Applied Microbiology and Biotechnology (2018) 102:8621-8628
https://doi.org/10.1007/500253-018-9265-1

MINI-REVIEW

@ CrossMark

Protein hyperproduction in fungi by design
Scott E. Baker

Received: 1 June 2018 /Revised: 17 July 2018 / Accepted: 19 July 2018 /Published online: 4 August 2018
© The Author(s) 2018

Abstract

The secretion of enzymes used by fungi to digest their environment has been exploited by humans for centuries for food and
beverage production. More than a century after the first biotechnology patent, we know that the enzyme cocktails secreted by
these amazing organisms have tremendous use across a number of industrial processes. Secreting the maximum titer of enzymes
is critical to the economic feasibility of these processes. Traditional mutagenesis and screening approaches have generated the
vast majority of strains used by industry for the production of enzymes. Until the emergence of economical next generation DNA
sequencing platforms, the majority of the genes mutated in these screens remained uncharacterized at the sequence level. In
addition, mutagenesis comes with a cost to an organism’s fitness, making tractable rational strain design approaches an attractive
alternative. As an alternative to traditional mutagenesis and screening, controlled manipulation of multiple genes involved in
processes that impact the ability of a fungus to sense its environment, regulate transcription of enzyme-encoding genes, and

efficiently secrete these proteins will allow for rational design of improved fungal protein production strains.
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Introduction

Fungi are constantly digesting their environment, secreting
degradative enzymes, and absorbing the building block nutri-
ents that are released. For centuries, humans have endeavored
to harness the secreted enzyme activity, largely for production
of food and beverage products such as soy sauce or sake (Abe
and Gomi 2008; Baker and Bennett 2007; Machida et al.
2008). However, as the diversity of characterized enzymatic
activities grows, so too do the potential uses (reviewed in
Ostergaard and Olsen 2011). Since the issuance of the first
biotechnology patent in 1894 focused on production of starch
saccharification enzymes from Aspergillus oryzae (Takamine
1894), fungi have been used to understand the basic biology
of'enzymes and to develop systems for their industrial produc-
tion for use in a variety of applications. For example, since
World War 11, pioneering research and development have been
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performed in Trichoderma reesei, from basic research that
includes the elucidation of the components for the cellulose
degradation enzyme system (Reese 1976) to applied research
that includes the development of strains such as 7. reesei RUT-
C30 that are the parents of strains used by the industry to
produce enzyme cocktails for lignocellulosic biofuel produc-
tion (Peterson and Nevalainen 2012). In the case of lignocel-
lulosic biofuel and bioproduct production, where an enzyme
or enzyme cocktail rather than the enzymatic process is being
sold, a key factor for economic viability of enzyme sales is the
cost and efficiency of enzyme production (Klein-
Marcuschamer et al. 2012).

Over the last century, traditional forward genetic mutagen-
esis and screening methods have been utilized to generate
strains with increased titer, rates, and yields of desired secreted
enzymes. For example, Aspergillus niger strains with im-
proved production of multiple types of enzymes, including
glucoamylase (Armbruster 1961; Hu et al. 2017; Nevalainen
1981; Tahoun 1993) and T. reesei strains that produce high
titers of cellulase (Mandels et al. 1971; Montenecourt and
Eveleigh 1977; Peterson and Nevalainen 2012), have been
generated by a variety of mutagenesis and screening regimes.
With the continued industrialization and decreasing cost of
DNA sequencing, it is now possible to “resequence” these
mutant strains, identify mutations of interest, and assess mu-
tations in a “clean” genetic background for their effect on
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enzyme secretion using reverse genetic methods (Baker 2009;
Baker and Bredeweg 2016; Ivanova et al. 2017; Koike et al.
2013; Le Crom et al. 2009; Lichius et al. 2015; Nitta et al.
2012; Vitikainen et al. 2010). In this way, a number of muta-
tions have been characterized that have led to increased en-
zyme secretion (Nitta et al. 2012; Pei et al. 2015). Derivatives
of mutagenized strains continue to be developed and used by
the industry for production of enzymes (Schuster et al. 2002;
van Dijck et al. 2003). Although mutagenesis is effective at
generating strains that secrete significant titers of enzymes,
strain improvement often comes with collateral genome dam-
age. For example, in the case of T. reesei, the quest for strains
hyperproducing cellulases also led to cellulose-negative
strains (Druzhinina et al. 2006; Ivanova et al. 2017; Lichius
etal. 2015; Torigoi et al. 1996). Moreover, it is only within the
last decade that the sexual cycle of 7 reesei was described and
the possibility of classical genetic strategies for understanding
and improving protein hyper-production explored (Jourdier et
al. 2017; Kuck and Bohm 2013; Li et al. 2016; Linke et al.
2015; Seidl and Seiboth 2010; Tisch et al. 2017).

Beyond industrial biotechnology enzyme and small mole-
cule production hosts, yeast and filamentous fungi are well
studied as model systems for a number of biological processes
that include, but are not limited to, protein secretion, cell sig-
naling, cell morphology, and small molecule transport.
Approaches from a breadth of biological disciplines, such as
genetics, genomics, cell biology, physiology, molecular biolo-
gy, and biochemistry have been used to understand the biolog-
ical processes that underlie the fungal lifestyle. Decades of ba-
sic and applied fungal research spanning a breadth of methods
has generated a knowledgebase that makes it possible to ratio-
nally design hypersecreting fungal enzyme production hosts.

This mini review focuses on a subset of biological processes
involved in ascomycete production of carbohydrate-active en-
zymes (CAZymes). Enzymatic deconstruction of various plant
biomass components is considered a critical step in the produc-
tion of lignocellulosic biofuels, and there is a vast literature on
the genetics, biochemistry, cell biology, and regulation of
CAZyme secretion from ascomycetes. In the following sec-
tions, I describe three different biological processes that con-
tribute to filamentous fungal enzyme secretion: (1) nutrient
sensing; (2) transcriptional regulation, and (3) translation and
secretion (Fig. 1). I also overview recent research that uses a
rational design strategy for a filamentous fungal hypersecreting
enzyme production host that incorporates manipulating genes
whose products are involved in these biological processes.

Nutrient sensing
Fungi must balance the need to produce enzymes to digest

complex substrates and provide building block nutrients with
the level of available building block nutrients for absorption;
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the expense of secreting an enzyme must be balanced with
nutritional return on the biosynthetic investment and growth
rate. The first step in managing these trade-offs is to be able to
sense the concentration of nutrients available for absorption.
To accomplish this, fungi exploit a breadth of sensors that are
the first step in “seeing” environmental conditions. Blinding
the fungus to its nutritional landscape is one way to induce
high expression of digestive enzymes relevant to industrial
applications. In order to “blind” a fungus, deletion of the
appropriate sensing proteins is critical. Over the last several
decades, researchers have done much to increase this
knowledge.

Early hints at the exquisite control exerted by filamentous
fungi on absorption of sugars came from a study of a pyruvate
carboxylase mutant of Aspergillus nidulans. In this mutant
strain, growth on glucose resulted in secretion of pyruvate
while growth on glucose in the presence of acetate resulted
in pyruvate not being secreted, indicating that glucose was not
being utilized by the organism (Romano and Kornberg 1969).
This regulation of glucose uptake illustrated feedback from
central metabolism to regulate sugar uptake and launched sub-
sequent studies into sugar transport systems. A major early
finding indicated distinct systems for uptake of specific sugars
in A. nidulans and Neurospora crassa (Mark and Romano
1971; Scarborough 1970). Moreover, it was shown that both
high- and low-affinity uptake systems exist for glucose and
other sugars in these and other fungi (MacCabe et al. 2003;
Schneider and Wiley 1971; Torres et al. 1996; Wang et al.
2017). Thus, it is apparent that fungi “see” the nutrient envi-
ronment around them and are able to respond with appropriate
enzymes and transporters needed for generation, uptake, and
metabolism of these building blocks.

In N. crassa, a gene originally identified for its role in
conidiation, rco-3, was cloned and sequenced and found to
encode a protein with significant homology to known glucose
transporters (Madi et al. 1997). Experimental results indicated
that its function may be more complex than simply glucose
transport. In experiments with 2-deoxy-D-glucose (2DG), a
glucose analog that inhibits glycolosis and is used in studies
of carbon catabolite repression, mutant rco-3 strains exhibited
glucose transport properties consistent with defects in the glu-
cose repression system rather than a defect in a single glucose
transporter (Ebbole 1998; Madi et al. 1997). Recently, other
putative sugar transporters tied to carbon catabolite repression
have been identified in N. crassa, A. nidulans and A. niger
(Dos Reis et al. 2017; Reilly et al. 2018; Wang et al. 2017). In
some instances, predicted transporters connected with activa-
tion of signaling networks have been called “transceptors”
because they embody structure and/or behavior associated
with transporters and receptors (Van Dijck et al. 2017).

G-protein-coupled receptors (GPCRs) are located at the
plasma membrane, have seven transmembrane domains, and
are centrally involved in environmental sensing and signaling.
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Fig. 1 Manipulation of genes that
encode proteins involved in
regulating nutrient sensing,
transcription, translation, and
secretion is key for rational design
of fungal lignocellulosic
deconstruction enzyme
hypersecretors
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Several fungal GPCRs have been characterized, a subset of
which are involved in sugar sensing (Xue et al. 2008). Both V.
crassa and A. nidulans have GPCRs that have been identified
and characterized as being involved in carbon source sensing
(Brown et al. 2015; Li and Borkovich 2006). When GPCRs
are activated, adenylate cyclase increases levels of cyclic
AMP, which in turn activates protein kinase A (PKA) down-
stream signaling cascades. One target of this activity is carbon
catabolite repression; molecular genetic studies in A. nidulans
and T. reesei indicate that PKA influences expression of hy-
drolases (de Assis et al. 2015; Schuster et al. 2012).

Transcriptional regulation

GPCRs and sugar transporters/transceptors are the first line of
environmental sensing feeding into the signaling networks
that regulate gene expression and protein secretion. While
the mechanisms that exquisitely regulate the carbon catabolite
repression system and secretion of lignocellulosic deconstruc-
tion enzymes of fungi can differ, some elements of the core
control system players are conserved (Benocci et al. 2017,
Klaubauf et al. 2014). The gene encoding the master con-
troller for carbon catabolite repression was initially discov-
ered in Saccharomyces cerevisiae and named migl (m-
ulticopy inhibitor of galactose promoter) (Mercado et al.
1991; Nehlin et al. 1991; Nehlin and Ronne 1990).
Overexpression of migl represses carbon catabolism,
while deletion of mig! predictably affects glucose repres-
sion (Nehlin and Ronne 1990). Additional work in S.
cerevisiae and other yeasts of the Saccharomycotina has
shown that the kinase Snflp plays an important role in
Miglp activity via phosphorylation (Matsuzawa et al.
2012; Rippert et al. 2017; Treitel et al. 1998).

In filamentous ascomycetes, the ortholog of mig/ is named
creA (Aspergillus) or crel (Trichoderma and Neurospora).
Aspergillus nidulans creA was originally identified by sup-
pressor screens in a nitrogen metabolite repression mutant
background (areA”) (Arst and Cove 1973). creA was later
cloned, and orthologues to creA have been identified in sev-
eral other fungi (Cepeda-Garcia et al. 2014; de la Serna et al.
1999; Dowzer and Kelly 1989; Drysdale et al. 1993; Ilmen et
al. 1996; Jekosch and Kiick 2000; Liu et al. 2013; Tudzynski
et al. 2000; Vautard et al. 1999; Wang et al. 2015). Recent
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research on A. niger indicates that sequential uptake of differ-
ent sugar monomers into the cell is regulated separately from
metabolism and not by creA (Mékela et al. 2018).

In the RUT-C30 lineage of T. reesei, crel is truncated with
the mutation occurring in the last stage of mutagenesis on
2DG, highlighting the central role of CREI in carbon catabo-
lite repression (Ilmen et al. 1996; Le Crom et al. 2009;
Montenecourt and Eveleigh 1977). Subsequent studies indi-
cated that the CRE1 truncation in RUT-C30 (cre/—I) and a
complete deletion of cre/ had identical phenotypes, carbon
catabolite derepression, and increased hydrolysis enzyme se-
cretion (Nakari-Setala et al. 2009). Post-translational modifi-
cations are known to play an important role in cre/ function;
phosphorylation impacts DNA binding in multiple ways de-
pending on the organism (Cziferszky et al. 2002; Vautard-
Mey and Fevre 2000). The isolation of creB, a predicted
deubiquitination enzyme as a suppressor of creA, points to-
ward a role of ubiquitination in regulation of CREA/1 function
although a detailed mechanism remains unknown.
Furthermore, F-box proteins that are part of the complex that
comprise the SCF family of E3 ubiquitin ligases (Skowyra et
al. 1997) interact genetically with creA/I (Colabardini et al.
2012; Jonkers and Rep 2009).

Translation and secretion

The protein secretion pathway of yeast and filamentous fungi
is of high interest as a target for modification in order to in-
crease secretion of proteins. Fungal protein secretion has been
explored at all stages, from protein targeting to ER to secretion
and subsequent degradation by proteases with the goal of im-
proving titer, rate, and yield of target proteins. The cellular
response to ER stress, often referred to as the unfolded
protein response or UPR, plays an important role in protein
secretion inducing the expression of chaperones and other
proteins that aid in folding and protein trafficking efficien-
cy (Malavazi et al. 2014; Mori 2015; Nawkar et al. 2018;
Smith and Wilkinson 2017). Activation of the unfolded
protein response or UPR pathway is highly conserved
and has been well described in a number of eukaryotic
systems (Malavazi et al. 2014; Mori 2015; Nawkar et al.
2018; Smith and Wilkinson 2017).

@ Springer
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The UPR has been extensively studied in S. cerevisiae,
where various screens identified UPR genes (Mori 2015;
Mori et al. 1996). A transcription factor, Haclp, was
shown to be spliced by an unconventional mechanism in-
volving Irelp (Cox and Walter 1996; Kawahara et al.
1997). This mechanism is conserved in other yeast, fila-
mentous fungi, and other eukaryotes (Guerfal et al. 2010;
Hooks and Griffiths-Jones 2011; Mulder et al. 2004;
Saloheimo et al. 2003; Whyteside et al. 2011). Once acti-
vated, the UPR leads to increased expression of proteins
involved in protein folding. In addition, the UPR is known
to be involved in ER-associated degradation (ERAD)
(Travers et al. 2000) and repression under secretion stress
(RESS), which balance ER stress by degrading unfolded
proteins and repressing expression of secreted proteins re-
spectively (Pakula et al. 2003). It stands to reason that
overexpression of an activated HAC1/A would have a pos-
itive impact on protein secretion, producing properly
folded proteins while decreasing stress on the ER. This
has been demonstrated in a variety of systems, often for
heterologous protein production with inducible expression
of activated HAC1/A being more effective than constitu-
tive expression (Carvalho et al. 2012; Guerfal et al. 2010;
Valkonen et al. 2003a; Valkonen et al. 2003b; Wu et al.
2017). While induction of cellulase gene transcription is
not HAC1 or IRE1 dependent, deletion of hac-1 from N.
crassa results in significantly reduced growth when cellu-
lose is the carbon source (Fan et al. 2015; Montenegro-
Montero et al. 2015). Furthermore, a number transcription
factors downstream of HACI are involved in regulating
lignocellulosic deconstruction enzyme-encoding genes, in-
dicating a complex regulatory network influenced by ER
stress and the UPR (Fan et al. 2015). Interestingly, the low
cellulase production in /iac-I mutants is suppressed by
mutations in sterol regulatory element-binding proteins
(SREBPs) demonstrating a connection between the UPR
and sterol and lipid metabolism (Qin et al. 2017; Reilly et
al. 2015; Volmer and Ron 2015).

Rational design

Rational design of fungal lignocellulosic deconstruction en-
zyme hypersecretors should consider nutrient sensing, tran-
scription, translation, and secretion. The availability of tools
for genetic manipulation is critical to the rational design of
fungal production strains. Approaches for developing trans-
formation systems in filamentous fungi are well established
(reviewed in Li et al. 2017a). Both gene deletion and overex-
pression are critical elements of strain design. In the case of
gene overexpression, control of transcription is critical, and
development of finely tuned regulatory systems has, for
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example, been demonstrated for cellulase expression in N.
crassa (Matsu-Ura et al. 2018).

Penicillium oxalicum has been a target organism for
rational design of lignocellulosic biomass deconstruction
enzyme production (Li et al. 2017b). Initially, traditional
mutagenesis and screening methods were used to devel-
oped high-protein production strains. Initial strains devel-
oped have largely manipulated transcriptional regulators,
including creA, and in subsequent work have generated
an activated Xylanase regulator 1 (called x/nR (A871V)
as well as a chimeric c/rB-xInR (A871B) (Derntl et al.
2013; Gao et al. 2017a; Gao et al. 2017b; Li et al. 2015;
Yao et al. 2015). Similar combinatorial genetics have been
developed in Myceliophthora thermophile, a thermophilic
ascomycete. In this case, a CRISPR/Cas9 genome editing
approach was utilized to combine mutations in genes
whose products are involved in carbon catabolite repres-
sion, ER stress, and proteolysis (Liu et al. 2017). Future
rational design of protein hyperproduction strains should
combine nutrient sensing, transcriptional regulation, trans-
lation, and secretion (Fig. 1). Genetic manipulation of
these processes has been shown to increase protein produc-
tion. High-level transcriptional regulators (such as CREA/
1 and HAC1/A) sugar transceptors and GPCRs as well as
their downstream regulatory and signaling cascade pro-
teins are potential targets for genetic manipulation for ra-
tional design of protein hyperproducers. A combinatorial
approach to identifying synergistic interactions between
deletion and controlled overexpression of these genes has
the potential to yield highly productive strains with a min-
imum of non-productive phenotypes.

Conclusions

Fungi are amazing producers and secretors of enzymes: it
is what they do to grow. These digestive enzymes cover a
breadth of potential substrates: plant biomass, fungal bio-
mass, proteinaceous substrates, and many others. The en-
zymes secreted to digest these materials have a huge range
of applications for a variety of industries (Jstergaard and
Olsen 2011). Thus, the repertoire of digestive enzyme ac-
tivities in combination with an ability to secrete a high titer
of protein, make these organisms industrially intriguing.
With our current knowledge of how fungi sense and re-
spond to their nutritional environment, we can develop
rational design strategies for protein hypersecretion.
While I have elaborated on secretion of biomass degrading
enzymes, the concept of (1) blinding the fungus to nutri-
tional repression cues, (2) eliminating transcriptional re-
pression, and (3) increasing protein translation and secre-
tion efficiency can be applied to production of any class of
enzyme involved in fungal digestive processes.
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