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Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in
industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of
safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can
produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make
them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by
these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and
that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific.
Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on
misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an
aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately
describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to
ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a
reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for
food or feed enzyme production, or considerations on the use of these species as production hosts.
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Introduction

Earlier reviews on the safety of Aspergillus niger, Aspergillus
oryzae, and Trichoderma reesei have been published
(Schuster et al. 2002; Tanaka et al. 2002; Barbesgaard et al.

1992; Jørgensen 2007; Blumenthal 2004), but since these re-
views were written, much progress has been made in the tax-
onomy, toxicology, natural product chemistry, genomics, ge-
netics, and molecular biology of these fungi.

There is a clear distinction between mycotoxins and other
secondary metabolites with attractive properties for diverse
applications. Fungal species containing industrial strains have
the potential to produce a rather limited number of compounds
that are toxic to vertebrates (mycotoxins) and a large variety of
other compounds that can display anticarcinogenic or antimi-
crobial activity, antioxidant activity, be pigments, etc.
(Mushtaq et al. 2018). A clear definition of mycotoxin and
secondary metabolite is presented here to provide a clear basis
for the consideration of safety. The fungal strains that repre-
sent the workhorses of industrial biotechnology have a long
and extensively documented history of safe use for food and
feed applications. Strains belonging to the Aspergillus species
A. niger and A. oryzae have been used for fermentation of
food for more than 2 millennia and to manufacture food
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enzymes for over 50 years, while strains of Trichoderma
reesei have been used safely for decades in enzyme produc-
tion. Hundreds of enzymes produced in these species are con-
sidered as safe by regulatory authorities. Furthermore, myco-
toxins and other secondary metabolites are not produced dur-
ing the controlled, industrially relevant growth conditions
where nutrients are not limited and where there is no growth
challenge by any other microorganism.

This report includes a comprehensive update of the current
knowledge about the mycotoxin and the promising secondary
metabolite potential of these industry relevant fungal species.
We have considered all published work and have critically
evaluated the validity of the data and the accuracy of the
taxonomic identification in each case. Consequently, not all
publications have been included herein. The report is divided
into three sections (taxonomy, mycotoxins, and secondary
metabolite potential) for each species.

Taxonomy of Aspergillus niger, Aspergillus
oryzae, and Trichoderma reesei

Traditional identification of fungal species relied on micro-
scopic and macroscopic morphological traits, e.g., sporu-
lation structures and other phenotypic features like growth
and colony features (see Fig. 1 for examples of A. niger, A.
oryzae, and its close relative Aspergillus flavus, together
with T. reesei). In the last decades, taxonomical classifica-
tion aided by secondary metabolite profiles has also proven
successful (Frisvad and Larsen 2015; Samson et al. 2014).
More recently, the use of diagnostic gene sequences like
rRNA and, later, the availability of whole genome se-
quences, have enabled direct comparison of different spe-
cies at the nucleotide level, throughout the genome. In fact,
rDNA-derived ITS sequences are recommended as one of
the main “barcodes” for species identification (Samson et
al. 2014). However, at least in some Aspergillus clades,
there is limited variation in, e.g., ITS sequences, requiring
the use of additional barcodes like calmodulin or β-tubulin
(Samson et al. 2014). The level of resolution of these mo-
lecular techniques provides new ways to investigate what
defines the species boundaries (Vesth et al. 2018). Still,
differences in DNA sequences alone cannot always pro-
vide a biological understanding. Also, the profiles of sec-
ondary metabolites are species-specific (Frisvad and
Larsen 2015) and thereby consistent with phylogenetic re-
lationships in fungi (Larsen et al. 2005; Kocsubé et al.
2016). When taxonomical identification is required, it is
therefore advantageous to combine the accumulated
knowledge on morphological, physiological, and molecu-
lar characteristics. Taxonomical classification of A. niger,
A. oryzae, and T. reesei together with relevant related spe-
cies is described in the following texts.

Aspergillus niger

Aspergillus niger is placed within the Aspergillus niger clade
in the Aspergillus section Nigri (Varga et al. 2011a). The spe-
cies is well-circumscribed, but it has a sibling species, with the
same properties, called Aspergillus welwitschiae (Hong et al.
2013a). The latter species shares all morphological, physio-
logical, and chemical characters with A. niger (Fig. 1), and the
two species can only be distinguished by sequencing prefera-
bly one of the secondary bar-coding genes (Hong et al.
2013b). The DNA barcodes of Aspergillus welwitschiae are
as follows: ITS (internally transcribed spacer regions and the
5.8 S of the ribosomal gene): FJ629340; BenA (β-tubulin):
FJ629291; CaM (calmodulin): KC480196, while A. niger has
the following barcodes: ITS: EF 661186; BenA (β-tubulin):
EF661089; CaM (calmodulin): EF661154; RPB2 (RNA po-
lymerase B2: EF661058). Different strains of Aspergillus
niger have been genome-sequenced (see Baker 2006; Pel et
al. 2007; Andersen et al. 2011).

Other species closely related to A. niger are Aspergillus
neoniger, Aspergillus tubingensis, Aspergillus vadensis,
Aspergillus luchuensis, Aspergillus eucalypticola, Aspergillus
costaricaensis, and Aspergillus piperis, but it is mostly A.
luchuensis (formerly Aspergillus acidus or Aspergillus foetidus
var. acidus), A. vadensis, and A. tubingensis that are used in the
industry. In some cases, the latter have been misidentified as A.
niger, and A. niger is by far most commonly used species in the
industry (Frisvad et al. 2011). A. luchuensis is found in
fermented Puerh tea (Mogensen et al. 2009) and is used often
for koji production (also under the names Aspergillus kawachii
and Aspergillus awamori) (Fujimoto et al. 1993; Hong et al.
2013a; Fujii et al. 2016). A. niger sensu stricto is the most
commonly used species in biotechnology (Andersen et al.
2011; Frisvad et al. 2011). An often examined typical strain
of A. niger is ATCC 1015.

Unlike the situation in A. flavus, which has a taxonomically
accepted domesticated form A. oryzae, the domesticated form
of A. niger, A. awamori (Nakazawa 1907, Sakaguchi et al.
1951; Raper and Fennell 1965; Murakami 1979; Al-
Musallam 1980), has not been accepted as a valid name, prob-
ably because of a mistaken neotypification. Perrone et al.
(2011) used the name A. awamori for a taxon that was isolated
fromWelwitschia mirabilis, but since the ex-type isolate (CBS
557.65) was not from a koji environment, that species was
renamed A. welwitschiae by Hong et al. (2013a). Other names
such as Aspergillus usamii and A. kawachii have also been
used for domesticated forms of A. niger or A. luchuensis
(Hong et al. 2013b). However, none of these names have been
officially taken up for the domesticated form of A. niger. The
names Aspergillus phoenicis and Aspergillus ficuum predate
A. niger and have therefore been rejected, and the name A.
niger officially conserved because of the economical impor-
tance of the latter species (Kozakiewicz et al. 1992).
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Average nucleotide identity (ANI) has become the gold
standard for taxonomic confirmation of prokaryotes. Two
species having > 95% ANI are considered the same spe-
cies (Rodriguez and Konstantinidis 2014). Although ANI
is not widely used in eukaryotes and there are no studies
done to layout an ANI-based species framework in fungi,
ANI values can still be used to determine the relatedness
of two strains or species and can give a better resolution
of phylogenetic tree-based inferences (Goris et al. 2007).
ANI can also discriminate between closely related popu-
lations, and it provides a higher resolution than other se-
quence analyses, at least in bacteria (Rodriguez and
Konstantinidis 2014).

We performed comparative genomics within species of the
Nigri clade for which the genome sequence is available using
ANI that showed a relatively high identity (85% or higher)
between different species in this clade, while a lower level (~
76%) was obtained when comparing to species outside the
clade like A. oryzae or Aspergillus nidulans (Table 1).
Remarkably, a higher ANI was obtained when comparing A.
tubingensis and A. luchuensis (~ 93%) and a slightly lower
ANI when comparing A. tubingensis with A. vadensis or A.
luchuensis with A. vadensis (~ 92%). These three species ap-
pear to be more closely related (Table 1), and they all produce
asperazines (Nielsen et al. 2009). A phylogenetic tree based
on the above-mentioned genome comparison displays the

closer relationship between these three species and the clus-
tering of A. niger and Aspergillus brasiliensis (Fig. 2).

Recently, wild-type A. niger has been considered as a class
2 microorganism by the German authorities (BAUA see pre-
vious texts) because of its potential mycotoxin production and
pathogenicity to humans and animals. It is important to dis-
criminate between (1) mycotoxin production as a health haz-
ard during food manufacture and spoilage and corn silage and
(2) the growing number of reports of opportunistic pathogens
that have resulted in disease, normally in immunocompro-
mised patients. In fact, the baker’s yeast (Saccharomyces
cerevisiae) can also be considered as a pathogen since it has
been associated with disease in severely immunocompro-
mised patients. Perhaps the concept of what constitutes a
“pathogen” needs a comprehensive revision and it is not sole-
ly related to the taxonomy of the microbe (Casadevall and
Pirofski 2003).

Aspergillus oryzae

A. oryzae is regarded bymost taxonomists as the domesticated
form of A. flavus (Blochwitz 1929; Wicklow 1984; Klich and
Pitt 1988; Georgianna et al. 2009; Rokas 2009; Varga et al.
2011b; Gibbons et al. 2012; Houbraken et al. 2014; Frisvad et
al. 2019). Wicklow (1984) claims that domestication (in rice
fermentations) has resulted in the following phenotypic

Fig. 1 Macroscopic
characteristics of 7-day old fungal
species growing on solid medium
(CYA). a Aspergillus niger; b A.
oryzae; c A. flavus; d
Trichoderma reesei (Photo:
Birgitte Andersen)
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differences: conidia in A. oryzae are smoother and slightly
larger (to adapt to the rice habitat), amylase production is
higher, the conidiophore stipes are longer, the mycelium is
more floccose, and the conidium color en masse is light
brownish green rather than yellow grass green as compared
to A. flavus (Fig. 1). While there are no genotypic differences
between A. oryzae and A. flavus (Thom and Church 1921;
Raper and Fennell 1965; Murakami 1971; Christensen 1981;
Pitt et al. 1983; Wicklow 1984; Klich and Pitt 1985, 1988;
Geiser et al. 1998, 2000; Gibbons et al. 2012; Powell et al.
2008; Varga et al. 2011; Gilbert et al. 2018; Frisvad et al.
2019), there are several morphological and physiological dif-
ferences between the two species as listed previously.
Furthermore Aspergillus oryzae cannot produce aflatoxins,
aspergillic acid, and flavimine, that are otherwise present in
most strains of Aspergillus flavus (Thom and Church 1921;

Raper and Fennell 1965; Murakami 1971; Christensen 1981;
Wicklow 1984; Klich and Pitt 1985, 1988; Pitt et al. 1983;
Varga et al. 2011; Frisvad et al. 2018; Fig. 1). Klich and
Mullaney (1987) were able to distinguish between strains of
A. oryzae and A. flavus by DNA restriction enzyme fragment
polymorphisms. Nearly all strains of A. flavus produce a
bright orange reverse on the medium AFPA (Aspergillus
flavus parasiticus agar), while A. oryzae strains produce a
cream-colored reverse (Bothast and Fennell 1974; Hamsa
and Ayres 1977; Pitt et al. 1983).

In accordance with this, genome sequencing of A. flavus
(Nierman et al. 2015; Faustinelli et al. 2016) and strains of A.
oryzae (Machida et al. 2005; Galagan et al. 2005; Umemura et
al. 2012, 2013a,b; Zhao et al. 2012, 2013a,b, 2014a,b) have
shown that these two species are very similar. Interestingly,
the first sequenced strain of A. oryzae may be an A. flavus

Table 1 Reciprocal average nucleotide identity (ANI, Goris et al. 2007)
of relevant Aspergillus species. A standalone version of the software was
downloaded from http://enve-omics.ce.gatech.edu/ani/. Pair-wise

comparisons of different combinations were performed using R script
and phyton programming

Strain A. oryzae
A1560

A. oryzae
RIB40

A. flavus
NRRL3357

A. niger
CBS513.88

A. brasiliensis
CBS101740

A. tubingensis
CBS134.48

A. luchuensis
NBRC 4314

A. vadensis
CBS 113365

A. nidulans
FGSCA4

A. oryzae
A1560

100.00|0.00 99.94|0.85 99.14|1.75 77.77|5.76 77.63|5.22 77.46|5.48 77.24|4.90 77.20|5.08 76.28|4.68

A. oryzae
RIB40

99.97|0.34 100.00|0.00 99.16|1.61 79.00|7.19 78.09|5.61 77.95|5.64 77.42|5.21 77.60|5.39 76.31|4.72

A. flavus
NRRL3357

99.18|1.52 99.18|1.49 100.00|0.00 77.44|5.15 77.51|5.02 77.54|5.39 77.41|4.99 77.14|4.98 76.28|4.72

A. niger
CBS513.88

77.84|6.01 78.35|6.66 77.45|5.31 100.00|0.00 85.67|5.18 86.87|5.23 86.78|5.19 86.89|5.23 77.02|4.95

A. brasiliensis
CBS101740

77.59|5.09 77.61|5.14 77.49|5.00 85.67|5.18 100.00|0.00 85.18|5.13 85.08|5.10 85.17|5.13 77.16|5.37

A. tubingensis
CBS134.48

77.43|5.41 77.49|5.40 77.53|5.40 86.85|5.24 85.17|5.14 100.00|0.00 93.25|4.44 92.54|4.76 76.91|4.95

A. luchuensis
NBRC 4314

77.30|4.90 77.53|5.33 77.38|4.95 86.77|5.19 85.09|5.09 93.28|4.39 100.00|0.00 92.12|4.63 76.85|4.94

A. vadensis
CBS 113365

77.10|5.04 77.17|5.00 77.12|4.98 86.86|5.26 85.16|5.13 92.53|4.78 92.07|4.72 100.00|0.00 77.04|4.93

A. nidulans
FGSCA4

76.30|4.73 76.31|4.73 76.25|4.72 77.00|4.97 77.15|5.35 76.84|4.99 76.79|4.95 77.05|4.93 100.00|0.00

Fig. 2 Phylogram based on whole genome sequences of available
Aspergillus species within the Nigri and Flavi clades. The phylogram
was made using kSNP (version 3.1; Gardner et al. 2015) which
computes a core SNP matrix from all the genomes and then executed

FastTree (Price et al. 2009) with the maximum likelihood option to
compute the tree. The tree was then midpoint-rooted and rendered as a
Phylogram using Dendroscope (Huson and Scornavacca 2012)
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“sensu stricto.” The isolate RIB40 produces large globose
sclerotia (Rank et al. 2012; Fig. 1) and was isolated from a
broad bean, Kuriyamacho, Kyoto, Japan, in a field, not from a
fermentation factory. Based on the first identification as A.
oryzae var. brunneus, it has brownish conidia and, therefore,
resemble A. oryzae. RIB40 does not produce aflatoxin as it
contains disabling mutations in the gene cluster (Tominaga et
al. 2006). It has been shown that A. flavus isolates gradually
lose their ability to produce spores, sclerotia, and aflatoxin-
producing capability after several serial transfers (Torres et al.
1980; Horn and Dorner 2001; Chang et al. 2007). The pro-
duction of large globose sclerotia is characteristic for A. flavus
sensu stricto (Geiser et al. 2000), and only few strains of A.
flavus (for example NRRL 3251) produce small sclerotia
(Hesseltine et al. 1970; Saito and Tsuruta 1993), while other
strains with small sclerotia belong to the species Aspergillus
minisclerotigenes, Aspergillus aflatoxiformans, Aspergillus
austwickii, and Aspergillus cerealis (Varga et al. 2011;
Frisvad et al. 2018). Overall, none of the characterized true
A. oryzae isolates produce aflatoxins. For A. flavus, the situa-
tion is more complex since some isolates, including the ex-
type strain (NRRL1957), do not produce aflatoxin. However,
aflatoxin production has been shown for a large number of A.
flavus including NRRL3357.

Genome sequencing has allowed several comparative stud-
ies to be carried out (Abe et al. 2006; Payne et al. 2006;
Kobayashi et al. 2007; Rokas et al. 2007; Machida et al.
2008). A. oryzae is used extensively in enzyme production at
industrial scale (Barbesgaard et al. 1992; Jørgensen 2007) and
as a successful expression host for production of secondary
metabolites (Sakai et al. 2008; Liu et al. 2015; Minami et al.
2016; He et al. 2018). In practice, sequence barcodes for A.
oryzae include the following: (1) ITS (accession no.
EF661560); (2) BenA (β-tubulin, accession no. EF661483);
(3) CaM (calmodulin accession no. EF661506); and (4) RPB2
(RNA polymerase B2, accession no. EF661438) and for A.
flavus: (1) ITS: (AF027863); (2) BenA (EF661485); (3) CaM
(EF661508); and RPB2 (EF661440). Remarkably, the
barcodes are not sufficient to effectively separate A. flavus
and A. oryzae. More elaborate molecular techniques are re-
quired to distinguish these species (Godet and Munaut 2010).
ANI analysis showed a very high degree of sequence homol-
ogy, well above 99%, between RIB40 and other A. oryzae
strains used in industrial enzyme production like A1560 (syn-
onym IFO 4177), while a slightly lower percentage is ob-
served when comparing A. flavus and A. oryzae (Table 1).
The use of the % identity between A. oryzae RIB40, A1560
or A. flavusNRRL3357 (99.9% versus 99.1%) does not allow
a direct species discrimination based on ANI. Furthermore,
ANI between A. oryzae and species from the Nigri section
display an ANI value below 80%. Members of the Nigri sec-
tion display an ANI of 85% or higher. Lower ANI (approx.
75%) is obtained when comparing eitherA. oryzae/A. flavus to

A. nidulans or species from the Nigri section to A. nidulans.
Overall, as in the case of A. niger, the above-mentioned data
demonstrate that genome homology data alone cannot be used
for taxonomical purposes and need to be complemented by
phenotypic properties.

Trichoderma reesei

Trichoderma reesei (anamorph) has also been named
Hypocrea jecorina (teleomorph and holomorph), but with
the new nomenclatural system used after 2011, Trichoderma
reesei is considered the correct name for this fungus (Samuels
et al. 1998; Samuels et al. 2012, Fig. 1). Most of the industrial
strains have a single common ancestor, RUT-C30, which dis-
plays a blue-green color on solid medium (Fig. 1). The ge-
nome sequence has also been reported for this species
(Martinez et al. 2008). The T. reesei type strain is QM6a.

Mycotoxins are a very limited group of fungal
secondary metabolites

Fungal secondary metabolites can be defined as outward-di-
rected, small differentiational molecules of restricted taxo-
nomic distribution that are genetically encoded by clustered
genes and accumulated and normally secreted. Secondary me-
tabolites are a very heterogeneous chemical group of low mo-
lecular weight compounds that include antimicrobials, antiox-
idants, pigments, hormones, and metal chelators. A great
number of these compounds have therefore a very significant
potential application.

In general, any competition-selected fungal species has the
potential to produce hundreds of individual secondary metab-
olites coded by up to 90 biosynthetic gene clusters (Clevenger
et al. 2017; Lind et al. 2017). The major biosynthetic classes
of secondary metabolites are polyketides, non-ribosomal pep-
tides, terpenes, and shikimic acid-derived compounds, but
many compounds are hybrids of these classes. The genes cod-
ing for the enzymes involved in the biosynthesis of these
compounds are associated in gene clusters. The genomes of
A. niger, A. oryzae, and T. reesei include 78, 75, and 27 gene
clusters for secondary metabolite biosynthesis, respectively
(Lind et al. 2015; Zeilinger et al. 2016; Wasil et al. 2018),
although these numbers may vary depending on the strain
and the software package used. Furthermore, each biosynthet-
ic gene cluster may be responsible for the production of a large
number of precursors, shunt products, and final products. For
example Aspergillus oryzae was reported to produce many
members (26) of the cyclopiazonic acid biosynthetic family
of compounds (Liu et al. 2018), including cyclopazonic acids,
speradines, cyclopiamides, and asporydines. With the devel-
opment of new genome mining approaches (Kjærbølling et al.
2018) and algorithms such as antiSMASH (Blin et al. 2017),
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the prediction of secondary metabolite encoding gene clusters
has become easier. On the other hand, the chemical modifica-
tions based on important accessory tailoring genes on the core
structure of secondary metabolites may be more difficult to
predict from sequences (Bertrand et al. 2018) and often re-
quire full structure elucidation. In this context, it is important
to note that majority of gene clusters are not expressed under
standard cultivation and that no fungal species synthesizes all
potential secondary metabolites at any given time. As men-
tioned previously, production of secondary metabolites does
not normally occur under production-relevant growth condi-
tions where no species competition or nutrient starvation
threat is used.

Mycotoxins are a very limited group of fungal secondary
metabolites. Regarding biotechnology, mycotoxins are impor-
tant if they pose a safety concern in the industrial application
of fungi for enzyme or bulk metabolite production as well as
in other areas like food spoilage and in building environments.
There have been numerous definitions of the word mycotoxin
(Bennett and Inamdar 2015; Taevernier et al. 2016), but a
strict consensus definition that we endorse is the following:
Mycotoxins are secondary metabolites genetically encoded by
clustered genes and produced by fungi. These mycotoxins are
acutely or chronically toxic and pose health hazards or death
in humans and other vertebrates when acquired in small
amounts via a natural route (orally, by inhalation, or via the
skin). This definition is a combination of that of Jarvis and
Miller (2005), Frisvad (2011), Bennett and Inamdar (2015),
and Taevernier et al. (2016). Taevernier et al. (2016) suggested
that a quantitative level of cell cytotoxicity on preferably hu-
man cell cultures with an IC50 (the concentration required for
50% of cell viability) of less than 1000 μM could be used to
determine whether a fungal secondary metabolite was consid-
ered a mycotoxin or not. We cannot accept this definition as
such molecules may be cytotoxic, while not necessarily being
toxic when acquired via a natural route. Earlier claims of
mycotoxicity were based on other toxicity data, such as tox-
icity including cancerogenicity after intraperitoneal or subcu-
taneous injection (Dickens and Jones 1961; Cole and Cox
1981; Lu et al. 2017), but this too is not a natural route of
intake. For example, patulin and penicillic acid were original-
ly claimed to be cancerogenic based on subcutaneous injec-
tion (Dickens and Jones 1961), but Enomoto and Saito (1972)
rightly mention that experimental production of cancer should
be confirmed in animals by oral administration of mycotoxin.

The safe use of fungal strains is recognized in official clas-
sifications of biological agents into risk groups; e.g., BAUA
(German Federal Institute for Occupational Safety and Health)
classifies A. niger and A. oryzae as risk group 2 biological
agents. Importantly, BAUA recognizes that strains belonging
to these species may still be classified as risk group 1 biolog-
ical agents if documentation of safety and/or history of safe
use is provided.

In the following sections, we describe the mycotoxins that are
potentially produced by the three industrial organisms and rele-
vant related species. Only mycotoxins with a documented effect
are described. All other secondary metabolites are described in
the section on secondary metabolite potential and are not con-
sidered mycotoxins according to the definition herein.

Mycotoxins potentially produced by Aspergillus niger

Aspergillus niger has been claimed to produce a very large
number of mycotoxins and other secondary metabolites
(Table 2; Nielsen et al. 2009). Apart from a large number of
volatiles and small organic acids (Wani et al. 2010; Priegnitz
et al. 2015; Costa et al. 2016), A. niger sensu stricto can pro-
duce very few mycotoxins but a large number of other sec-
ondary metabolites. In many cases, fungi identified as A. niger
were indeed A. tubingensis or other closely related species
(Table 2).

Fumonisins

Fumonisins are strongly reduced polyketides with two added
tricaballyllic acid groups and an amino group added from a
non-ribosomal peptide. They are mycotoxins associated with
multiple human and animal diseases, as they are produced in
large amounts in cereals by commonFusarium species (Braun
and Wink 2018; Cendoya et al. 2018). Fumonisins induce
leukoencephalomalacia in horses, nephro- and hepato-
toxicity in rodents, and pulmonary toxicity in pigs, and they
have been classified as International Agency for Research on
Cancer (IARC) type 2B carcinogens in humans (esophageal
cancer) (Cendoya et al. 2018). However, Aspergillus niger
and its sibling species A. welwitschiae (originally named A.
awamori) also produce fumonisins of the B2, B4, and B6 types
(Frisvad et al. 2007; 2010) and may produce fumonisins in
cereals and grapes (Logrieco et al. 2009; Mogensen et al.
2010; Munkvold et al. 2018). Several industrial strains have
the capability to produce fumonisins (Frisvad et al. 2010; Han
et al. 2017), so it is important to use strains that do not produce
these mycotoxins. Current A. niger production strains have
been developed that either have been selected due to the lack
of fumonisin production or contain a deletion of the fumonisin
gene cluster (unpublished results).

The impact of fumonisins on human health remains poorly
understood (Voss and Riley 2013). It has been known for long
that fumonisins are hepatotoxic, nephrotoxic, atherogenic (in-
duces formation of plaque in arteries), immunosuppressive,
and embryotoxic in experimental animal systems (Nair
1998). Structurally, fumonisin B1 shows similarity to the cel-
lular sphingolipids, and this similarity has been shown to dis-
turb the metabolism of sphingolipids leading to accumulation
of sphinganine in cells and tissues. The cellular mechanisms
behind fumonisin B1-induced toxicity include the induction of
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oxidative stress, apoptosis, and cytotoxicity, as well as alter-
ations in cytokine expression (Stockmann-Juvala and
Savolainen 2008). Mechanistically, the toxicity of fumonisin
B2 and B3 is relatively poorly understood, but a comparison of
the toxicities of fumonisin B1, B2, and B3 individually and in
combination has shown that all three are toxic, but with
fumonisin B1 being the most toxic of the three (Henry and
Wyatt 2001).

Ochratoxin

Ochratoxin A (OTA) is a mycotoxin that is a common con-
taminant of a wide variety of food products. The molecular
s t r u c t u r e compr i s e s a ch l o r i n a t e d po l yk e t i d e
dihydroisocoumarin ring linked to phenylalanine and, as
shown in different producing fungal species, a polyketide syn-
thase (PKS) is a major part of the biosynthetic pathway (Wang
et al. 2016; Massi et al. 2016; Gallo et al. 2017; Gill-Serna et
al. 2018). OTA inhibits protein synthesis and energy produc-
tion, induces oxidative stress, cell apoptosis and necrosis, and
DNA adduct formation, and is mostly recognized as a
nephrotoxin (Heussner and Bingle 2015; Közégi and Poór
2016). It is classified as an IARC type B2 carcinogen in hu-
man beings.

Oxalic acid

Oxalic acid is a strong dicarboxylic acid. Oxalic acid is a
reducing agent and its conjugate base, known as oxalate, is a
chelating agent for metal cations. Typically, oxalic acid occurs
as the dihydrate. Excessive ingestion of oxalic acid or
prolonged skin contact can be dangerous. Oxalic acid is hep-
atotoxic, but it will only have a negative effect in quite high
doses (Jahn 1977). Aspergillus niger infections are often ac-
companied with oxalosis (Kredics et al. 2008; Oda et al.
2013), and in one case, calcium oxalate produced by A. niger
in the lungs caused hyperoxaluria in the kidneys (Vaideeswar
and Sakhdeo 2009), so both kidneys and the liver can be
affected. However, such cases are rare and will only happen
in severely immunocompromised patients. Otomycoses are

often caused by Aspergillus tubingensis rather than A. niger
(Kredics et al. 2008).

Improved safety of A. niger industrial strains

Asmentioned previously, A. niger has the potential to produce
ochratoxin, fumonisin, and oxalic acid. Industrial strains have
been developed by classical mutagenesis and by deletion of
the genes involved in the biosynthesis (Susca et al. 2014).

Mycotoxins from Aspergillus oryzae and A. flavus

A. oryzae and its closely related species A. flavus can produce
a very limited number of mycotoxins (Table 3). Their macro-
scopic similarity has contributed to a disparity of reports on
the potential production of mycotoxins from either species.
Mycotoxins produced by these species are described in the
following texts with attention to knowledge about the poten-
tial production of these compounds by either species and re-
ports that describe production in wrongly assigned species.

A. oryzae is a domesticated species originating probably
from Aspergillus flavus, and the two species can not be dis-
tinguished by DNA sequence differences. Since A. oryzae is
domesticated, it can only be expected to be found in fermen-
tation environments. Any A. oryzae recovered in nature can
only be found there if it has escaped such a fermentation plant,
and based on its adaptation to the fermentation environment, it
must be expected to be a poor competitor in cereals, oilseeds,
and nuts, where A. flavus is a very competitive species
(Wicklow 1984).

Aflatoxins

The aflatoxins (B1 and B2 primarily) are polyketides that have
been found in many strains of Aspergillus flavus, albeit not the
culture ex type of A. flavus (Varga et al. 2009). Aflatoxin
(AFL) has been reported from strains of Aspergillus oryzae,
but these data are based on misidentified strains or
misidentified mycotoxins or contaminated cultures (Varga et
al. 2009). It has been shown that strains of Aspergillus oryzae

Table 2 Mycotoxins from Aspergillus niger (and its sibling species A. welwitschiae) (Nielsen et al. 2009)

Mycotoxin Reference Comment

Fumonisin B2 Frisvad et al. (2007, 2011) This mycotoxin has been found in more than 75% of strains examined of A.
niger (Frisvad et al. 2011)

Fumonisin B4 Mogensen et al. (2010); Månsson et al. (2010)

Fumonisin B6 Månsson et al. (2010)

Ochratoxin A Abarca et al. (1994) This mycotoxins has been found in less than 10% of the strains of A. niger
examined (Frisvad et al. 2011)

Oxalic acid Raistrick and Clark (1919); Yassin et al.
(2015)

Nearly all strains of A. niger produce oxalic acid
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sensu stricto cannot produce AFL, as a result of the lack of
essential parts of the gene cluster, e.g., deletion of the aflR gene
involved in induction of biosynthesis (Cary and Ehrlich 2006;
Chang et al. 2007; Lee et al. 2006a,b; Tominaga et al. 2006;
Takahashi et al. 2008, 2012; Kiyota et al. 2011; Hong et al.
2013b; Lee et al. 2014; Tao and Chung 2014). Therefore, AFL
production can be excluded in A. oryzae sensu stricto.
Furthermore, current industrial strains contain a deletion of
the whole AFL gene cluster, providing additional safety in
enzyme production. Type G aflatoxins (aflatoxin G1 and G2)
have rarely been reported from Aspergillus flavus. In some
cases, the G type aflatoxins were produced by A. parasiticus
and other species from section Flavi (Varga et al. 2011), rather
than isolates that confidently can be allocated to A. flavus sensu
stricto. Saldan et al. (2018) reported on aflatoxin G1 production
by A. flavusATCC 9643, but this strain may not be an A. flavus
sensu stricto. Five Korean strains of A. flavus sensu stricto were
reported to produce the G-type aflatoxins (Frisvad et al. 2019).

Cyclopiazonic acids

Cyclopiazonic acid (= α-cyclopiazonic acid) (CPA) is an indol
tetrameric acid, hybrid polyketide/non-ribosomal peptide/
DMAT (dimethylallyl terpene unit) compound that was isolated
fromA. flavus originally by Luk et al. (1977) andGallagher et al.
(1978) but has since been found repeatedly in A. flavus (Varga et
al. 2011b). It was originally isolated from a fungus identified as
Penicillium cyclopium, but the strains of Penicillium-producing
cyclopiazonic acid were Penicillium griseofulvum and
Penicillium commune (Frisvad 1989; Frisvad et al. 2004). CPA
has also been isolated repeatedly from Aspergillus oryzae (Orth

1977; Ohmomo et al. 1973, erroneously reported as A.
versicolor; see Domsch et al. 2007; Frisvad 1989; Tokuoda et
al. 2008; Shaaban et al. 2014). It is possible to remove the CPA
gene cluster and thus avoid CPA production in biotechnological
processes (Kato et al. 2011). A. oryzae and A. flavus can produce
a large number of secondary metabolites related to CPA includ-
ing iso-α-cyclopiazonic acid, β-cyclopiazonic acid (=
bissecodehydrocyclopiazonic acid), α-cyclopiazonic acid imine,
2-oxocyclopiazonic acid, cyclopiamide (A), cyclopiamide E &
H, speradine A, B, C, D, E, F, H, I, 3-hydroxy-speradine A,
cAATrp, and asperorydine A-M (Ohmomo et al. 1973;
Holzapfel et al. 1990; Hu et al. 2014a,b; Ma et al. 2015;
Tokuoka et al. 2015; Xu et al. 2015; Uka et al. 2017; Liu et al.
2018) from A. oryzae and A. flavus, but speradine A is also
produced by Aspergillus tamarii (Tsuda et al. 2003). Some of
the strains reported as A. oryzae producing these tetramic acids
have been isolated frommarine sources, so theymay in fact beA.
flavus.However, the speradines are related to CPA, produced by
many strains of both A. flavus and A. oryzae, and so speradines
are not unlikely secondary metabolites in A. oryzae. There have
been some problems with the naming of speradine B that is a
different speradine in Penicillium dipodomyicola (Wang et al.
2015) than that from A. flavus, so some of the speradines need
to be renamed.

β-nitropropionic acid

β-nitropropionic acid (BNP) is one of the real mycotoxins
reported from authentic Aspergillus oryzae strains, but also
from A. flavus strains (Bush et al. 1951; Nakamura and
Shimoda 1954; Iwasaki and Kosikowski 1973; Orth 1977).

Table 3 Mycotoxins reported from Aspergillus flavus and its domesticated form A. oryzae

Metabolite Reference Comment

Aflatoxins B1, B2, B2α, B3 and precursors
Aflatoxins G1 and G2 have been found in few

strains of A. flavus from South Korea.

Hartley et al. (1963); Asao et al. (1963); van
der Merwe et al. (1963); van Dorp et al.
(1963); Asao et al. 1965; Burkhart and
Forgacs 1968; Dutton and Heathcote
(1968); Rodricks et al. (1968); Waiss et al.
(1968); Heathcote and Dutton (1969);
Holker et al. (1966); Cole et al. (1970);
Schroeder and Kelton (1975); Frisvad et al.
(2019); Rodríguez et al. (2012)

Only found in some strains of Aspergillus
flavus and never found in A. oryzae

Cyclopiazonic acid and iso-α-cyclopiazonic
acid, β-cyclopiazonic acid (=
bissecodehydrocyclopiazonic acid),
α-cyclopiazonic acid imine,
2-oxocyclopiazonic acid, cyclopiamide A,
cyclopiamide E & H, speradine A, B, C, D,
E, F, H, I, 3-hydroxy-speradine A, cAATrp,
and asperorydine A-M

Ohmomo et al. (1973) (misidentified as A.
versicolor; Domsch et al. 2007); Luk et al.
(1977); Orth (1977); Gallagher et al.
(1978); Tokuoda et al. (2008); Hu et al.
(2014a,b); Ma et al. (2015); Uka et al.
(2017); Liu et al. (2018)

Cyclopiazonic acid has been found in several
strains of both A. flavus and A. oryzae

β-Nitropropionic acid Bush et al. (1951); Nakamura and Shimoda
(1954); Iwasaki and Kosikowski (1973);
Orth (1977); He et al. (2016)

Found in some strains of both A. oryzae and
A. flavus
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It has caused sugarcane disease in children eating sugarcane
infectedwithNigrospora spp. that produceβ-nitropropionic acid
also (Liu et al. 1989; Ming 1995; Fu et al. 1995; Johnson et al.
2000; Fernagut et al. 2002; He et al. 1995). The genetic basis for
production of BNP is not completely understood. Therefore,
BNP levels are monitored in industrial enzyme productions.

Mycotoxins from Trichoderma reesei

It seems that chemotaxonomy is working excellently at the spe-
cies level in Trichoderma (Kang et al. 2011). In the latter paper,
T. reeseiwas not included, and it is only fewmycotoxins that are
ascribed to T. reesei (Zeilinger et al. 2016) (Table 4). Reported
mycotoxins from T. reesei (claimed to be a mutant of QM 9414
and called P-12) include trichodermin (Watts et al. 1988), but
this ability to produce trichodermin by T. reesei has been
rejected by Nielsen et al. (2005). The latter authors claimed that
only Trichoderma brevicompactum can produce trichodermin,
and possibly also Trichoderma arundinaceum (Zeilinger et al.
2016). There are also some trichothecene genes in Trichoderma
gamsii and Trichoderma asperellum, but such genes have not
been observed in T. reesei (Zeilinger et al. 2016). Also, the
mycotoxin gliotoxin has been mentioned as a potential second-
ary metabolite in Trichoderma, because a gene cluster seems to
be present in the genome of this fungus (Zeilinger et al. 2016).
However, gliotoxin has never been detected in any culture of T.
reesei (Martinez et al. 2008; Kubicek and Druzhinina 2016). T.
reesei thus seems to be unable to produce mycotoxins.

Toxicity of fungal mycotoxins relevant for A. niger, A.
oryzae, and T. reesei

Mycotoxins often affect different vertebrate species very dif-
ferently. However, to enable a comparison of the relative tox-
icity of the mycotoxins potentially produced by A. niger, A.
oryzae, and T. reesei, an overview of acute oral toxicity is
provided (Table 5). In the enzyme industry, it is ensured that
production strains based on A. niger, A. oryzae, and T. reesei
do not produce mycotoxins when grown at large scale.

As shown previously, A. niger can produce the mycotoxins
ochratoxin A, fumonisins B2, B4, and B6, and oxalic acid, and
A. oryzae can produce the mycotoxins cyclopiazonic acid and

β-nitropropionic acid, and T. reesei has not been convincingly
shown to produce any mycotoxins.

Improved safety of A. oryzae industrial strains

As mentioned previously, A. oryzae strains are not able to
produce aflatoxins due to the presence of disabling mutations
in the gene cluster. Modern industrial strains have been devel-
oped that contain a large DNA deletion. This region includes
the aflatoxin gene cluster and genes involved in the biosyn-
thesis of cyclopiazonic acid (CPA, Christensen et al. 2000).
Thus, during industrial enzyme production using strains de-
rived from A1560 containing the chromosomal deletion, the
presence of neither aflatoxin nor CPA is a concern.

Secondary metabolite potential

Fungal secondary metabolites are very diverse and include com-
poundswith awide range of applications (e.g., antibiotics, cancer
treatment, immunosuppressing drugs, pigments, antioxidants).

Like many other fungi, Aspergillus species are capable of
producing a very large number of drugs and drug-lead com-
pounds. Among the best known for medical applications are
the antibiotic penicillin to combat bacterial infections, the
cholesterol-lowering mevinolin from Aspergillus terreus, the
anticancer compound fumagillin from Aspergillus fumigatus,
the antifungal echinocandin from Aspergillus pachycristatus
and mulundocandin from Aspergillus mulundensis (Baltz et
al. 2010; Houbraken et al. 2014; Zeiliger et al. 2015; Bills et
al. 2016; Park et al. 2017a).

Fungi produce a large number of other secondary metabo-
lites. Among them, fungal pigments such as polyketide-
derived azaphilones are used to add color and as antioxidants
in food. Aspergillus species are used to produce yellow and
brown pigments like fumigatin (Hanson 2008). Additionally,
red pigments have been reported in, e.g., an A. flavus strain
(Gurupavithra et al. 2017). Carotenes are important terpenoid
pigments and antioxidants that are produced in many bacteria,
fungi, algae, and plants. Interestingly, carotene is produced by
few Aspergillus species and not by Trichoderma reesei
(Avalos and Limon 2015).

Table 4 Mycotoxins reported
from Trichoderma reesei Metabolite Reference Comment

Gliotoxin Zeilinger et al. (2016) Actual gliotoxin production was not shown

Trichodermin Watts et al. (1988);
Nielsen et al. (2005)

Culture could have been contaminated, but claimed to be derived
from QM 9414 as strain P-12; the claim that T. reesei produces
this mycotoxin may also be based on insufficient analytical
chemical methods
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Secondary metabolites described in A. niger

Aspergillus niger has been claimed to produce a very large
number of secondary metabolites (Table 6; Nielsen et al.
2009) including isoflavones which are actually plant metabo-
lites (Umezawa et al. 1975; Nielsen et al. 2009). Apart from
many volatiles and small organic acids (Wani et al. 2010;
Priegnitz et al. 2015; Costa et al. 2016), A. niger sensu stricto
can produce a variety of other secondary metabolites. In many
cases, fungi identified as A. niger were indeed A. tubingensis
or other closely related species (Table 2).

Asperazine and similar diketopiperazine heterodimers
(Varoglu et al. 1997; Li et al. 2015) are not produced by A.
niger, but consistently by A. tubingensis, A. vadensis, and A.
luchuensis (Nielsen et al. 2009; Varga et al. 2011a; Hong et al.
2013). However, such re-identifications from A. niger to A.
tubingensis mean that co-occurrring metabolites are not nec-
essarily produced by A. niger. For example, an asperazine-
and asperazine A-producing isolate of A. tubingensis also pro-
duced cyclo(D-Phe-L-Trp) , cyclo(L-Trp-L-Trp) ,
walterolactone A, campyrones A-C, and kojic acid.
According to our data, campyrones A-C are only produced
by strains of A. tubingensis, and not by A. niger (but see
Talontsi et al. 2013). Varoglu and Crews (2000) reported on
asperic acid, hexylitaconic acid, malformin C, and pyrophen
production by an asperazine-producing fungus, which should
also be identified as A. tubingensis. Several of these com-
pounds have later been found in A. tubingensis including 2-
methylene-3-(6-hydroxyhexyl)-butanedioic acid, 2-
carboxymethyl-3-hexyl-maleic acid anhydride, 2-methylene-
3-hexyl-butanedioic acid (Almassi et a l . 1994) ,
demethylkotanin, TMC-256A1, TMC-256-C1 with an
asperazine derivative (Ovenden et al. 2004), ergosterimide,
5,7-dihydroxy-2-[1-(4-methoxy-6-oxo-6H-pyran-2-yl)-2-

phenylethylamino]-[1,4]naphthoquinone, asperamide A & B,
aspergillusol, asperpyrone A & C, dianhydroauransperone C,
fonsecinone A-D, isopyrophen, nigerasperone A–C,
aurasperone A–B, pyrophen, cyclo(L-Trp-L-Ile), cyclo(L-
Trp-L-Phe), cyclo(L-trp-L-Tyr) (Zhang et al. 2007a,b,c,d,
2010) asperic acid, campyrone A & C, tubigenoid anhydride
A, 2-carboxymethyl-3-hexylmaleic anhydride (Koch et al.
2014), 6-isovaleryl-4-methoxy-pyran-2-one, asperpyrone A,
campyrone A and rubrofusarin B (Ma et al. 2016),
nigerapyrone A-E and asnipyrone A & B, and nigerasterols
(Liu et al. 2011, 2013), and malformin A1, cyclo(Gly-L-Pro)
and cyclo(Ala-Leu) (Tan et al. 2015). Gibberellic acid report-
ed from A. “niger” NRRL 2270 (Ates and Gökdere 2006) is
rather produced by A. tubingensis (this strain has indeed been
reidentified as such) (Frisvad et al. 2011). A strain of
Pestalotiopsis theae was probably overgrown by a strain of
A. tubingensis, and thus, further secondary metabolites from
A. tubingensis include pastalazine A & B and pestalamide A–
C together with asperazine, aspernigrin A, and carbonarone A
(see Ding et al. 2008).

A strain identified as A. niger was reported to produce
asperiamide B and C (Wu et al. 2008), but it also produces
the aflatoxin precursors averufin and nidurufin, so this strain
was probably an A. flavus.

Small acids of Aspergillus niger

Oxalic acid, gluconic acid, and citric acid are small chelating
organic acids derived from the citric acid cycle, but since they
are secreted and accumulated may be characterized as second-
ary metabolites (Poulsen et al. 2012; Niu et al. 2016). These are
by far the small organic acids produced in the highest amounts,
but other acids can be produced by A. niger (Table 5).

Table 5 Acute oral toxicity of mycotoxins potentially expressed by Aspergillus niger, A. oryzae, and Trichoderma reesei

Species Metabolite LD50 (acute oral toxicity, mg/kg) Reference

Rat Mouse

Aspergillus niger Fumonisin B2 > 46.4a – McKean et al. (2006)
Fumonisin B4

Fumonisin B6

Oxalic acid 375 – Vernot et al. (1977)

Ochratoxin A 20 46 Purchase and Theron (1968)
Kayoko (1985)

Aspergillus oryzae Cyclopiazonic acid 36 13 Purchase (1971); Nishie et al. (1985)

ß-Nitropropionic acid 60 68 Burdock et al. (2001)
Blumenthal et al. (2004)

Kojic acidb 1800 5100 SCCS (2012)

a The listed value is for fumonisin B1 as the exact values for B2, B4, and B6 have not been determined
bKojic acid is not a mycotoxin and is included for comparison purposes only
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Table 6 Secondary metabolites reported from A. niger and closely related species

Secondary metabolite Reference Comment

Small acids: Glyoxylic acid, glycolic acid,
hydropyruvic acid, parasorbic acid, sorbic
acid, ascorbic acid, fumaric acid, gluconic
acid, citric acid, glutaric acid, phenylacetic
acid, phenoxyacetic acid,
p-methoxyphenylacetic acid,
4-hydroxymandelic acid, D-galactonic acid

Nielsen et al. (2009); Cairns et al. (2018)

Anominine and other aflavinines Frisvad et al. (2014) Found in sclerotia of A. niger

Asperamide A & B Zhang et al. (2007a,b,c,d)

Asperenone Jefferson (1967a,b); Yu et al. (1967);
Pattenden (1969, 1970); Rabache et al.
(1974); Rao et al. (2002)

Also referred to as asperyellone and
asperrubrol

Aspergetide Lee et al. (2015)

Aspergillin Ray and Eakin (1975)

Aspernigrin A, B, C, D Hiort et al. (2004); Ye et al. (2005); Zhou et al.
(2016)

Azanigerones A-F Zabala et al. (2012)

Bicoumanigrin Hiort et al. (2004)

Carlosic acid, agglomerin F, carlosic acid
methyl ester

Yang et al. (2014) Produced by A. brasiliensis

Chlovalicin Uchoa et al. (2017) Identity of producer not
convincingly confirmed

Cycloleucomelon and atromentin Hiort et al. (2004)

Cyclo (trans-4-hydroxy-L-Pro-L-Leu), cyclo
(L-Pro-L-Phe), cyclo
(trans-4-hydroxy-L-Pro-L-Phe, Cyclo
(L-Pro-L-Tyr), cyclo (L.Pro-L-val), cyclo
(L-Pro-L-Leu)

Uchoa et al. (2017) Identity of producer not
convincingly confirmed

Funalenone Inokoshi et al. (1999)

Gibberellic acid, gibberellin, indoleacetic acid Cihangir (2002); Ates et al. (2006); Lubna et
al. (2018)

Producer is probably A. tubingensis

JBIR-86 and JBIR-87 Takagi et al. (2010); Henrikson et al. (2011)

Malformin A1, A2, B1, B2, B3, B5, C Curtis and Tanaka (1967); Yoshizawa et al.
(1975); Sugawara et al. (1990); Kim et al.
(1993); Zhou et al. (2016); Uchoa et al.
(2017)

Kotanin, desmethylkotanin, orlandin Cutler et al. (1979); Sørensen et al. (2009);
Hüttel and Müller (2007); Girol et al.
(2012); Mazzaferro et al. (2015)

Maltoryzin Abdelghany et al. (2017) Identity of producer not
convincingly confirmed

4-Methoxybenzyl-7-phenylacetamido-3-v-
inyl-3-cephem-4-carboxylate

Bandara et al. (2015)

Nafuredin Ui et al. (2001)

Naphtho-γ-pyrones (asperpyrone A-E,
aurasperone A-H, 10,10′-bifonsecin,
6’-O-demethylnigerone,
8’-O-demethylnigerone,
8’-O-demethylisomigerone,
dianhydroaurasperone C,
6,9-dibromoflavasperone, flavasperone,
fonsecin, fonsecine B = fonsecin
monomethyl ether, fonsecinone A-D,
2-hydroxydihydronigerone, isoaurasperone
A,F, isonigerone, nigerasperone A-C,
nigerone, rubasperone A-G, rubrofusarin,
rubrofusarin B = heminigerone,
rubrofusarin-6-O-α-D-ribofuranoside,

Bouras et al. (2005, 2007); Lu et al. (2014);
Choque et al. (2015); Happi et al. (2015);
Li et al. (2013); Leutou et al. (2016); Li et
al. (2016); Zhou et al. (2016)

Naphtho-γ-pyrones can be active
against antibiotic resistant
bacteria, have CNS repressant
effects, inhibit Taq DNA
polymerase, inhibit xanthine
oxidase, inhibit
acyl-CoA:cholesterol
acyltransferase. Some produced
only by A. carbonarius or A.
tubingensis
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Aflavinines

Aflavinines are indoloterpenes biosynthesized from trypto-
phan and dimethylallyl units. They are only produced in scle-
rotia of A. niger (Frisvad et al. 2014). Such sclerotia are not
produced on ordinary laboratory media, except if they are
induced by the presence of small dried fruits, such as raisins
(Frisvad et al. 2014). Most aflavinines are antiinsectan, but are
not known to be toxic towards vertebrates (Gloer et al. 1988).

Asperamides

Asperamides are sphingolipids and unusual cerebrosides
(Zhang et al. 2007a,b,c,d). Such sphingolipids appear to be
pretty widespread in fungi, but their function in fungi is often
unknown. The similar flavusides from A. flavus are antibacte-
rial (Yang et al. 2011).

Asperenones

The terpenes asperenones, asperyellones, and asperrubrols are
carotenoid-like secondary metabolites. Asperenone is a hu-
man platelet aggregation inhibitor, and a strain of A. niger

has been optimized for higher production of this bioactive
compound (Chidananda et al. 2008).

Aspergitides

Aspergitides are NRP-derived tetrapeptides which are poten-
tially anti-inflammatory (Lee et al. 2015). These hydrophobic
tetrapeptides have some similarity with fungisporins and
nidulanins which appear to be generally present in
Aspergillus and Penicillium species (Ali et al. 2014;
Klitgaard et al. 2015; Hautbergue et al. 2017).

Aspergillin

Aspergillin is a green polyketide (Ray and Eakin 1975) that
may be connected with the production of the black pigment in
the spores of A. niger. Other (yellow) pigments, such as
funalenone and naphtho-γ-pyrones, are also connected with
black melanin (Jørgensen et al. 2011).

Aspernigrins

The aspernigrins, carbonarones, nygerones, pestalamides,
pyrophen, and tensidols are all related 2-benzylpyridin-4-

Table 6 (continued)

Secondary metabolite Reference Comment

(R)-10-(3-succimidyl)-TMC-256A1,
TMC-256A1, B1, C1, C2)

Nigerasterol A & B Liu et al. (2013) Only produced by A. tubingensis

Nigerazine A & B Iwamoto et al. (1983, 1985) The producer strain was probably a
A. tubingensis

Nigerloxin Rao et al. (2002); Sing et al. (2016) Identity of the producer strain is
questionable

Nigragillin and aspernigerin Caesar et al. (1969); Alvi et al. (2000); Shen et
al. (2006); Frisvad et al. (2014); Bandara et
al. (2015)

Nygerone A and B Henrikson et al. (2009)

Penicillin/penicillin-like Foster and Karow (1945) Not yet confirmed

Pestalamide C Bandara et al. (2015) A tensidol

“Product B” Lv et al. (2015) Structure not known

Protocatechuic acid Lv et al. (2014) Small acid

Pseurotin A & D Uchoa et al. (2017) Identity of producer not
convincingly confirmed

Pyranonigrin A-E, S Hiort et al. (2004); Schlingmann et al. (2007);
Miyake et al. (2008); Awakawa et al. (2013)

Pyrophen Barnes et al. (1990) The producer strain was probably an
A. tubingensis

Tensidol A and B Fukuda et al. (2006); Henrikson et al. (2011)

Tensyuic acid A-F Hasegawa et al. (2007)

Ustiloxin like cyclic ribosomal peptides Nagano et al. (2016)

Yanuthones (A-E, 22-deacetylyanuthone,
1-hydroxyyanuthone A-C)

Bugni et al. (2000); Holm et al. (2014);
Petersen et al. (2015)
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one-containing metabolites of non-ribosomal peptide (NRP)
and polyketide origin. They have several effects such as
inhibiting HIV virus, being antifungal, or having neuroprotec-
tive effects (Hiort et al. 2004; Ye et al. 2005; Ding et al. 2008,
Bandara et al. 2015; Zhou et al. 2016). They have been iso-
lated from Aspergillus section Nigri isolates and from fungi
claimed to be Cladosporium (Ye et al. 2005) and
Pestalotiopsis theae (Ding et al. 2008). The latter two fungi
appear to have been overgrown by Aspergillus niger and
Aspergillus tubingensis, respectively, as all secondary metab-
olites from these fungi have only been found in Aspergillus
section Nigri (Nielsen et al. 2009).

Azanigerones

The azanigerones A–F needed chromatin remodeling in order
to be produced by Aspergillus niger (Zabala et al. 2012).
These compounds are polyketides, and little is known of their
activity. However, like other azaphilones, they can probably
bind amino acids, but no nitrogen-containing derivatives have
been found yet.

Cycloleucomelone

Cycloleucomelone, leucomelone, and atromentin are shikimic
acid-derived secondary metabolites that have been found in
basidiomycetes (Turner 1971; Turner and Aldridge 1983) but
also species in Aspergillus section Nigri (Hiort et al. 2004;
Nielsen et al. 2009). These types of compounds may have
radiation-protective characteristics, and they are widespread
in Aspergillus (Frisvad and Larsen 2015). The analogous
(heteroisoextrolites) terphenyllins are for example produced
by members of Aspergillus section Candidi and aspulvinones
by Aspergillus section Terrei (Turner 1971; Turner and
Aldridge 1983; Frisvad and Larsen 2015).

Funalenone and naphtho-γ-pyrones

These polyketides have some genes in commonwith the pksA
gene for production of the black pigment in Aspergillus niger
(Jørgensen et al. 2011). Some naphtho-γ-pyrones have been
claimed to be toxic (Ghosal et al. 1979), but they are not
mycotoxins according to the definition accepted here. In fact,
they can be exploited industrially as they have anti-oxidant,
anti-cancer, anti-microbial, anti-HIV, anti-hyperuricuric, and
anti-tubercular effects (Choque et al. 2015).

Malformins

Malformins are NRP cyclic peptides that originally were cited
as toxic (Anderegg et al. 1976; Kobbe et al. 1977; Cole and
Cox 1981), but they are not within the definition of myco-
toxins in a strict sense, as malformin A has an oral LD50 of

more than 50 mg/kg body weight in male mice. The toxicity
data of Anderegg et al. (1976) and Kobbe et al. (1977) were
based on malformin injection, which is not a natural route of
intake. Furthermore, malformins have never been detected
after mycotoxicosis caused by A. niger. Malformins are very
promising anti-cancer agents, however (Park et al. 2017b).

Nafuredin

Nafuredin is a polyketide terpene-derived secondary metabo-
lite and is an inhibitor of anaerobic electron transport in pig
roundworm, but it has very low effect onmammalian enzymes
(Ui et al. 2001). It is a promising antihelminthic drug lead
candidate.

Nigerasterols

Nigerasterols are terpene-derived sterols that display potent
activity against tumor cell lines (Liu et al. 2013). There are
as yet no data on vertebrate toxicity. The fungus (MA-132)
was identified only by using ITS sequences, so it may be
another species in Aspergillus section Nigri than A. niger that
produces nigerasterols.

Nigerazines, aspernigerin, and nigragillins

The nigerazines, nigragillins, and aspernigerin are all related
NRP-derived secondary metabolites. They are weakly insec-
ticidal, and nigerazine B inhibits the root growth of lettuce
seedlings (Caesar et al. 1969; Iwamoto et al. 1983). They have
not been reported as mycotoxins.

Nigerloxin

Nigerloxin is derived from an inhibitor of soy bean
lipoxygenase and rat lens aldose reductase (Rao et al.
2002a,b). It is a polyketide NRP hybrid. It is a strong antiox-
idant and is anti-diabetic and of low toxicity (Rao et al. 2005;
Suresha and Srinivasan 2013; Vasantha et al. 2018).

Pseurotins

Pseurotins are NRP polyketide hybrid secondary metabolites
that have neuritogenic (Komagata et al. 1996), antibiotic
(Mehedi et al. 2010; Pinheiro et al. 2013), anti-inflammatory
(Shi et al. 2015), chitin-synthase inhibitor (Wenke et al. 1993),
and antileishmanial and anticancer (Martinez-Luis et al. 2012)
characteristics. Pseurotin A & D was reported to be produced
together with chlovalicin (Uchoa et al. 2017) probably coded
by an intertwined gene clusters, as is the case for Aspergillus
fumigatus, where pseurotin A and fumagillin, chemically
closely related to chlovalicin, are coded by an intertwined
gene cluster (Wiemann et al. 2013; Kishimoto et al. 2017).
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However, psurotins have not been reported from any other
isolate of A. niger (Nielsen et al. 2009), so the two metabolites
may be produced by another species in Aspergillus section
Nigri.

Pyranonigrins

The pyranonigrins A–K are NRP-PK derived antioxidant sec-
ondary metabolites from A. niger (Hiort et al. 2004; Miyake et
al. 2007; Kishimoto et al. 2017). There are several
pyranonigrins isolated from Aspergillus niger, including
pyranonigrin A–K (Kishimoto et al. 2017).

TAN-1612

The polyketide tetracyclic compound TAN-1612=BMS-
192548 has been isolates from Aspergillus tubingensis WB
2346 and A. niger ATCC 1015 (Li et al. 2011). It is a neuro-
peptide Y receptor and neurokinin-1 receptor inhibitor
(Kodukula et al. 1995; Shu et al. 1995).

Tensyuic acids

The tensyuic acids are itaconic acid-derived secondary metab-
olites with anti-protozoan and antibacterial activities
(Hasegawa et al. 2007; Matsumara et al. 2008).

Yanuthones

The yanuthones are meroterpenoids with a 6-methyl salicylic
acid precursor and terpene units attached (Holm et al. 2014;
Petersen et al. 2015; Nielsen et al. 2017). There are no toxicity
data for yanuthones, but they have antifungal activity
(Petersen et al. 2015).

Secondary metabolites described in A. oryzae and A.
flavus

A. flavus and A. oryzae can produce many secondary metab-
olites (Table 7). These can be subdivided into biosynthetic
families. It is very interesting to note that, e.g., ustiloxin B
and ustilaginoidin C, have both been isolated from the rice
false smut pathogen Villosiclava virens (= Ustilaginoidea
virens) even though they are not biosynthetically related.
However, these two types of secondary metabolites have also
been found in Aspergillus flavus (Umemura et al. 2014;
Tsukui et al. 2015; Yoshimi et al. 2016). This is remarkable
as both unrelated fungi occur on rice. One speculation could
be that the gene clusters for both ustiloxins and ustilaginoidins
were horizontally transferred from one fungus to the other
during evolution. Ustilaginoidins are bis-naphtho-γ-pyrones
(even called “mycotoxins” in the paper of Meng et al. 2015
and ustiloxins for toxic cyclic peptides by Tsukui et al. 2015).

Like the heteroisoextrolite (Frisvad and Larsen 2015) ana-
logues in Aspergillus section Nigri (normally also called
naphtho-γ-pyrones, Nielsen et al. 2009; Lu et al. 2014;
Choque et al. 2015), the ustilaginoidins are probably also in-
volved in the formation of the green conidium color of
Aspergillus section Flavi as it is known for the involvement
of naphtho-γ-pyrones in black pigmentation in Aspergillus
section Nigri isolates (Chiang et al. 2011; Jørgensen et al.
2011; Frisvad et al. 2014; Niu et al. 2016). Other important
secondary metabolites are described subsequently.
Additionally, secondary metabolites that have been erroneous-
ly assigned to A. flavus or A. oryzae are also listed (Table 8).

Aflatrems

Aflatrem and β-aflatrem and their precursors are
indoloterpenes that have been found in sclerotia of
Aspergillus flavus (Gallagher and Wilson 1980; Gallagher et
al. 1980a,b; Valdes et al. 1985; Tanaka et al. 1989; TePaske et
al. 1992; Zhang et al. 2004; Duran et al. 2007; Nicholson et al.
2009; Ehrlich and Mack 2014; Tang et al. 2015; Gilbert et al.
2016). Aspergillus oryzae RIB 40 was found to produce the
13-desoxypaxilline precursor to aflatrem (Rank et al. 2012),
and aflatrem has been heterologously expressed in A. oryzae
NSAR1 (Tagami et al. 2014). However, if RIB40 is indeed a
real A. flavus, A. oryzae sensu stricto isolates are not be able to
produce sclerotia and sclerotial metabolites such as aflatrem.

Aflavarins

Aflavarins are polyketides found in the sclerotia of Aspergillus
flavus (TePaske et al. 1992). These polyketides have not yet been
found in any A. oryzae strain. Leporins, also found in A. leporis
(TePaske et al. 1991), have been found in A. flavus (Cary et al.
2015), but they are not expected to be produced by A. oryzae.

Aflavinins

The aflavinins are sclerotium-borne indoloterpenes first iso-
lated fromA. flavus (Gallagher et al. 1980a,b; Cole et al. 1981;
Wicklow and Cole 1982; Gloer et al. 1988). These
indoloterpenes and aflavazol were also isolated from the scle-
rotia of A. oryzae RIB40 (TePaske et al. 1990; Rank et al.
2012). The aflavinins isolated from A. flavus (possibly A.
minisclerotigenes or A. aflatoxiformans) include aflavinine,
dihydroxyaflavinine, monohydroxyaflavinine, and
monohydroxyisoaflavinine (Nozawa et al. 1989; Tang et al.
2015).

Asperfuran

Asperfuran is a dihydrobenzofuran compound that was isolat-
ed from Aspergillus oryzae “HA 302-84” (Pfefferle et al.
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Table 7 Primary and secondary metabolites reported from Aspergillus flavus and its domesticated form A. oryzae apart from aflatoxins and CPA-
related compounds

Metabolite Reference Comment

Antioxidants: γ-tocopherol, d-tocopherol,
genistin, daizein, genistein and
3-hydroxyanthranilic acid

Esaki et al. (1996); Matsuo (1997) These are plant metabolites from Glycine
max (soya) and not produced by the
fungus, however the vitamins
(tocopherols) could also be produced by
A. flavus and A. oryzae

Asperfuran (= arthrographol) Pfefferle et al. (1990); Ayer and Nozawa (1990)

Aspergillic acid White and Hill (1943); Dutcher (1947); Dunn et
al. (1949); Hummel, 1956; Nakamura 1960;
MacDonald (1961) ;Assante et al. (1981);
Lebar et al. (2018); Saldan et al. (2018)

Aspergillic acids are strong iron chelators
(Assante et al. 1981), and not produced
by A. oryzae, but by A. flavus

Aspergillomarasmin and anhydromarasmic
acid

Plattner and Clauson-Kaas (1945); Hardegger et
al. (1963); Haenni et al. (1962; 1965); Robert
et al. (1962); Lallouette (1962); Lederer
(1962)

The related phytotoxin lycomarasmin is
produced by Fusarium species

Asperopterin A & B Matsuura et al. (1972) Nucleobase derived

Aspirochlorin = oryzachlorin,
dechloroaspirochlorine and
O,O-dimethylaspirochlorine,
trithioaspirochlorine

Kato et al. (1969); Berg et al. (1976); Sakata et al.
(1982, 1983, 1987,b); Klausmeyer et al.
(2005); Rank et al. (2012); Chankhamjon et al.
(2014)

Original production strains classified as A.
tamarii, A. oryzae and A. flavus

Biotin Fukui et al. (1955a,b) Vitamine

Bromoaspirochlorine Sakata et al. (1987a,b) Aspirochlorin biosynthetic family of
compounds

Canadensolide Sakata et al. (1982)

Citric acid Sakaguchi et al. (1953) While A. niger can accumulate large
amounts of citric acid, A. flavus only
produce low amounts

Drim-9(11)-en-8-ol (R and S) Wada et al. (1983); Leite et al. (1986);
Domínguez et al. (1991); Shishido et al.
(1991); Armstrong et al. (1996); Jansen and de
Groot (1991; 2004)

Flufuran,
5-(hydroxymethyl)-2-furancarboxylic acid,
vanillic acid, 2-furanol,
2-(4.hydrophenyl)-ethanol,
3,4-dihydroxybenzoic acid

Evidente et al. (2009); Saldan et al. (2018)

Fumaric acid Sakaguchi et al. (1953) Small acid

l-Glutamic acid Kinoshita et al. (1961) Amino acid

Heptelidic acid (= koningic acid), gliocladic
acid, trichoderonic acid, hydroheptelidic
acid

Lee et al. (2016); Skóra et al. (2017); Nishimura
et al. (2018)

Inositol Fukui et al. (1955a,b) Sugar alcohol

α-Ketoglutaric acid Sakaguchi et al. (1953) Small acid

Kojic acid, methyl kojic acid, dimethyl kojic
acid

Saito (1907); Yabuta (1922); Tamiya (1927);
Birkinshaw et al. (1931); Jennings and
Williams (1945); Parrish et al. (1966); Morton
et al. (1945); Marston (1949); Kistner (1962);
Bentley (2006); Yang et al. (2011)

Production strains classified as A. effusus,
A. luteovirescens or A. lutescens

Kojic acid-2 (BGY-F) Zeringue et al. (1999) Bright green flourescent molecule

Kojistatin A = CPI-4, CPI 1–3, CPI 5 Sato et al. (1996); Yamada et al. (1998)

Lactic acid Sakaguchi et al. (1953) Small acid

l-Malic acid Sakaguchi et al. (1953); Abe et al. (1961) Small acid

Orange-red pigment Manonmani and Sreektaniah (1984) Unknown structure

Oryzacidin Shimoda (1951) C8H13O5N, an antibiotic

Oryzachlorin = Aspirochlorine = A 30641 Kato et al. (1969) See Aspirochlorin

Pantothenic acid Fukui et al. (1955a,b) Vitamine

Appl Microbiol Biotechnol (2018) 102:9481–9515 9495



1990), but it has also been isolated under the name of
arthrographol from Arthrographis pinicola (Ayer and
Nozawa 1990) and as asperfuran from Penicillium species
(Yamaji et al. 1999; Frisvad et al. 2004, 2006). Asperfuran is
antifungal, but there are no reports on toxicity of this com-
pound. Asperfuran production by authentic strains of A.
oryzae has later been confirmed, and it has also been detected
in Aspergillus sojae (Varga et al. 2011b).

Aspergillic acids

These iron-chelating compounds have been used for discrim-
ination between A. flavus and A. oryzae, in that Aspergillus
oryzae sensu stricto has been claimed not to produce any of
these pyrazine compounds. Testing Aspergillus flavus sensu
stricto and Aspergillus oryzae sensu stricto has shown that it is
only the former that can produce aspergillic acids (Bothast and
Fennell 1974; Hamsa and Ayres 1977; Pitt et al. 1983; Assante
et al. 1981; Liljegren et al. 1988; Varga et al. 2011b).
However, compounds in this class have been reported from
A. oryzae, including mutaaspergillic acid (Nakamura and
Shiro 1959a,b; Nakamura 1961; Sugiyama et al. 1967; Ohta
andOhta 1983), hydroxyaspergillic acid (Nakamura and Shiro
1959a,b; Dutcher 1958 (as A. flavus); MacDonald 1962; Ohta
and Ohta 1983; Sano et al. 2007), VI-2 (Ueno et al. 1977), A-2
(Sano et al. 2007), and aspergillic acid (Nishimura et al. 1991).
Aspergillic acids have been evaluated for toxicity (Sasaki et al.
1968; MacDonald 1973; Perry et al. 1984), but Sano et al.
(2007) suggest that the toxicity of aspergillic acids is so low

that it can be present in fermented foods used for consump-
tion. The strains producing aspergillic acid, indicated by the
mediumAFPA (Aspergillus flavus parasiticus agar), are prob-
ably representing Aspergillus flavus sensu stricto, but because
of issues with potential aflatoxin production, they are called A.
oryzae “short stipes.” The indicative red-orange color is
caused by reaction of ferric ions with aspergillic acids
(Assante et al. 1981) with none of these strains have been
reported to produce aflatoxins (Sano et al. 2007).

Aspergillomarasmins

Aspergillomarasmin A, anhydroaspergillomarasmin A, and
anhydromarasmic acid are polyamino acid compounds/
phytotoxins related to lycomarasmin from Fusarium
(Plattner and Clauson-Kaas 1945; Hardegger et al. 1963),
but they have also been found in Aspergillus oryzae or A.
flavus (A. “flavus oryzae”) (Haenni et al. 1962; Haenni et al.
1965; Robert et al. 1962). Aspergillomarasmin A is very in-
teresting as it inhibits metallo-beta-lactamases and could thus
help in overcoming bacterial resistance to penicillin (King et
al. 2014; Koteva et al. 2016). There are no data of toxicity of
these compounds yet.

Asperopterins

Asperopterin A and B are compounds containing a pteridin
ring system that were isolated from Aspergillus oryzae “T-17”
(Kaneko and Sanada 1969;Matsuura et al. 1972; Hanaka et al.

Table 7 (continued)

Metabolite Reference Comment

Penicillin A. oryzae: Waksman and Bugie (1943); Foster
and Karow (1945); Marui et al. (2010)

A. flavus: White (1940); Bush and Goth (1943);
McKee and MacPhillamy (1943); McKee et
al. (1944); Waksman and Bugie (1943); Bush
et al. (1945); Dey (1945); Adler and
Wintersteiner (1948); Guida (1948)

Pyrodoxine Fukui et al. (1955a,b) Vitamine

Riboflavin Pontovich (1943); Zalesskaya et al. (1950); Mogi
et al. (1952); Higuchi (1956)

Vitamine

Sporogene AO1 Tanaka et al. (1984a,b); Tamogami et al. (1996)

Succinic acid Srinisavan and Ramakrishnan (1952); Sakaguchi
et al. (1953)

Small acid

Thiamine Fukui et al. (1955a,b) Vitamine

Ustilaginoidin C Brown et al. (2003) Conidium pigment

Violacetin Kobayashi (1966) Probably a mistake, most likely originated
from a contaminating Actinomycete

Vitamine B12 (cyanocobalamine) and K3 Sakai (1953); Ramakrishnan and Sathe (1956) Vitamine, production strain A. oryzae var.
microsporus

Ustiloxin B Umemura et al. (2013); Nagano et al. (2016); Ye
et al. (2016); Yoshimi et al. (2016)

No production in A. oryzae RIB40
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Table 8 Secondary metabolites erroneously ascribed to Aspergillus flavus or A. oryzae

Metabolite Reference Comment

Aflatoxins in A. oryzae El-Hag and Morse (1976) (see Fennell,
1976); El-Kady et al. (1994); Atalla et
al. (2003)

Aflatoxin production reported from NRRL 1988 was refuted
by Fennell (1976). The culture was a mixed culture with a
strain of Aspergillus parasiticus. Later reports on aflatoxin
production by A. oryzaewere erroneous (Varga et al. 2009)

Aflatoxin G1 in A. flavus Saldan et al. (2018) Aflatoxin G1 has only been found very rarely in A. flavus but
has been found more often in other species in section Flavi
(Frisvad et al. 2019)

Asperaculin A Son et al. (2018) Identity of strain (KCCM 12698) and compound dubious,
compound only tentatively assigned

Asperentin = cladosporin, asperentin
8-O-methylether, asperentin 6-O-methyl
ether, 5′-hydroasperentin

Grove (1972a, 1973a) Producer strain is A. pseudoglaucus (Chen et al. 2017)

Asperflavin, anhydroasperflasvin,
5,7-dihydroxy-4-methylphthalide

Grove (1972b) Producer strain is A. pseudoglaucus (Chen et al. 2017)

Asporyzin A, B and C Qiao et al. (2010a); Nozawa et al.
(1988); Kimura et al. (1992)

Producer strain is A. niveus, A. cejpii or A. striatus

Austalide F & H Son et al. (2018) Identity of strain and compound dubious, compounds
tentatively assigned

Aspyrone Saldan et al. (2018) Identity of strain and compound dubious

Betaine Saldan et al. (2018) Identity of strain and compound dubious

Chrysogine Saldan et al. (2018) Chrysogine has not been found in A. flavus, but in other
members of Aspergillus section Flavi (Frisvad et al. 2019)

Cyclopenol Zhuravleva et al. (2016) Producer strain was probably Aspergillus amoenus

Deacetoxyscirpenol (DON) Rahssaparpoor (2014) Misidentification of compound. Producer strain was claimed
to be A. flavus

Deacetylparasiticolide A Saldan et al. (2018) Identity of strain and compound dubious, parasiticolides have
not been found in A. flavus, but in other members of
Aspergillus section Flavi (Frisvad et al. 2018)

Decumbenone B Zhuravleva et al. (2016) Producer strain is probably Aspergillus amoenus

5,7-Dihydroxy-4-methylisobenzofuran-1-
(3H)-one

Grove (1972a,b); Kobayashi et al.
(1990)

A. pseudoglaucus is the actual producer of this compound

Dihydroxymethoxycoumarin &
ketone-citreoisocoumarin

Son et al. (2018) Identity of strain and compound dubious; compound
tentatively assigned

Emindole SB Qiao et al. (2010a); Nozawa et al.
(1988); Kimura et al. (1992)

Producer strain is A. niveus, A. cejpii or A. striatus

Emeniveol Qiao et al. (2010a); Nozawa et al.
(1988); Kimura et al. (1992)

Producer strain is A. niveus, A. cejpii or A. striatus

Gliotoxin Lewis et al. (2005); Kupfahl et al.
(2008)

Data not substantiated (Patron et al. (2007);
Manzanares-Miralles (2016); Vidal-Garcia et al. (2018)

Gregatin B Saldan et al. (2018) Identity of strain and compound dubious

Hexylitaconic acid Son et al. (2018) Identity of strain and compound dubious; compound
tentatively assigned by MS

4-hydroxy-asperentin, 5′-hydroxyasperentin
8-methyl ether

Grove (1973b) A. pseudoglaucus is the actual producer of this compound

Hydroxysydonic acid Saldan et al. (2018) Identity of strain and compound dubious

Isoflavipucine Mituzani et al. (2016) Producer strain is A. flavipes, not A. flavus

JBIR-03 Qiao et al. (2010a); Nozawa et al.
(1988); Kimura et al. (1992)

Producer strain is A. niveus, A. cejpii or A. striatus

Kipukacin J Zhuravleva et al. (2016) Producer strain is Aspergillus amoenus

Maltoryzin Iizuka and Iida (1962); Bakhali et al.
(2013)

Assigned to A. flavus var.microsporis but the producer strain
is probably A. clavatus (Varga et al. 2007)

Mycophenolic acid Kobayashi et al. (1990) A. pseudoglaucus is the actual producer of this compound
(Chen et al. 2017)

Nicotinic acid Saldan et al. (2018) Identity of strain and compound dubious

Nivalenol, deoxynivalenol, T-2 toxin Elsahrkawy and Abbas, 1991;
Atalla et al. (2003)

Apparently both fungus and mycotoxin were misidentified in
this work, the substrate was contaminated, or the
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2012) and have since been synthesized (Sugimoto et al. 1986;
Hanaka and Yamamoto 2013). Unfortunately, the original pro-
ducer strain is not available, and there are no toxicity data
available for the asperopterins. These compounds are blue
fluorescing, so if they are produced by A. oryzae sensu stricto,
these may be the compounds that could have been erroneously
detected and identified as aflatoxins.

Aspirochlorines

Aspirochlorine is a halogenated diketopiperazine with a central
disulfide bridge that was first isolated from Aspergillus oryzae
IAM-2613 under the name oryzachlorin (Kato et al. 1969). The
compound has also been chemically synthesized (Miknis and
Williams 1993; Wu et al. 2000). However, oryzachlorin was
later shown to be the same as aspirochlorine and A30641
(Sakata et al. 1982, 1983, 1987a, 1987b). It was isolated under
the name A30641 from Aspergillus tamariiNRRL 8101, where
it was co-occurring with canadensolide (Berg et al. 1976), as
was also the case of a strain identified as A. flavus (Sakata et al.
1982). A strain of the latter was not available for more detailed
studies. Another strain identified as A. flavus (“MDH-1420”)
was shown to produce aspirochlorin and the related compound
tetrathioaspirochlorine, and evidence for presence of the trithio
analogue also (Klausmeyer et al. 2005). Furthermore, a
bromoaspirochlorin, dechloroaspirochlorine, and O,O-
dimethylaspirochlorine have been reported (Sakata et al.
1987). Aspirochlorin has been shown to be a highly selective
and potent inhibitor of protein synthesis (Monti et al. 1999) and

an effective inhibitor of fungi, bacteria, viruses, and murine
tumor cells (Monti et al. 1999; Chankhamjon et al. 2014). For
these reasons and because epipolythiodiketopiperazines are gen-
erally toxic, the latter authors called aspirochlorin for a myco-
toxin. The related mycotoxin gliotoxin was reported from 4 and
13% of clinical Aspergillus flavus strains (Lewis et al. 2005;
Kupfahl et al. 2008), but there is some doubt whether these data
are correct (Patron et al. 2007; Manzanares-Miralles et al. 2016;
Vidal-Garcia et al. 2018). On the other hand, Shaaban et al.
(2014) isolated the reduced form of gliotoxin from A. “oryzae”
MMAO1, and this latter isolate could be Aspergillus flavus
sensu stricto. Gliotoxin-producing isolates have not been avail-
able for the scientific community (Varga et al. 2011b).
Aspirochlorin is a product of many species in section Flavi: A.
avenaceus, A. caelatus, A. oryzae, A. parvisclerotigenus, A.
sojae, and A. tamarii (Varga et al. 2011b).

Asporyergosterol

Asporyergosterol and several other sterols were isolated from
isolated from Aspergillus oryzae “cf-2” = CCTCC M
2010045, isolated from a marine alga (Qiao et al. 2010b).
The strain isolated could equally well be another
Aspergillus, as A. oryzae in principle cannot be isolated from
natural sources. An oxylipin and several sterols were isolated
from A. flavus, isolated from an alga by the same authors
(Qiao et al. 2011). The isolate also produced emeniveol and
similar compounds and could probably in reality be A. cejpii,
A. niveus, or A. striatus.

Table 8 (continued)

Metabolite Reference Comment

trichotecenes were biotransformed (also the case for A.
niger)

Ochratoxin A and B Atalla et al. (2003) Apparently both fungus and mycotoxin were misidentified in
this work

Pentahydroxy-anthraquinone Son et al. (2018) Identity of strain and compound dubious; compound
tentatively assigned

Omoflavipucine Mituzani et al. (2016) Producer strain is A. flavipes, not A. flavus

Phomaligin A Saldan et al. (2018) Identity of strain and compound dubious

Spinulosin Saldan et al. (2018) Identity of strain and compound dubious

Sterigmatocystin in A. oryzae Atalla et al. (2003) Apparently both fungus and mycotoxin were misidentified in
this work

(3S,6S)-Terramide A and B Garson et al. (1986) Listed as being produced also by A. flavus, in addition to A.
terreus in AntiBase, no references could be found to the
possible fact that A. flavus can produce terramides

Terrein Saldan et al. (2018) Identity of strain and compound dubious

Taxol El-Sayed et al. (2018) Both producer and secondary metabolite production needs to
be verified

Violacetin Kobayashi (1966); Aiso et al. (1955) Violacetin is a Streptomyces secondary metabolite, not of
fungal origin

Zearalenone Atalla et al. (2003) Apparently both fungus and mycotoxin were misidentified in
this work
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Avenaciolides and canadensolides

Canadensolides are formed via condensation of an acetate de-
rived chain with a TCA cycle intermediate (Brookes et al. 1963;
Turner 1971; Tanabe et al. 1973). It was first isolated from
“Penicillium” canadense (McCorkindale et al. 1968), but it has
been reported once from A. flavus (Sakata et al. 1982), and the
related avenaciolide has been reported from A. avenaceus in
Aspergillus section Flavi (Brookes et al. 1963; Tanabem et al.
1973; Varga et al. 2011b). The avenaciolides are also present in
Aspergillus glaber and A. stramenius from Aspergillus section
Fumigati (Ellis et al. 1964; Samson et al. 2007), and the
avenaciolides are active against methicillin-resistant
Staphylococci (Chang et al. 2015). Avenaciolide is also a specific
inhibitor of glutamate transport in rat liver mitochondria
(McGivan and Chappell 1970). Isoavenaciolide has been report-
ed as an anti-cancer agent (Al-Tel et al. 2009). However, there
are no indications that avenaciolide is a mycotoxin.

Csypyrones

Type III polyketides are rare among fungi, but more common
in plants and bacteria (Juvvadi et al. 2005; Hashimoto et al.
2014; Shimizu et al. 2017). Aspergillus oryzae can, however,
produce csypyrone B1, B2, and B3 and 3,5-dihydroxybenzoic
acid (Seshime et al. 2005, 2010a,b; Hashimoto et al. 2013).
Interestingly, Aspergillus niger produces protocatechuic acid,
also a type III polyketide (Lv et al. 2014). Other fungi that can
produce type III polyketides are and Botrytis cinerea
(Hashimoto et al. 2014). There are no toxicity data for these
secondary metabolites.

Drim-9(11)-en-8-ol (R and S)

This sesquiterpene compound has been isolated from A.
oryzae strains that also produce sporogen AO1 and similar
compounds, but very little is known on the bioactivity of this
compound (Wada et al. 1983; Leite et al. 1986; Domíngues et
al. 1991; Shishido et al. 1991; Armstrong et al. 1996; Jansen
and de Groot 1990; 2004).

Flufuran

Flufuran, other related furans, and small molecular weight
secondary metabolites, including 4-hydroxybenzoic acid,
were isolated from Aspergillus oryzae and A. flavus
(Evidente et al. 2009; Lee et al. 2016; Saldan et al. 2018).
Flufuran has antifungal activity (Evidente et al. 2009).

Heptelidic acids

Heptelidic acid (=koningic acid), hydroheptelidic acid,
gliocladic acid, and trichoderonic acid are sesquiterpenes that

have antibiotic and anticancer properties (Itoh et al. 1989;
Nakazawa et al. 1997; Kim and Lee 2009). Heptelidic acid
has been reported from both Aspergillus oryzae and A. flavus
(Lee et al. 2016; Skóra et al. 2017).

Kojic acids

Kojic acid was the first compound to be isolated from
Aspergillus oryzae (Yabuta 1912, 1922; Birkinshaw et al.
1931; Jennings and Williams 1945; Parrish et al. 1966;
Morton et al. 1945; Marston 1949; Bentley 2006). A dimer
of kojic acid has been structure-elucidated as the bright green-
ish yellow flourescence pigment from Aspergillus flavus
(Zeringue et al. 1999). Koji acid is common for nearly all
species in Aspergillus section Flavi (Varga et al. 2011b).
However, kojic acid is not regarded as a mycotoxin (Bentley
2006). The gene cluster coding for kojic acid production is
known (Terabayashi et al. 2010). 7-O-acetylkojic acid has also
been isolated from A. flavus (Sun et al. 2014).

Kojistatins

An isolate of an industrial strain of Aspergillus oryzae (ATCC
20386 and FERM-15834) produced kojistatin A = CPI-4 and
related cystein protease inhibitors, called CPI 1-5 (Sato et al.
1996; Yamada et al. 1998). The kojistatins are nonribosomal
peptide–polyketide hybride molecules. There are no data on
the toxicity of these compounds.

Maltoryzin

The polyketide maltoryzin was reported from a strain of A.
oryzae var. “microsporis” isolated frommalting barley (Iizuka
and Iida 1962). However, the fungus could also be an
Aspergillus clavatus, which is very common in malting barley
(Lopez Diaz and Flannigan 1997). A. oryzae or A. flavus has
not been reported from malting barley. On the other hand,
Bakhali et al. (2015) reported on maltoryzin production by
A. flavus from walnuts.

Miyakamides

Miyakamides A1, A2, B1, and B2 (Shiomi et al. 2002), and
oryzamide A1–2 (Rank et al. 2012) have been reported from
both Aspergillus flavus “var. columnaris” FKI-0739 and A.
oryzaeRIB40 and are NRPs. The miyakamides are antimicro-
bial compounds, but there are no toxicity data on these com-
pounds. Since the A. flavus strain FKI-0739 produced
hydroxyaspergillic acid also (Shiomi et al. 2002), it was prob-
ably an A. flavus sensu stricto. As discussed earlier, RIB40
may also in reality be an A. flavus sensu stricto.
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Oryzaeins

The polyketides oryzaein A–D, tabaisocoumarin A,
caudacoumarin C, versicolol B, and exserolide D and F are
antiviral and cytotoxic isocoumarin derivatives isolated from a
fungus identified as A. oryzae isolated from the rhizome of the
marine Paris polyphylla var. yunnanensis (Zhou et al. 2016),
and thus, the producing strain is probably an A. flavus sensu
stricto. However, compounds with isochroman chromophores
have been found in extracts of some A. oryzae (Frisvad JC,
“personal data”). The four oryzaeins had moderate to weak
inhibitory effect against some human tumor cell lines (Zhou et
al. 2016), but their actual toxicity is unknown.

Oryzines

Oryzines are maleidrides biosynthetically produced from acyl
CoA thiolester and from oxaloacetic acid (Wasil et al. 2018).
RIB 203, the producing strain, is from sake-koji and thus
represents a realA. oryzae. There are no data on the bioactivity
of these compounds as yet.

Parasiticolides

Parasiticolide A= astellolide A is a sesquiterpene that was first
found inAspergillus parasiticus from sectionFlavi (Hamasaki et
al. 1975) and Aspergillus stellatus from section Nidulantes
(Gould et al . 1981) , and later paras i t icol ide A,
dideacetylparasiticolide A, and 14-deacetyl parasiticolide Awere
isolated from A. oryzae RIB40 (Rank et al. 2012). Ren et al.
(2015) found astellolides A, B, C–E, and F–I in Aspergillus
oryzae QXPV-4 isolated from the insect Coccinella
septempunctata. The origin of QXPV-4 indicates that this was
also an A. flavus sensu stricto, rather than an A. flavus. Shinohara
et al. (2016) also found parasiticolides = astellolides in A.oryzae
RIB40: 14-deacetyl astellolide A = 14-deacetyl parasiticolide A
(already found by Rank et al. 2012), and 14-deacetyl astellolide
B. Depending on the opinion of the taxonomic status of A. flavus
and A. oryzae, parasiticolides are secondary metabolites of one
of these species or both.

Penicillins

Penicillins are non-ribosomally synthesized tripeptides (NRP)
that have been reported from A. oryzae (Waksman and Bugie
1943; Foster and Karow 1945;Marui et al. 2010) and A. flavus
originally as flavicidin (Bush and Goth 1943; McKee and
MacPhillamy 1943; McKee et al. 1944; Waksman and
Bugie 1943; RG Benedict, unpublished in Raper 1946). This
important antibiotic is not regarded as a mycotoxin, but it is
unwanted in industrial fermentations due to its wide use to
treat microbial infections.

Pseurotins

Pseurotins are hybrid NRP/PKS compounds that have been
found in A. leporis and A. nomius from Aspergillus section
Flavi (Varga et al. 2011b) and were also reported from A.
“oryzae” MMAO1 (Shaaban et al. 2014) and A. flavus
(Rodríguez et al. 2015). The pseurotins are not regarded as
mycotoxins, but these compounds should be examined in
more detail, as they have neuritogenic (Komagata et al.
1996), antibiotic (Mehedi et al. 2010; Pinheiro et al. 2013),
anti-inflammatory (Shi et al. 2015), chitin-synthase inhibitor
(Wenke et al. 1993), and antileishmanial and anticancer
(Martinez-Luis et al. 2012) characteristics.

Sporogens

Sporogen AO1 (=13-desoxyphomenone) is a sesquiterpenoid
that was isolated from Aspergillus oryzae NOY-2, but the strain
is not available to the scientific community. This compound
induces conidiation in a less sporulating strain (Tanaka et al.
1984,b). Sporogen AO1 has later been found in strains of A.
flavus (Frisvad and Larsen, unpublished). Phomenone, related
to sporogen AO1, is a potent inhibitor of protein synthesis
(Moule et al. 1977) and has moderate toxicity to shrimps
(Capasso et al. 1984). Phomenone was recently shown to stim-
ulate pro-inflammatory responses in murine cells and thus may
exacerbate allergic reactions if inhaled (Rand et al. 2017). There
are no direct data showing that these compounds aremycotoxins,
but they are not unlike themycotoxin PR-toxin in structure (Cole
and Cox 1981; Moule et al. 1977; Capasso et al. 1984). Many of
the sporogens are phytotoxins (Daengrot et al. 2015).

TMC-2A, -2B and -2C

The NRP-derived peptide-like compounds TMC-2A, -2B,
and 2C were isolated from a strain identified as A. oryzae
A374 = FERM P-14934 (Nonaka et al. 1997; Asai et al.
1997). From the description of the strain, and as it was isolated
from soil, it appears that the strain is rather an Aspergillus
tamarii, as the conidia were large, distinctly roughened, and
brown. These peptide-like compounds may be used as lead
compounds to find better rheumatoid arthritis inhibitors, but
toxicity data have not been presented.

Tryptophenalins

A fungus identified as A. oryzae (MMAO1) was isolated from
rice hulls, and this fungus produced a dimeric diketopiperazine
compound, ditryptophenaline, 7,9-dihydroxy-3-(1H-indol-3-
ylmethyl)-8-methoxy-2,3,11,11a-tetrahydro-6H-pyrazino[1,2-
b]isoquinoline-1,4-dione, cyclo-(Trp-Tyr), cyclo-(Pro-Val), α-
cyclopiazonic acid, (bismethylthio)gliotoxin, pseurotin A, kojic
acid, linoleic acid, and uridine (Shaaban et al. 2014). Since the
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isolate was from rice hulls in a domesticated field, it was prob-
ably an A. flavus, but it could also be an A. nomius since
pseurotin A has only been found once in A. flavus (see Varga
et al. 2011b; Rodríguez et al. 2015). Ditryptoleucine, related to
ditryptophenaline from A. flavus (Springer et al. 1977) was
isolated from A. oryzae RIB40 (Rank et al. 2012). The toxicity
of the diketopiperazines cyclo-(Trp-Tyr), cyclo-(Pro-Val) is un-
known. The monomer of ditryptophenaline, cyclo-N-
methylphenyl-alanyltryptophanyl has also been isolated
(Kozlovskii et al. 1990).

Ustilaginoidins

The polyketide ustilaginoidin C was isolated as a suggested
conidium pigment from A. parasiticus (Brown et al. 2003),
and a compound with the same chromophore has been isolat-
ed from A. flavus (Frisvad, JC, unpublished data), so it could
be representing the general naphtho-γ-pyrone pigment type
produced in Aspergillus section Flavi. There are no toxicity
data on these compounds.

Ustiloxin B

This ribosomally produced cyclic peptide (RIPS, ribosomally
produced peptides) compound was isolated from Aspergillus
flavus and A. oryzae (Umemura et al. 2013, b, 2014; Ye et al.
2016; Yoshimi et al. 2016). The ustiloxins are phytotoxins
first isolated from Villosiclava virens (= Ustilaginoidea
virens), and they exibit potent antimitotic activity and inhibit
microtubule assembly (Koiso et al. 1994), and they have also
been called mycotoxins (Koiso et al. 1992). The ustiloxins are
not established as mycotoxins. A. oryzae RIB40 does not pro-
duce ustiloxin B, probably because of the large deletion of the
ustR gene encoding a transcriptional regulation that regulates
ustiloxin B production (Umemura et al. 2014).

Secondary metabolites that are not produced by A.
flavus or A. oryzae

Due to the close relatedness between A. flavus and A. oryzae
as well as their similarity to other species, some reports have
misleadingly described production of secondary metabolites
in A. flavus or A. oryzae that they do not produce (Table 8).

Secondary metabolites described in T. reesei

Peptaibol non-ribosomal peptides (peptaibiotics) and similar pep-
tides are produced bymany Trichoderma species (Zeilinger et al.
2016), but it is only paracelsin A, C, and D in this class that have
been reported from T. reesei (Brückner and Graf 1983; Brückner
et al. 1984; Pócsfalvi et al. 1997; Przybylski et al. 1984). The
paracelsins were reported from an authentic strain of T. reesei
(QM 9414 (mutant of QM 6a) =ATCC 26421 =CBS 392.92

and the wild ex type strain from cotton duck shelter,
Bougainville Island QM 6a (= ATCC 13631 =CBS 383.78).
Paracelsins are linear peptides containing a high level of uncom-
mon amino acids, alphaaminoisobutyric acid (Aib), and isovaline
(Iva), together with an acetylated N-terminal amino acid and a C-
terminal amino alcohol (Pócsfalvi et al. 1997). These compounds
have shown antimicrobial activity. There are no data on the tox-
icity of the paracelsins.

The sorbicillin biosynthetic family compounds have been
reported from Trichoderma sp. USF 2690 (Abe et al. 2001)
(strain not available in any culture collection), and it is only
mentioned to be a product of T. reesei in the Antibase second-
ary metabolite database. The Trichodermatides (A–D) are pro-
duced by a fungus claimed to be a marine T. reesei (Sun et al.
2008; Shigehisa et al. 2015), but the culture is unavailable in
culture collections, and may be one of the many other known
Trichoderma species. T. reesei may also produce some other
non-ribosomal peptides, including intracellular and extracellu-
lar siderophores (Zeilinger et al. 2016). Siderophores such as
ferricrocin have not been claimed to be toxic. Among the
polyketides, the genes for a conidium pigment related to
aurofusarin and bikaverin have been reported (Zeilinger et al.
2016). This polyketide compound (not structure elucidated) is
probably a precursor for the green pigment (melanin) in the
conidia of T. reesei, and generally, these conidium pigments
have not been claimed to be toxic. T. reesei have PKS gene
clusters for production of other polyketides, which are not un-
like those for citrinin and fumonisins (Baker et al. 2012), but
neither citrinin nor fumonisins have been detected in T. reesei.
In conclusion, the only secondary metabolites that appear to be
naturally produced by T. reesei are the paracelsins.

Based on genome sequencing data (Schmoll et al. 2016),
several potential toxic secondary metabolites may be produced
under special conditions. Such secondary metabolites have not
been detected yet in T. reesei, however. Genome sequencing
showed that there are 8 NRKS, 11 PKS, 2 NRPS-PKS hybrid,
and 12 terpenoid synthase encoding genes (Schmoll et al. 2016;
Zeilinger et al. 2016). The LaeA and VELVET regulatory genes
are important for the expression of secondary metabolites in T.
reesei, but nevertheless, only few of the putative gene clusters
for secondary metabolites seem to be actually expressed.

Conclusions

Aspergillus oryzae produce few recognized mycotoxins, and
they are only produced by few strains. If they are produced,
there are genetic means of inactivating the biosynthetic path-
ways, so isolates of the species can be exploited for production
of enzymes and as a transformation host for industrially rele-
vant secondary metabolites or enzymes. Some isolates of
Aspergillus niger can produce three types of mycotoxins, och-
ratoxin A, fumonisin B2 (B4 and B6), and oxalic acid. Again,
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genetic means have been employed to inactivate the gene
clusters for ochratoxins and fumonisins, while accumulation
of the less toxic oxalic acid can be avoided by chosing an
optimal substrate or use optimal procedures for the industrial
products. Trichoderma reesei cannot produce any recognized
mycotoxins and is one of the most important enzyme pro-
ducers in the industry. All three species can produce interest-
ing secondary metabolites, of which some are drug lead can-
didates and others, such as citric acid, are important bulk
chemicals that are produced by fermentation.
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