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Abstract Against the outdated belief that inclusion bodies (IBs) in Escherichia coli are only inactive aggregates of misfolded
protein, and thus should be avoided during recombinant protein production, numerous biopharmaceutically important proteins
are currently produced as IBs. To obtain correctly folded, soluble product, IBs have to be processed, namely, harvested,
solubilized, and refolded. Several years ago, it was discovered that, depending on cultivation conditions and protein properties,
IBs contain partially correctly folded protein structures, which makes IB processing more efficient. Here, we present a method of
tailored induction of recombinant protein production in E. coli by a mixed feed system using glucose and lactose and its impact
on IB formation. Our method allows tuning of IB amount, IB size, size distribution, and purity, which does not only facilitate IB
processing, but is also crucial for potential direct applications of IBs as nanomaterials and biomaterials in regenerative medicine.
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Inclusion body purity

Introduction

Escherichia coli is the most widely used host organism for
recombinant protein production due to its well-studied ge-
nome, the existence of numerous cloning vectors and
engineered strains, as well as the possibility of cheap and
straight-forward cultivation to high cell densities yielding high

Julian Quehenberger and Julia Mildner contributed equally to this work.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/500253-017-8641-6) contains supplementary
material, which is available to authorized users.

>4 Oliver Spadiut

oliver.spadiut@tuwien.ac.at

Research Division Biochemical Engineering, Institute of Chemical,
Environmental and Biological Engineering, TU Wien,

Vienna, Austria

1

Christian Doppler Laboratory for Mechanistic and Physiological
Methods for Improved Bioprocesses, Institute of Chemical,
Environmental and Biological Engineering, TU Wien,

Vienna, Austria

Institute of Chemical Technologies and Analytics, TU Wien,
Vienna, Austria

product titers (Choi et al. 2006; Huang et al. 2012; Joseph
et al. 2015; Liu et al. 2015). As generally known, a careful
balance between transcription and protein folding must be
realized to increase the amount of soluble product (SP) in E.
coli. If the folding machinery gets overwhelmed, correctly
folded secondary structures cannot be formed and inclusion
bodies (IBs) are produced (e.g., (Gatti-Lafranconi et al. 2011;
Marschall et al. 2016)). In this respect, induction temperature,
pH of the cultivation medium, and changes in the amino acid
sequence of the product have a profound effect (Strandberg
and Enfors 1991).

The by far most used E. coli strain is E. coli BL21(DE3) as it
is known for a reduced amount of proteases and prevented plas-
mid loss (Jia and Jeon 2016; Liu et al. 2015; Rosano and
Ceccarelli 2014). This strain is mostly used in combination with
the T7-based pET expression system, which is usually induced
by isopropyl-3-D-thiogalactopyranoside (IPTG), a
nonmetabolizable molecular mimic of allolactose, known for
strong induction (Bashir et al. 2016; Durani et al. 2012; Jia and
Jeon 2016; Marbach and Bettenbrock 2012; Rosano and
Ceccarelli 2014; Wurm et al. 2016). However, IPTG puts a high
metabolic burden on E. coli (Dvorak et al. 2015; Haddadin and
Harcum 2005), and thus causes the enhanced formation of IBs
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(Sina et al. 2015; Zhang et al. 2015). For a long time, IBs were
considered to be aggregates of misfolded and inactive product,
which is why IB formation was highly undesired for decades
(Baneyx 1999; Choi et al. 2006; Marston 1986). However, in
the past few years, IBs were found to have many advantages,
such as significantly higher primary yields, simple separation
from cell matter, high purity, and resistance to proteolysis (Choi
et al. 2006; Ramon et al. 2014; Yamaguchi and Miyazaki 2014).
Consequently, marketed biopharmaceuticals from E. coli, such as
hormones, growth factors, interleukins, and insulin, are nowa-
days mostly produced as IBs, followed by solubilization and
refolding to get soluble target product (Eiberle and Jungbauer
2010; Schmidt 2004; Yamaguchi and Miyazaki 2014).
Furthermore, it was found that, depending on cultiva-
tion conditions, IBs contain correctly folded secondary
structures (Gatti-Lafranconi et al. 2011). The presence of
such structures actually allows a comparably mild treat-
ment during IB processing to maintain the already correct-
ly folded secondary structures and thus increase the
refolding yield. Different products, such as granulocyte-
colony stimulating factor, truncated forms of tumor necro-
sis factor, lymphotoxin «, and the marker protein green
fluorescent protein, have already been successfully pro-
duced by that strategy (Jevsevar et al. 2005; Peternel
et al. 2008a, b; Singh et al. 2015b; Villaverde et al. 2015).
However, most of the current recombinant protein produc-
tion processes with E. coli still aim at the production of SP
instead of IBs. In this respect, several approaches for tuning
recombinant protein expression in BL21(DE3) and thus, the
level of SP and IB have been proposed. While many studies
suggest suboptimal growth conditions to slow down all cellu-
lar processes, including transcription and translation (Peternel
and Komel 2011; Vera et al. 2007), others propose supplying
limiting amounts of IPTG (below 1 umol IPTG/g biomass) to
tune down transcription (Striedner et al. 2003). In this respect,
we used lactose as inducer instead of IPTG in previous studies
(Wurm et al. 2017; Wurm et al. 2016), as it enhances correct
protein folding and increases cell fitness (Bashir et al. 2016;
Fruchtl et al. 2015; Ma et al. 2013; Wurm et al. 2016). We
demonstrated that actually both SP titer and IB titer were in-
fluenced by the specific uptake rate of lactose (¢ jac), Which in
turn depends on the specific uptake rate of glucose (g; g1u;
(Wurm et al. 2016, 2017)). We generated a mechanistic model
(Wurm et al. 2016, 2017) for this delicate balance between
ATP-related uptake of lactose at low g g1n (Johnson and
Brooker 2004; Kaback 2015) and carbon catabolite repression
at high g, g1, ((Bruckner and Titgemeyer 2002; Kremling et al.
2015; Warner and Lolkema 2003); Supplementary Fig. S1).
In this follow-up study, we investigated the correlation be-
tween ¢ 1, and IB formation in more detail. For this purpose,
we decoupled growth and induction by keeping g 41, constant
and applying different ¢, to potentially vary IB titer and
properties. Motivated by a study of Peternel et al., who
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showed that IB properties strongly depend on cultivation con-
ditions (Peternel et al. 2008b), we hypothesized that not only
the amount of IBs, but also IB properties can be tuned by
adjusting different g ,. and thus different levels of induction.
Furthermore, we analyzed the effects of these conditions on
the expression of SP to retrieve information about the total
expression capacity of E. coli. For this purpose, we used the
model protein enhanced green fluorescence protein (eGFP),
which is a representative of the beta-barrel protein class and
prominent for protein quality studies.

Materials and methods
Strain

For all experiments, E. coli BL21(DE3) (Life technologies,
Carlsbad, CA, USA), transformed with a pET21a(+) vector
carrying the gene coding for enhanced green fluorescent pro-
tein (eGFP) was used as expression host.

Bioreactor cultivations

All fermentations comprised a batch cultivation followed by
an uninduced fed-batch for biomass generation and a 12 h
induction phase. Experiments were carried out in DASbox®
Mini Bioreactors (Eppendorf, Hamburg, Germany) with a
working volume of 250 mL. CO, and O, in the off-gas were
analyzed by a DASGIP® GA gas analyzer (Eppendorf,
Hamburg, Germany); pH by a pH-Sensor EasyFerm Plus
(Hamilton, Reno, NV, USA); and dissolved oxygen (dO,)
by a Visiferm DO 120 electrode (Hamilton, Reno, NV,
USA). dO, was kept above 40% oxygen saturation throughout
the whole fermentation by supplying 2 vvm of a mixture of
pressurized air and pure oxygen. Biomass concentration was
estimated using a soft-sensor-tool (Wechselberger et al. 2013),
feed-flowrates were adjusted with the DASbox® MPS§ Multi
Pump Module, pH was kept at 7.2 by supplying 12.5%
NH4OH, stirring speed was set to 2000 rpm, and temperature
was set to 35 °C during batch and fed-batch and was lowered
to 30 °C during induction. All process parameters were logged
and controlled by the DASware® control.

Five hundred milliliters of sterile DeLisa pre-culture medi-
um (DeLisa et al. 1999) supplemented with 0.1 g/L ampicillin
and 8 g/L glucose were aseptically inoculated from frozen
stocks (1.5 mL, — 80 °C). Pre-cultures were grown overnight
(20 h) in 2500-mL high-yield shake flasks in an Infors HR
Multitronshaker (Infors, Bottmingen, Switzerland) at 37 °C
and 250 rpm. One hundred-fifty milliliters of DeLisa batch
medium (DeLisa et al. 1999) supplemented with 0.1 g/l am-
picillin and 10 g/L glucose were inoculated with 15 mL of pre-
culture. After sugar depletion, a fed-batch phase to reach about
25 geens/L using a glucose feed with 250 g/ glucose was
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carried out. Induction was performed by addition of 0.5 mM
IPTG or supplementing the feed with different amounts of
lactose to reach the g g1, and g 1. Values displayed in Fig. 1c.

Sampling

Samples were taken at the beginning and end of the batch and
fed-batch phase, furthermore during the induction phase after
0,1,2,4,7,10 and 12 h. Quantification of biomass dry cell
weight (DCW) was performed gravimetrically as in (Wurm
et al. 2016); substrates and metabolites were measured by
high-pressure liquid chromatography (HPLC) as in (Wurm
etal. 2016).

Product analysis

Product titer quantification by reversed-phase HPLC Cell pel-
lets of 5 mL fermentation broth were resuspended (100 mM Tris,
10 mM EDTA pH 7.4) to 4.0 g/lL DCW and homogenized at

1500 bar for six passages (EmulsiflexC3; Avestin, Ottawa,
Canada). After centrifugation (15 min, 13,000 rcf, 4 °C), the
supernatant was used for analysis of SP. For IB quantification,
the pellet was washed twice [(i) 50 mM Tris, 5 mM EDTA, pH
8.0; (ii) 50 mM Tris, 0.5 M NaCl, 0.02% (w/v) Tween 80, pH 8],
aliquoted and stored at —20 °C. Pellets were resuspended in a
solution containing 1 part Tris-buffer (50 mM Tris, 5 mM EDTA,
pH 8.0) and four parts solubilization buffer (6 M guanidine hy-
drochloride (GuHCI), 50 mM Tris, pH 8.0 with 5.0% (v/v) 2-
mercaptoethanol added right before use), incubated for 2 h on a
shaker at room temperature and vortexed every 30 min. Product
quantification was carried out by HPLC analysis (UltiMate 3000;
Thermo Fisher, Waltham, MA, USA) using a reversed phase
column (EC 150/4.6 Nucleosil 300-5 C8; Macherey-Nagel,
Diiren, Germany). The product was quantified with an UV de-
tector (Thermo Fisher, Waltham, MA, USA) at 280 nm using
bovine serum albumin as standard. Mobile phase was composed
of water (buffer A) and acetonitrile (buffer B) both supplemented
with 0.1% (v/v) tetrafluoride acetic acid. A linear gradient from
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Fig. 1 Tuning IB formation rate. a Black line indicates the maximum
specific uptake rate of lactose (g5 .c) as a function of the specific uptake
rate of glucose (¢ g1u) for an Escherichia coli BL21(DE3) strain
producing enhanced green fluorescent protein (eGFP). Data points
(open circles) were obtained from several batch and fed-batch cultivations
and fitted by the mechanistic model according to our previous study
(Wurm et al. 2016, 2017). Colored symbols indicate performed

experiments as shown in (b) and (c¢). Error bars indicate deviation of the
respective g5 over induction time. b Specific IB titer in mg.grp/geeris as a
function of time for lactose and IPTG (0.5 mM) induction. ¢ Summary of
specific sugar uptake rates (¢s) and specific IB formation rates (g, 1g). The
error bars of the specific IB titers indicate the standard deviation (namely
11.25%), which was identified by performing biological replicates of the
center point (i.e., 18% ¢ jac. max)
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30% (v/v) acetonitrile to 100% acetonitrile was applied. The error
bars in all figures displaying product titers were identified by
performing biological replicates of the center point (18% g-
slacmax) and was quantified to be 11.25% for IBs and 11.50%
for SP.

Size determination by scanning electron microscopy (SEM)
Washed and aliquoted IB samples were resuspended in ultra-
pure water. One hundred microliters of appropriate dilution of
the suspension were pipetted on a gold-sputtered (10—-50 nm)
polycarbonate filter (Millipore-Merck, Darmstadt, Germany)
using reusable syringe filter holders with a diameter of 13 mm
(Sartorius, Goettingen, Germany). One hundred microliters of
ultrapure water were added and pressurized air was used for
subsequent filtration. Additional 200 puL of ultrapure water
were used for washing. The wet filters were fixed on a SEM
sample holder using graphite adhesive tape and subsequently
sputtered with gold to increase the contrast of the sample.
SEM was performed using a QUANTA FEI SEM (Thermo
Fisher, Waltham, MA, USA) using a secondary electron de-
tector (SED). The acceleration voltage of the electron beam
was set between 3 to 5 kV. The diameters of the IBs were
evaluated by measuring 50 IBs on SEM pictures using the
ImagelJ plugin Fiji (Laboratory for Optical and
Computational Instrumentation (LOCI), University of
Wisconsin-Madison, USA).

Morphology analysis by atomic force microscopy (AFM) For
determination of morphological aspects of IBs, samples were
prepared the same way as for SEM except for gold sputtering,
which was not necessary for these measurements.
Measurements were performed on a WITec alpha 300RSA+
(WITec GmbH, Ulm, Germany) in tapping mode (AC).

Secondary structure analysis by infrared spectroscopy (IR) IR
measurements were performed by an external-cavity quantum
cascade laser-based IR transmission setup using the path
length of 38 um, described in detail by Alcaraz et al.
(Alcaraz et al. 2015). Calculation of degree of spectral overlap
by 51, has been described by Schwaighofer et al.
(Schwaighofer et al. 2016).

Solubilization and refolding of IB

Homogenized cell pellets were resuspended in ultrapure water
and 30 pL of the suspension were pipetted into 96 microtiter
plates. Subsequently, 70 puL of urea stock solution supple-
mented with 50 mM Tris at pH 8 were simultaneously added
to each well (Qi et al. 2015).

Refolding was carried out at 30 °C for 4.5 h by diluting
10 uL of solubilizate with 190 puL of refolding buffer (50 mM
Tris, 100 mM NaCl, 1 mM DTT, pH 7.5) (Enoki et al. 2004)
resulting in a final protein concentration of 0.2 mg/mL.
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Impurity monitoring

Impurity monitoring to asses purity after solubilization and
refolding was carried out chromatographically (UltiMate
3000; Thermo Fisher, Waltham, MA, USA) using a high-
performance size-exclusion chromatography column
(MAbPac™ SEC-1, Thermo Scientific, Waltham, MA,
USA). For solubilized samples a GuHCI buffer (4 M
GuHCl, 50 mM Bis-Tris, 300 mM NacCl, pH 6.8) and for
refolded samples a phosphate buffer (100 mM Na,HPO,,
300 mM NaCl, pH 6.8) were used as mobile phase. The
flowrate was kept constant at 0.2 mL/min, the column oven
temperature was 25 °C, and the method lasted 17 min. An
exemplary chromatogram is displayed in Supplementary
Fig. S2.

Results
Product titer

To potentially tune the titer of eGFP, we adjusted four different
s jac At A g g1y Of around 0.25 g/g/h (Fig. 1a, ¢), which allows
both cell growth and increased recombinant product formation
(Wurm et al. 2016). Additionally, we performed a control
experiment without induction to rule out effects of basal ex-
pression, as the pET system is described to be leaky (Huang
etal. 2012; Jia and Jeon 2016), as well as an experiment where
we induced with the standard inducer IPTG at a concentration
0f 0.5 mM (Bashir et al. 2016; Durani et al. 2012; Jia and Jeon
2016; Marbach and Bettenbrock 2012; Rosano and Ceccarelli
2014; Wurm et al. 2016). To assure reproducibility, we per-
formed a biological replicate of the center point (i.e., 18%
s.Jac.max)- The biomass concentration during induction of all
cultivations can be found in the Supplementary Fig. S3.

IB titer

Figure 1b presents the specific IB titer, measured by reversed
phase chromatography, as a function of time for 12 h of in-
duction. Throughout the entire induction, there was a clear
correlation between the specific IB formation rate (¢, 15) and
qs 1ac» Namely, the higher g 1, and the higher g, 15, leading to
final titers which varied by a factor of nearly three after 12 h of
induction (40 vs. 110 mg.Grpip/gcels; Fig. 1b). Interestingly,
we obtained a higher specific IB titer when we adjusted g jac
at 100% ¢s jac.max and 57% g jac.max- r€Spectively, compared to
induction with 0.5 mM IPTG (Fig. 1b, c¢), emphasizing the
power of lactose as a nontoxic and cheap inducer.
Surprisingly, we found IBs only after more than 2 h of induc-
tion (Fig. 1b). Since we detected soluble eGFP right after
induction (Supplementary Table S1), we speculate that the
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Fig.2 Tuning the size of IBs. a Scanning electron microscopy pictures of
IBs from different cultivations used to asses IB size, as exemplarily
shown in lower right figure. Percentage indicates proportion of
maximum specific lactose uptake rate (¢ o) used for induction. Red
scale bars: 5 um. 3.5-fold zoom for IPTG induction (lower right). b (i)
exemplary atomic force microscopy picture of typical IBs showing spher-
ical shape, (ii) and (iii) zoom in on IB particle, and (iv) topography cross-

amount and the size of IBs in the first 2 h of induction were
below the detection limit of the applied analytics.

Soluble and total product titer

Even though the main focus of this study was the in-
vestigation of IBs, we also analyzed SP and total prod-
uct titers. With respect to SP, we observed the same
correlation between g 1ac and g, as seen for IBs during
the first 4 h of induction, namely, the higher g, and
the higher g, sp. However, after 12 h of induction, the
highest specific SP titer was obtained at the lowest g-
s.lac- Apparently, cells which were strongly induced right
from the beginning of induction somehow reduced g, sp
after a certain time, whereas cells induced at a low ¢ jac
of only 4% ¢s1ac.max steadily produced SP over time
(Supplementary Table S1).

The total productivity also showed a clear trend in
the first 4 h of induction, as increasing g, gave more
total product (Supplementary Table S1). However, after
12 h of induction, all induction conditions resulted in
comparable amounts of total product.
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cultivation IB-diameter
name [nm]
100% d jac,max 616.9+79.9
57% Qs jac,max 600.0 £ 70.1
18% Qs jac,max 513.2+74.3
4% Qs jac,max 408.0+66.3
0% Qs lac,max -
IPTG 489.9+73.0

section of an isolated IB (indicated as a blue line in iii). ¢ Probability
density plot of IB size distribution after 12 h of induction as a function of
s 1ac Showing that IB size can be tuned by ¢ j... Red-dashed line indicates
logarithmic fit between IB size and ¢, (degree of freedom =2, R*=
0.99). IB diameter with standard deviation from different cultivations
after 12 h of induction are shown in the table. Standard deviation was
evaluated from measuring 50 IBs per sample

Summarizing, with respect to product titer, we con-
cluded that, (1) g,z can be tuned by g, over the
whole induction time; (2) in the first 4 h of induction,
higher g .. gave higher g, sp, while after 12 h of in-
duction, this situation was reversed; and (3) after 12 h
of induction, the amount of total product was compara-
ble for all induction conditions tested.

Tuning IB properties

In order to potentially link IB properties to induction
conditions, we analyzed size, morphology, size distribu-
tion, and the presence of secondary structures of the
formed IBs.

IB size

We assessed IB size by scanning electron microscopy
(SEM; Fig. 2a), supported the results by atomic force
microscopy (AFM; Fig. 2b) and correlated the IB size
to the respective g, (Fig. 2¢). In fact, we were able to
tune IB size by induction, as shown in Fig. 2c. A clear
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Fig. 3 Size distribution of IBs a
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57% G jacmax 368.5+56.1 nm | 482.1 £66.9 nm | 514.0 £64.9 nm | 600.0 £70.8 nm
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correlation between ¢, and IB size was observed: is advantageous to produce large IBs in order to mini-
smaller IBs were produced when less lactose was spe-  mize the surface area, where impurities can potentially
cifically taken up (logarithmic fit, degree of freedom = adhere to.

2, R?=0.991).

IB size distribution as a function of time
IB morphology

We found that not only IB size, but also IB size distribution
Using AFM analysis, we found that eGFP IBs were of increased as a function of induction time (Fig. 3). Although
spherical shape (exemplarily shown in Fig. 2b), whose  this trend was not as apparent for induction by IPTG, we
surface area can be calculated by A=d”- m. This under-  observed an increasingly broad size distribution of formed
lines the high importance of the IB diameter (d) as it  IBs for all experiments with lactose induction (100% g jqc,
impacts the surface area (A), by the power of 2. Thus, it 57% qs1ac. 18% Gs1ac, and 4% g 1ac). We explain this
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Fig. 4 Secondary structure of IBs measured by infrared (IR) spectrosco-
py. a IR spectra of IBs from different induction regimes. Maxima for f3-
sheet secondary structure appear at approx. 1630 and 1690 cm ™' in the IR
spectrum, whereas the shoulder at approx. 1655 cm ™" is attributed to o
helical secondary structure. b Table shows degree of spectral overlap
(s1,) for IBs from different induction regimes (4% ¢ jac.max (Small IBs,

phenomenon by the generally accepted hypothesis that the IB
is passed on to only one daughter cell after cell division, leav-
ing one daughter cell without IB and one daughter cell with an
IB that continues to grow (Peternel and Komel 2011). Thus, in
order to get an IB population of distinct size, which is not only
important for IB processing, but also for potential direct ap-
plication as nanomaterials and biomaterials (Diez-Gil et al.
2010; Garcia-Fruitos et al. 2009; Garcia-Fruitos et al. 2012;
Peternel and Komel 2011; Upadhyay et al. 2012; Villaverde
et al. 2015), we recommend short induction times.

0 =408 nm); IPTG (medium IBs, @ =490 nm); and 57% ¢ jac.max (large
IBs, @ =600 nm)) calculated according to Schwaighofer et al.
(Schwaighofer et al. 2016) demonstrating a very high degree of spectral
overlap for all samples. The value of s; , ranges from 0 to 1, correspond-
ing to no overlapping and complete overlapping, respectively

IB secondary structures

The secondary structures found in the agglomerated product
can affect its properties and also the processing of IBs.
Therefore, we assessed the secondary structure of the IBs by
infrared (IR) spectroscopy. IR spectroscopy showed high sim-
ilarity and overlaps in the IR spectra of all IBs indicating that
the amount of correctly folded secondary structures were not
significantly different (evaluated by degree of spectral overlap
>99.9%, (Schwaighofer et al. 2016)) independent of the

a solubilization b refolding
85 85
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z Z
‘T 65 =~ 65
2 2
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4% qs,lac,max IPTG 57% qs,lac,max 4% qs,lac,max IPTG 57% qs,|ac,max
C
sample size IB [nm] purity solubilization [%] purity refolding [%]
4% Qs lac,max 408.0 £ 66.3 54.5%0.7 747 +1.2
IPTG 489.9+73.0 58.6+0.5 81.2+0.1
57% G tac.max 600.0 +70.1 71.6+0.9 82.7+2.2

Fig. 5 Impact of IB size on IB purity. a Purity determined by HPLC
impurity monitoring using size exclusion chromatography (SEC) after
solubilization with 2 M urea of IBs with a small (@ =408 nm), medium
(@=490 nm) and large (¥ =600 nm) diameter. Standard deviation was

evaluated from technical duplicates. b Purity of eGFP determined by
HPLC impurity monitoring using SEC after refolding. Standard deviation
was evaluated from technical duplicates. ¢ Overview of results from sol-
ubilization and refolding with standard deviations
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induction strategy (exemplarily shown in Fig. 4 for 4% g-
slac.max (Small IBs, @ =408 nm); IPTG (medium IBs, @ =
490 nm); and 57% g jac.max (large 1Bs, @ = 600 nm).

IB processing

We hypothesized that the IB diameter and thus the sur-
face area are crucial for subsequent IB processing, as
(1) more impurities can adhere on particles with a larger
surface area and (2) solubilization efficiency depends on
accessibility to protein aggregates. To test the impact of
the specific surface area (nm?/g;z) on IB processing and
potentially omit necessary IB washing steps during pro-
duction processes, we solubilized the different IBs with
2, 4, and 6 M urea, respectively, without any prior
washing step. We found solubilization yields of >99%
for all IB preparations and all three urea concentrations.
Since solubilizing at lower urea concentrations has the
advantage of conserving correctly folded secondary
structures resulting in an increased refolding yield
(Margreiter et al. 2008; Singh et al. 2015b; Upadhyay
et al. 2012), we used 2 M urea for solubilization of IBs
to analyze IB purity. We used IBs from induction with
IPTG and 4% ¢s1ac.max and 57% G ac.maxs respectively,
to cover IBs of different sizes (Fig. 5). As shown in
Fig. 5a, the purity of the IBs differed vastly. The high
specific surface area of the small IBs formed at 4%
@s.1acmax caused the adherence of more impurities com-
pared to the low specific surface areca of large IBs
formed at 57% ¢sjac.max (Fig. 5a, c¢). While small IBs
showed a purity of only 55%, large IBs had a purity of
more than 70%. Fig. 5b shows the purity after
refolding, which was done by a standard dilution ap-
proach tailored for eGFP (Enoki et al. 2004). The purity
of all IB preparations increased after refolding, as host
cell derived impurities precipitated during this process
step. After refolding, the purity was increased to 75%
for small IBs, 81% for medium IBs, and 83% for large
IBs. This observation confirms our hypothesis that a
higher specific surface area attracts more impurities.
The purity of IBs is of great importance as the presence
of impurities can potentially reduce the refolding yield
(Singh et al. 2015a). Furthermore, IB purity is a key
aspect once IBs are directly used as nanomaterials and
biomaterials (Diez-Gil et al. 2010; Garcia-Fruitos et al.
2009, 2012; Peternel and Komel 2011; Upadhyay et al.
2012; Villaverde et al. 2015).

Summarizing, we were able to show that tailored induction
by lactose not only allows tuning of IBs size, but also 1B
purity. For the three different IB preparations we obtained a
comparable refolding yield of > 95%. We expected these com-
parable values since we had found the same amount of

@ Springer

correctly folded secondary structures in the different IBs by
IR spectroscopy before (Fig. 4).

Discussion

In this study, we showed that a mixed feed strategy with glu-
cose and lactose not only impacts total product, soluble prod-
uct, and IB titer in £. coli, but also IB properties, which in turn
affects IB processing. Our method of tailored lactose induc-
tion allows precise tuning of the specific IB formation rate and
is, thus, a valuable alternative to expression tuning by reduc-
ing the overall cell metabolism. Moreover, our approach al-
lows prolonged production times and thus higher overall ti-
ters. Furthermore, it is of great interest that the size and the size
distribution of IBs can be tuned by our method.

Size is an important property of IBs, since it significantly
impacts IB harvesting and processing (Upadhyay et al. 2012).
Furthermore, IB size is a crucial factor for potential direct
applications of IBs as nanomaterials and biomaterials in re-
generative medicine (Diez-Gil et al. 2010; Garcia-Fruitos et al.
2009, 2012; Peternel and Komel 2011; Upadhyay et al. 2012;
Villaverde et al. 2015). We also showed that IB size correlates
with purity and thus affects IB processing. We suggest to
induce the cells at g jac.max t0 Obtain highest productivity
and generate large IBs, which leads to a lower specific surface
area and thus less adherent impurities. For eGFP IBs, we did
not find any impact of induction on the amount of correctly
folded secondary structures in the IBs. However, for more
complex proteins, which often easily overwhelm the folding
machinery, as well as for periplasmic proteins, where translo-
cation is the rate limiting step, our strategy of tuning transcrip-
tion by g1, might be required to obtain higher product titers.
Also, when expressing a protein which is toxic to E. coli and
negatively affects its metabolism, it is beneficial to regulate
recombinant protein expression to reduce metabolic burden
and potential cell death. Summarizing, we present a method,
which allows (1) tuning the specific formation rate of IBs, as
well as (2) adjusting size, size distribution, and purity of IBs,
which is not only fundamental for IB processing, but also for
applications where IBs are directly used.
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