Activities for other
chemicals in simulated spent AP1 medium were calculated
using the following concentrations: 35.3 mM NaNO3,
3.7 mM KH2PO4, 1.7 mM NaCl, 0.8 mM MgSO4·7H2O,
0.2 mM CaCl2·6H2O, 17.9 μM MnSO4·4H2O, 13.9 μM
ZnSO4·7H2O, 9.3 μM FeCl3·6H2O and 1.6 μM CuSO4·
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5H2O. For MCD fungal supernatant, the concentrations used
were the following: 35.3 mM NaNO3, 7.0 mM Na2HPO4,
6.7 mM KCl, 2.0 mM MgSO4·7H2O and 36.0 μM FeSO4·
7H2O. All simulated equilibrium conditions were set at
25 °C under 1.013 bars atmospheric pressure.

EDXA and SEM

Dried La-containing crystals were mounted on adhesive car-
bon tape stuck to aluminium electron microscopy specimen
stubs (JEOL, 25 mm× 8 mm) for determination of elemental
composition using an energy-dispersive X-ray spectroscopy
system (Oxford Instruments Inca, Abingdon, Oxfordshire,
UK) embedded within a JEOL JSM 7400F field emission
scanning electron microscope (JEOL Ltd., Tokyo, Japan) op-
erating at an accelerating voltage of 15 kV for 100 s. Samples
on the stub were plated with a layer of 10-nm gold and plat-
inum using a Cressington 208HR sputter coater (Cressington
Scientific Instruments Ltd., Watford, England, UK) prior to
examination using the emission scanning electron microscope
(JEOL JSM7400F) running at an accelerating voltage of 5 kV.

XRD and TGA

Crystal samples were ground to a fine powder using a clean
ceramic mortar and pestle and compacted tightly on the re-
verse side of an aluminium specimen holder (15 × 20 ×
2 mm3), which was held against a glass side and detached
after the back cover was snapped into place. The mineral
phase of the crystals was identified using a Hiltonbrooks X-
ray diffractometer (HiltonBrooks Ltd., Crewe, UK) equipped
with a single graphite crystal monochromatic CuKα chro-
nometer (30 mA, 40 kV). Duplicate samples were analysed
over the range of 3–60° 2θ angle at a scan rate of one degree
per min in 0.1° increments.

TGA of the crystal samples was carried out using a
NETZSCH STA 409PC TG/DTG/DTA analyser fitted with
a SiC furnace (NETZSCH Group, Selb, Germany). Small
amounts (< 100 mg) of crystals were heated to 1000 °C at a
heating rate of 10 K min−1 using dry N2 as a purge gas at a
flow rate of 100 cm3 min−1. The samples were maintained at
1000 °C until constant weight. A curve of mass loss as a
function of temperature was created as the result. After ther-
mal treatment, all samples were collected for XRD analysis to
identify the presence of possible mineral phases.

Statistical analysis

One-way ANOVAwas applied using Tukey’s test to compare
means of growth rate, biomass yield, and surface pH at a
significance level of 0.05 between samples from the same
medium treated with different concentrations of lanthanum.

Results

Fungal growth and crystal formation

Measurement of colony diameters was discontinued on the
6th day of growth when the A. niger colonies reached the
edge of the plate. A. niger grew on La-free MCD plates at
an average rate of 14.21 ± 0.46 mm day−1 which was not
significantly influenced (p < 0.05) by the presence of 1 and
5 mM LaCl3. However, at 10 mM LaCl3, the growth rate
was reduced approximately by 25% compared with the
control. Biomass yield decreased slightly from 0.19 ±
0.01 to 0.17 ± 0.01 g dry wt as the La concentration in-
creased (Fig. 1). The agar surface pH was pH 1.86 ± 0.04
for the La-free control and pH 1.71 ± 0.04 for the 10 mM
La plates. The most prominent decrease in the tolerance
index occurred at 5 mM La, where the biomass yield was
lowered by 12.4% (Table 1).

Obvious precipitation of white-coloured minerals was
confirmed using light microscopy after 2 weeks of
A. niger growth on MCD plates amended with 0, 1, 5 and
10 mM LaCl3 (Fig. 2a–c). It was observed that the quantity
of precipitates increased with higher LaCl3 concentrations
resulting in larger single crystals which appeared to be
formed by continuous growth with branches ramifying in
all directions with final sizes varying from approximately
300 to more than 1000 μm in length across three La con-
centrations (Fig. 2d–f).

SEM and EDXA

Mycogenic crystals from MCD plates containing 1 mM
LaCl3 were recovered after 14-day fungal growth and

Fig. 1 Colony expansion rate of A. niger on solid Czapek-Dox media
containing 0 mM (empty circle), 1 mM (filled circle), 5 mM (empty
square) and 10 mM (filled square) LaCl3 over 6-day incubation at
25 °C in the dark. Data are averages of at least three replicates with
error bars (shown only when greater than symbol dimensions) showing
the standard error of the mean
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subjected to SEM. After the homogenization and washing
processes, the large single crystal structures were disrupted
into dendritic fragments measuring approximately 500 ×
50 μm, and showing a layered texture (Fig. 3a, b). In con-
trast, crystals precipitated by an abiotic chemical reaction
using pure oxalic acid and LaCl3 (Fig. 3c, d) consisted of
only smooth crystal structures that did not show a layered
pattern and were smaller (40 × 10 μm) than the mycogenic
preparations. EDXA identified the main elements in the
mycogenic crystals produced in solid (Fig. 4a) and liquid
(Fig. 4b) media as C, O and La. The EDX spectra showed
distinguishable peaks which matched well with the charac-
teristic pattern of lanthanum at 0.833 and 4.650 keV.
However, a phosphorus peak at 2.013 keV was evident in
some samples produced from liquid reactions at high La
concentrations (Fig. 4c).

XRD analysis

The XRD pattern for the biogenic samples showed a well-
formed crystalline structure with the peaks matching well with
the standard pattern for La2(C2O4)3·10H2O (JCPDS card no.
20-549) in the database (Fig. 5a). Therefore, the mycogenic
crystals were conclusively identified as lanthanum oxalate
decahydrate.

Thermal decomposition analysis

Thermogravimetric experiments recorded a stepwise ther-
mal decomposition course for the mycogenic crystals,
which was identical with that of abiotic controls. The
decomposition process consisted of three stages com-
mencing with an initial 22.6% weight loss from 45 to

Table 1 Growth rate, biomass
yield, agar surface pH and
tolerance index (TI) of A. niger
after 14-day growth at 25 °C in
the dark in solid Czapek-Dox
medium supplemented with
lanthanum chloride

La concentration (mM) Growth rate (mm day−1) Biomass (g dry wt) Surface pH TI (%)

0 14.21 ± 0.46a 0.19 ± 0.01a 1.86 ± 0.04b 100

1 14.12 ± 0.11a 0.18 ± 0.05a 2.00 ± 0.04a 99.0

5 14.31 ± 0.21a 0.16 ± 0.01a 1.87 ± 0.03b 87.6

10 10.67 ± 0.33b 0.17 ± 0.01a 1.71 ± 0.04c 92.1

Tolerance index (TI) was calculated according to the following formula: TI = (dry weight of La-exposed biomass/
dry weight of control biomass × 100%). Data are given asmeans ± SD from three independent replicates; different
lowercase letters in each column indicate the significance level at p < 0.05
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incubation ofA. niger at 25 °C in the dark. Plates were supplementedwith

a, d 1 mM, b, e 5 mM and c, f 10 mM LaCl3. (d–f, scale bars = 100 μm).
Typical images are shown from several similar examinations



250 °C, followed by 33.0% from 400 to 600 °C and
11.8% from 710 to 800 °C until the weight remained
constant (Fig. 6). The total mass loss amounted to
54.6% at above 800 °C. The XRD pattern of the sample
after complete thermal decomposition showed a high
match with the standard pattern for La2O3 (JCPDS card
no. 22-369) (Fig. 5b).

Biomass-free culture supernatant experiments

Reactions using mycogenic supernatants were performed
using supernatants obtained from shaken liquid cultures of
A. niger grown for 1 week in NO3

−-containing AP1 me-
dium. The pH of the supernatant had dropped to pH 3.41
± 0.10 upon harvest. Large amounts of white precipitates
were formed as a result of the 24 h reaction between
LaCl3 and culture supernatants on the rotary shaker. At
lower La concentrations, the precipitates were obviously
granular and quickly settled at the tube bottom while at
higher concentrations, they appeared to be smaller and
formed a suspension. The production yield of precipitates
from the 10-ml react ion system increased from
4.2 mg dry wt at 1 mM La to 23.3 mg dry wt at 15 mM
La, which was the maximum yield observed. At concen-
trations higher than 15 mM La, the yield was slightly
reduced to 23 mg at 20 mM La, 21.7 mg at 30 mM La,
20.8 mg at 40 mM La and 19.4 mg at 50 mM La. The pH,
which was negatively correlated with increasing concen-
tration of La, decreased from pH 3.40 at 1 mM La to
pH 2.07 at 50 mM La. However, the decrease in pH

was most prominent within the range 1 to 15 mM La
and tended to remain unchanged at concentrations above
15 mM La (Fig. 7a). The percent removal of La was
100% with 1, 3 and 5 mM LaCl3 in the reaction system
but was reduced at higher LaCl3 concentrations: 94.0% at
7 mM La, 65.5% at 11 mM La, 49.8% at 15 mM La,
37.1% at 20 mM La, 21.9% at 30 mM La, 11.9% at
40 mM La and 10.1% at 50 mM La. The maximum
amount of La (74.8 μmol) was removed at 15 mM La
(Fig. 7c). The kinetics of La removal showed a high sim-
ilarity with those of precipitation yield.

Control experiments were carried out using 25 mM
oxalic acid solution reacted with solutions of LaCl3. It
was found that the precipitation yield in the control group
also showed an increase with rising La concentrations until
15 mM La where the maximum yield of 53.3 mg dry wt
was reached. A similar trend of pH change was found for
the control which declined from pH 1.77 at 1 mM La to
pH 1.43 at 15 mM La (Fig. 7b). The amount of removed
La, which reached 146.5 mg dry wt, was only slightly
lower than the maximum of 149.7 mg dry wt occurring at
20 mM and showed almost a linear relationship to the
lanthanum concentration over the range 1 to 15 mM La.
The removal rate was maintained at 100% until 11 mM La
and slightly dropped to 97.7% at 15 mM La before a
marked decline at 20 mM La and above (Fig. 7d).

SEM showed that at low La concentration (1 mM La),
the crystals were of a relatively flat structure with smooth
surfaces and measuring approximately 1 μm in width and
10 μm in length (Fig. 8a) and bore a close resemblance

Fig. 3 Scanning electron
microscopy of a, b mycogenic
crystals purified from 1 mM La-
containing Czapek-Dox medium
after 14-day incubation at 25 °C
in the dark with A. niger and c, d
crystals from chemical reaction of
25 mM oxalic acid and 1 mM
lanthanum chloride. (a–c, scale
bars = 50 μm; d, scale bar =
5 μm). Typical images are shown
from several similar examinations
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with those precipitated in the abiotic chemical reactions
(Fig. 3d). At a medium La concentration (7 mM La), the
crystals were larger in size and their surfaces were asso-
ciated with small fragments of irregular shape (Fig. 8b).
Aggregates of spherical minerals appeared, and the
amount of tabular-shaped single crystals decreased at
20 mM La and above (Fig. 8c, d). All these spherical
structures were of the same size measuring less than
1 μm in diameter. The mineral samples produced at both
lower and higher La concentrations were subjected to fur-
ther examination using EDXA and XRD. EDXA of sam-
ples obtained at higher La levels showed the presence of
phosphorus, which was further confirmed by XRD show-
ing well-matched patterns for both La2(C2O4)3·10H2O and
the P-containing mineral La7P3O8 (Fig. 9).

Geochemical modelling

The geochemical model for the solid medium experiments
was constructed with the assumption that the system
contained 1 mM LaCl3 in order to simulate the formation
of lanthanum oxalate by the secretion of mycogenic
oxalic acid. The model for the liquid culture reactions
was created to simulate the precipitation of the
biominerals in the presence of 25 mM oxalic acid, a real-
istic value to be released by A. niger (Ceci et al. 2015b).
The results showed there was a difference in mineral
phase speciation in both solid and liquid media. In solid
medium, where lanthanum oxalate was the only solid
phase in the modelled system, La2(C2O4)3 could be
formed over the range 0 < pH < 2.39 if the concentration
of (C2O4)

2− was above 10–1.15 M and at pH > 2.39 when
the (C2O4)

2− concentration was above 10-4.78 M
(Fig. 10a). In the liquid reaction systems, in addition to
La2(C2O4)3, LaPO4 could be precipitated when the pH
was above pH 3.63 and the La3+ concentration no less
than 10–5.77 M (Fig. 10b).

Discussion

Despite the chemical properties and characteristics of lan-
thanum and its compounds being well-studied in a chem-
ical context, its interactions with microorganisms have
received scant attention. Our work, for the first time,
has demonstrated the formation of insoluble biogenic lan-
thanum oxalate by fungi and has therefore offered an
insight into possible future biotechnological applications
for the biorecovery of lanthanides and other rare earths
and metals (Liang and Gadd 2017). Growth of A. niger in
solid medium was only slightly affected by even high
concentrations (> 10 mM) of lanthanum and the forma-
tion of large amounts of crystals was achieved, demon-
strating the high efficiency of the process. This work has
therefore laid a foundation for the biorecovery of REE
using mycogenic oxalic acid. Crystals of lanthanum oxa-
late precipitated under chemical conditions usually carry
10.2 molecules of water and have a well-formed mono-
clinic crystal habit with clinopinacoid (0,1,0) (where the
crystal plane is parallel to the vertical and the inclined
lateral axes), orthopinacoid (1,0,0) (with crystal planes
parallel to the orthodiagonal and vertical axes) and
clinodome (0,1,1) (a dome in which the planes are paral-
lel to the inclined axis) structures (Gilphin and McCrone
1952), which is in agreement with the morphological fea-
tures of our samples produced at high La concentrations
(Fig. 8c, d). The morphology of abiotic REE oxalates can
also vary according to the methods and conditions ap-
pl ied to the precipi ta t ion react ion. Flower- l ike

Fig. 4 Energy-dispersive X-ray analysis of (a) mycogenic crystals
formed in solid Czapek-Dox medium containing 1 mM LaCl3 after
incubation with A. niger for 14 days at 25 °C in the dark; EDXA of
crystals precipitated by reactions of (b) 1 mM and (c) 40 mM LaCl3
with biomass-free culture supernatant of NO3

−-containing AP1 medium
that was incubated with A. niger for 7 days at 25 °C in the dark. Typical
spectra are shown from several similar determinations
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hierarchical microparticles, which showed similarity to
those obtained in our work, were formed when
La2(C2O4)3·10H2O was precipitated at room temperature
in the presence of sodium citrate, and nanotubes were
produced using a mixed solvent of water and ethanol in
a 1:1 ratio (Zhang et al. 2014).

Thermogravimetric analysis is a useful tool to investi-
gate the thermal properties of crystals as well as their struc-
ture and characterizes the thermal decomposition of
biominerals (Balboul et al. 2002). Chlorides of REE are
highly soluble in water and can be precipitated as oxalates,
which may be further converted into oxides by ignition at
800 °C (Kolthoff and Elmquist 1931). The biogenic lan-
thanum oxalate crystals produced in the work underwent

three stages of decomposition resulting in a total mass
change of 54.6%, which is consistent with theoretical data
(54.8%) based on calculations of the stepwise decomposi-
tion course as follows (Balboul et al. 2002) with lanthanum
oxide (La2O3) being the final product:

La2 C2O4ð Þ3 � 10H2O→La2 C2O4ð Þ3 � 4H2Oþ 6H2O

Ea ¼ 65:47 kJ mol−1

ð1Þ

La2 C2O4ð Þ3 � 4H2O→La2 C2O4ð Þ3 � 2H2Oþ 2H2O

Ea ¼ 106:90 kJ mol−1
ð2Þ

La2 C2O4ð Þ3 � 2H2O→La2 C2O4ð Þ3 þ 2H2O

Ea ¼ 120:90 kJ mol−1
ð3Þ

Fig. 5 X-ray diffraction of (a)
mycogenic crystals obtained from
solid Czapek-Dox medium
containing 1 mM LaCl3 and
incubated with A. niger for
14 days at 25 °C in the dark; (b)
XRD of the above-mentioned
sample after thermogravimetric
treatment at 1000 °C until
constant weight. The standard
patterns shown below the XRD
patterns are (a) lanthanum oxalate
decahydrate (JCPDS card no. 20-
549) and (b) lanthanum oxide
(JCPDS card no. 05-602). Typical
patterns are shown from several
similar determinations

Fig. 6 Thermogravimetric
analysis of mycogenic crystals
obtained from solid Czapek-Dox
medium amended with 1 mM
LaCl3 and incubated with A. niger
for 14 days at 25 °C in the dark.
DTG denotes differential thermal
gravimetry, which is expressed as
percentage of weight loss per
minute. A typical pattern is shown
from several similar
determinations, all of which gave
similar results
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La2 C2O4ð Þ3→La2O2CO3 þ 3CO↑þ 2CO2↑

Ea ¼ 177:68 kJ mol−1
ð4Þ La2O2CO3→La2O3 þ CO2↑ Ea ¼ 156:4 kJ mol−1 ð5Þ

where Ea represents the energy of activation.

Fig. 7 a Precipitation yield and c La removal rates for reactions of 1 ml
LaCl3 and 9 ml biomass-free supernatant of NO3

−-AP1 medium which
was incubatedwithA. niger for 7 days at 25 °C in the dark. b Precipitation
yield and d La removal rates for chemical reactions of 9 ml 25mM oxalic
acid with 1 ml LaCl3. The amount of La removed after liquid reactions

(empty circle); dry wt of precipitate (filled circle); removal rate of La
(empty square); pH after reaction (filled square). All data are given as
means of at least three independent replicates. Standard deviation is
represented by error bars which are not shown when smaller than the
symbols

Fig. 8 Scanning electron
microscopy of crystal samples
from reactions of a 1, b 7, c 30,
and d 50 mM LaCl3 with
biomass-free culture supernatant
of NO3

−-AP1 medium grown
with A. niger for 7 days at 25 °C
in the dark. (a–d, scale bars =
5 μm). Typical images are shown
from several similar examinations
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All five stages of thermal decomposition can generally be
fitted to a kinetic function (Zhan et al. 2012):

G αð Þ ¼ 1− 1þ αð Þ1=3
h i2

ð6Þ

where α is the extent of thermal conversion dependent on Ea

and defined by the following equation:

α ¼ m0−mð Þ= m0−m fð Þ ð7Þ
where m is the mass of the sample at a given time; m0 and mf

refer to the mass at the beginning and the end of the thermal
decomposition.

The temperature range and decomposition course generally
corresponded with a previous study where La2(C2O4)3·10H2O
was heated to 900 °C and a weight loss of 58.1%was recorded
(Zhan et al. 2012). However, a step of 4.9% mass loss oc-
curred at 226 °C, which was caused by the transformation of
hexahydate to dihydrate, was not prominent here and a total
loss of 22.6% upon reaching 250 °C was recorded. This work
has therefore not only demonstrated a means to recover La as
lanthanum oxalate but also that mycogenic lanthanum oxalate
can serve as a precursor for the preparation of La2O3 which

has significant catalytic properties and is of use in several
industrial fields including biodiesel production, manufacture
of optical glass, phosphate removal and antimicrobial sub-
stances (Johnson et al. 2005; Liu et al. 2017; Fang et al.
2018; Salinas et al. 2018).

As regards geomicrobial transformations of minerals,
fungal-produced oxalic acid can play a role in the solubiliza-
tion of several minerals including calcite and dolomite (Gadd
2017). Minerals containing, e.g. Ca, Cd, Co, Cu, Mg, Mn, Sr,
Zn, Ni and Pb can be transformed into oxalates by interaction
with oxalate-secreting fungi (Gadd 2007; Sullivan et al. 2012;
Gadd et al. 2014).Many preceding studies involving the trans-
formation of minerals by oxalic acid-producing fungi have
focused on the bioprecipitation of calcium oxalate as
whewellite and weddellite (Punja and Jenkins 1984; Gadd
et al. 2014; Gadd 2017). One of our preliminary experiments
using La-containing malt extract agar as a growth medium for
A. niger also developed pyramid-shaped crystals with typical
morphological characteristics of calcium oxalate amid lantha-
num oxalate crystals (data not shown). Oxalic acid could be
useful in the final steps of metallurgical processes to recovery
REE from leachates or other solutions (Sinha et al. 2016). Chi
et al. (2004) applied oxalic acid to precipitate total rare earth

Fig. 10 a Speciation diagram of
pH versus log [(C2O4)

2−] in the
presence of 1 mM LaCl3 and b
pH vs log [La3+] in the presence
of 25 mM oxalic acid. All
simulated reactions were set at
25 °C under 1.013 bars
atmosphere pressure, and the
activities of all chemicals
contained in the media were
calculated using Geochemist’s
Workbench in accordance with
their actual concentrations

Fig. 9 X-ray diffraction of
crystals from reaction of 20 mM
LaCl3 with biomass-free culture
supernatant of NO3

−-AP1
medium after incubation with
A. niger for 7 days at 25 °C in the
dark. Standard patterns of
La2(C2O4)3·10H2O and La7P3O18

are also shown. A typical result is
shown from one of several similar
determinations, all of which gave
similar results
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elements, including Ce and La, from a leachate from
bastnasite processing, and the produced oxalates were trans-
formed into oxides after being roasted at 900 °C for 2 h. A
similar process was also reported in another study where
oxalic acid was utilized to recover lanthanides from REE-
bearing phosphate rocks after being treated with strong acid
(Aly and Mohammed 1999). Moreover, an appropriate
amount of (NH4)2C2O4 was successfully used to separate lan-
thanum from a leachate consisting of a mixture of elements
extracted from spent Ni-Mn batteries (Fernandes et al. 2013).
Our XRD results showed uniformity for all biogenic and con-
trol samples from both agar plates and liquid media reactions
at 1 mM La, confirming that the biominerals were well-
formed crystalline structures of high purity as indicated by
the sharp characteristic peaks matching impeccably with stan-
dard patterns for lanthanum oxalate in the database and a flat
noise base.

In solid media experiments, only lanthanum oxalate crys-
tals occurred even at high La concentrations. However, at
higher La concentrations in the biomass-free liquid culture
supernatant experiments, phosphorus was found in high
amounts, associated with micro-sized spheres, indicating that
P-containing compounds were also precipitated. This coincid-
ed well with the results of pH changes shown in the mass
balance analysis at pH 3.40 and 1 mM La and with the geo-
chemical modelling which showed lanthanum oxalate specia-
tion when below pH 3.63. The plateau occurring above
15 mM La, as shown in the mass balance analysis, indicated
that oxalic acid was depleted by excessive amounts of La3+,
and any remaining La could participate in the precipitation of
phosphates in the liquid media. It was reported that lanthanum
phosphate, usually in the form of micro- or nano-sized parti-
cles and having a number of different mineral phases, could be
produced by mixing La(NO3)3 and H3PO4 in a continuous
precipitation reactor (Kawase et al. 2007). This could also
account for the phosphates obtained at high La concentrations
in our work. It is well known that fungi can release P from
inorganic and organic sources which can therefore interact
with other metals such as cadmium, cobalt, copper, lead, zinc
and uranium, leading to the precipitation of secondary metal
phosphates as microscale or nanoscale structures (Rhee et al.
2012, 2014; Gadd et al. 2014; Liang et al. 2015, 2016). In the
present study, phosphates precipitated in the supernatant reac-
tion system probably arose from chemical moieties in the
growth medium according to the geochemical modelling
where LaPO4 is formed if the system is pH > ~ 3.5 in the
presence of excessive amounts of La3+ (Fig. 10b). Therefore,
the precipitation of P-containing biominerals could be caused
by the presence of phosphates in the supernatant: by adjusting
the pH and the volume of the lanthanum solution, the forma-
tion of lanthanum phosphates could be avoided.

In conclusion, the fungal transformation of lanthanum
chloride into La2(C2O4)3·10H2O, which can be subsequently

converted into lanthanum oxide, is achievable by
bioprecipitation in both La-containing solid media and
biomass-free culture supernatants. Our study suggests a new
biotechnological aspect for the biorecovery of rare earth
elements.
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