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Abstract True breeding of button mushrooms has hardly
been done in the last decades, despite this species being one
of the most cultivated mushrooms worldwide. Research done
in the last 20 years has identified and characterised new germ-
plasm and improved our understanding of the genetic base for
some traits. A substantial collection of wild-collected strains is
now available and partly characterised for a number of impor-
tant traits such as disease resistance and yield. Most of the
variations found in a number of important agronomic traits
have a considerable heritability and are thus useful for breed-
ing. Genetic marker technology has also developed consider-
ably for this mushrooms in the last decade and used to identify
quantitative trait loci (QTL) for important agronomic traits.
This progress has, except for one example, not resulted so
far into new commercially varieties. One of the reasons lies
in the typical life cycle of the button mushroom Agaricus
bisporus var. bisporus which hampers breeding. Joint invest-
ment is needed to solve technical problems in breeding.
Special attention is needed for the protection of new varieties.
Due to its typical life cycle, it is very easy to generate so called
Blook-a-likes^ from protected cultivars by screening fertile
single spore cultures. A consensus has been reached within
the mushroom (breeding) industry to consider this method as

the generation of essentially derived varieties as defined in
plant breeding.
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Introduction

The button mushroom (Agaricus bisporus var. bisporus) is one
of the most cultivated mushrooms in the world. It is the pre-
dominant mushroom cultivated in Western countries and the
cultivation area is expanding fast in China (Zhang et al. 2014).
Progress has been made in recent years in various areas essen-
tial for breeding, such as collection and characterisation of
source material, development of molecular markers, linkage
mapping and detection of quantitative trait loci (QTL).
However, these efforts have hardly led to new cultivars during
the last three decades. The main reason lies in the typical life
cycle of this fungus which hampers the introduction of traits
without considerable linkage drag. Its typical life cycle also
facilitates the easy generation of essentially derived varieties.
The latter can outcompete a cultivar generated by cross breed-
ing and thus minimise the investment done by that breeder. In
recent years, only one genuinely new button mushroom culti-
var has been marketed successfully in Western countries, a
brown cultivar generated by Amycel, an American breeding/
spawn producing company. This variety has been generated by
cross or outbreeding using at least three different strains. Due to
the previously mentioned difficulties to protect new varieties,
Amycel has chosen to protect this variety in a more strict way,
i.e. utility patent in the USA, and it is in process in trying to
obtain a similar patent in other countries around the world.

In this paper, we will review the state of the art of different
aspects of breeding and breeding research for button
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mushrooms and will specifically address the main technical
and legal hurdles that exist for breeding button mushrooms
and discuss actions that are taken or need to be taken to solve
these.

The typical life cycle of A. bisporus var. bisporus

All commercial and most wild-collected strains have a sec-
ondary homothallic life cycle (Raper et al. 1972; Xu et al.
1998). This variety has a unifactorial mating system and the
A-mating locus is mapped on the largest linkage group, chro-
mosome I (Xu et al. 1993). Meiosis takes place in specialized
cells (basidia) on lamellae where the two haploid nuclei fuse
and meiosis I and II lead to the formation of four recombinant
haploid nuclei (Kerrigan et al. 1993). The majority of the
basidia produce only two spores and non-sister nuclei are
preferably paired into one spore (Summerbell et al. 1989).
This intra-tetrade mating leads to the formation of spores that
germinate into heterokaryons containing nuclei with different
mating types, a prerequisite to produce fruiting bodies. Only a
minority of the basidia produce three or four spores which will
generate homokaryons containing one type of haploid nucle-
us. These homokaryons need to be mated with compatible
homokaryons (with a different mating type) in order to produce
mushrooms. Such homokaryons are thus useful for outbreed-
ing. Homokaryotic single spore isolates (SSI) show in general a
lower growth rate than heterokaryotic SSI (Kerrigan et al. 1992)
and this character is often use to preselect for homokaryons in
spore prints. Confirmation of the homokaryotic status is subse-
quently confirmed with genetic markers (Gao et al. 2013).
Attempts to enrich for homokaryons from spore prints using
cytometric tools such as cell sorting lead to some enrichment
but not better than the preselection on growth rate. Next to the
additional effort needed for the selection of homokaryotic SSI,
breeding of bisporic varieties is also hampered by its typical
recombination landscape. Crossovers (CO) are mainly restrict-
ed to chromosome ends and >90% of these CO are found
within a 100-kb distance of the chromosome ends
(Sonnenberg et al. 2016). The largest part of each chromosome
remains thus parental type after meiosis. The predominant
pairing of non-sister nuclei in most basidia in combination with
CO restricted to chromosome ends leads to heterokaryotic
spores that have a genetic make-up that is very similar to its
parent. As a result, they have also phenotypes very similar to its
parent with only one or a very few changes in traits.

The origin of button mushroom cultivars

Breeding by outcrossing is relatively new in the button mush-
room industry. Before the first strains produced by outcrossing
reached the market, new cultivars were normally generated

from existing cultivars by selecting heterokaryotic SSI or by
generating multi-spore cultures (Elliott and Langton 1981;
Fritsche 1981). Mainly three types of cultivars were used at
that time for mushroom production, white, off-white and
brown strains (Fritsche 1981). Only in 1980, the first white
hybrids were introduced into the market that were generated
by crossing homokaryons derived from different cultivars
(Fritsche 1982). One of these varieties, Horst U1, became in
short time the main commercial white cultivar in many coun-
tries. It has been generated by a cross between a homokaryon
of the white cultivar Somycel 53 and a homokaryon from the
off-white cultivar Somycel 9.2 (Fritsche 1982). Within the
relatively short period of a few years, many other white
Bhybrid^ varieties appeared on the market. These were genet-
ically and phenotypically identical or very similar to this first
hybrid. A thorough genotyping of many of these varieties
showed that they were all derived from the first hybrids by
selecting fertile single spore cultures (Sonnenberg et al. 2016).
We have genotyped the traditional cultivars, some of the
present-day hybrids and the wild bisporic strains, using SNP
markers derived from several resequenced lines. The genotyp-
ing methodology, sequence of SNP markers and strains used
are described in the supplementary data (Tables S1-4). The
analysis of these data shows that the traditional and present-
day cultivars cluster into the expected groups with a very low
genetic variation within each group (Fig. 1). This contrasts
with the wild isolates that show a broad genetic variation
(Fig. 2) and clearly shows that the selection of fertile single
spore cultures of the bisporus varieties has been a common
breeding practice for a long time and most probably still is.

A few decades ago, a distinctive variety was described,
firstly found in the Sonoran Desert in California (Callac
et al. 1993) and later also in France (Callac et al. 1998a). It
has predominantly four-spored basidia (>90% of basidia bear
four spores). This variety was designated as A. bisporus var.
burnetti, named after the first collector of this variety. After the
description of this new variety, the common button mush-
rooms with the predominant secondarily homothallic life cy-
cle have been designated as A. bisporus var. bisporus. These
two varieties are fully compatible. Segregation analyses of
offspring from bisporus x burnettii hybrids indicate that the
recombination landscape in the burnettii variety is normal, i.e.
more evenly spread over the whole chromosome (Callac et al.
1997; Foulongne-Oriol et al. 2010).

Global genetic resources for A. bisporus

Isolates from nature in many geographic origins have now
been collected, described and preserved (Kerrigan et al.
1995). Especially from North America, Europe and western
Asia, indigenous non-cultivar populations have been found
that are available through the Agaricus Resource Program,
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an initiative by Rick Kerrigan, working at Sylvan Inc.,
Kittanning, USA (Kerrigan 1996). There are also well-
documented collections of apparently native A. bisporus from
other parts of the world, including Central Mexico, Morocco,
Zaire, New Zealand, China, Australia and Tasmania (Kerrigan
2004). The South American countries and Southern Africa are
areas that seem not to have been sampled at all. Additional
wild isolates have been collected, described and preserved
from France and Greece (Callac 1995, 2002), but these strains

are not publically available. A number of reports describe the
frequent presence of cultivar types in nature in certain areas
(sometimes up to 50% of the sampled strains) and the threat
this might pose on the indigenous populations (Xu et al. 1997;
Kerrigan et al. 1998). Also, the change in natural biotopes for
A. bisporus, such as the disappearance of cypress trees, forms
an additional threat. There is thus a substantial collection of
resources available for breeding purposes but very likely
representing only a small part from the diversity that is present

Fig. 1 Dendrogram of traditional and present-day button mushroom cultivars. Strains were genotyped using 115 SNPmarkers (supplementary file S1).
A clear clustering is seen for each type of strain indicating that all strains within each cluster are copies or essentially derived varieties from each other
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Fig. 2 Dendrogram of wild button mushroom Agaricus bisporus var. bisporus. Strains were genotyped using 115 SNPmarkers (supplementary file S1).
Wild-collected strains show a clearly higher genetic diversity compared to cultivars (Fig. 1)
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in nature at large. Except for scarce reports on wild isolates
(Mata et al. 2016; Sobieralski et al. 2010; Rokni et al. 2015),
there are no efforts known at this moment to extend the col-
lections, which is mainly due to lack of funding.

Characterisation of collections for target traits
in breeding

Whereas the present-day commercial cultivars are almost
identical in all traits, a large variation in characters has been
found in wild-collected strains. Resistance or high tolerance
against the common diseases such as the bacterial blotch
(Moquet et al. 1999) and the fungal pathogen Lecanicillium
fungicola (Dragt 1995; Largeteau 2004; Sonnenberg 2005)
was found in wild strains, especially in strains of the var.
burnettii. The heritability of resistance to both diseases are
substantial (Moquet et al. 1999; Foulongne-Oriol et al.
2011b) indicating potential for breeding. A fungal disease
caused by Trichoderma aggressivum f. europeaeum was first
reported in the UK and Ireland around 1988 (Seaby 1996),
and a few years later, a similar strain—T. aggressivum f.
aggressivum—emerged independently in Canada and the
USA. In the years that followed, the disease spread into
France and other European countries (Hatvani et al. 2007) as
well as in Mexico and in the Americas. So far, no resistance
has been found against this disease in wild-collected strains
although tolerance to some degree might be present (Chen
et al. 2003; Kerrigan 2004; Sobieralski et al. 2010;
Foulongne-Oriol et al. 2011b). Two viral diseases have been
described for the buttonmushroom, i.e. La France or Die Back
disease (Hollings 1962) and Mushroom Virus X (Gaze et al.
2000) both consisting of a complex of double-stranded RNAs
(ds-RNAs). There are indications that there is immunity for La
France disease in some wild isolates (Sonnenberg et al. 1995)
since transmission of La France to these strains by anastomo-
sis or mating did not result in transmission of ds-RNAs,
whereas this could be done repeatedly between commercial
lines. Fu et al. (2016) tested 17 wild-collected strains of
A. bisporus (mainly from the Sichuan and Fujian regions in
China) and 11 commercial strains for their susceptibility to
wet bubble disease (caused by Mycogone perniciosa). They
found 10 out of 17 wild-collected strains to be highly resistant
to infection byM. perniciosa. Among the commercial strains,
they found one to be highly resistant, two to be moderately
resistant and seven to be highly susceptible. As far as we
know, no resistance or tolerance to other minor diseases has
been reported for wild-collected strains. Next to disease resis-
tance, some wild strains are also less sensitive to discoloration
after damage of the cap skin (Gao et al. 2013). This trait is very
useful in generating cultivars that can be harvested mechani-
cally (low bruising sensitivity) and cultivars that have a better
shelf life.Despite the differences between their habitats, most

wild strains are able to produce mushrooms on conventional
substrate (Savoie et al. 1996; Kerrigan 2004) although assess-
ment of enzyme activities involved in substrate utilisation in-
dicated that the cultivated strains are better adapted to the
conventional substrate (Savoie et al. 1996). Next to the pre-
dominantly four-spored basidia and an apparently normal re-
combination landscape, most burnettii strains are able to pro-
duce mushrooms at an elevated temperature, i.e. 25 °C instead
of 16–19 °C, optimal for all commercial cultivars (Largeteau
et al. 2011). This offers opportunities to breed cultivars for
warmer regions or cultivation at higher temperatures in sum-
mer periods, thus reducing energy costs.

Genetic markers and genetic dissection of traits

As for other crops, the type of genetic markers has developed
from isozyme up to the now common single nucleotide poly-
morphic markers (SNPs; for an overview on markers used in
linkage analysis in fungi, including A. bisporus see:
Foulongne-Oriol 2012). May and Royse (1981, 1982) started
to use isoenzyme markers to elucidate the life cycle of
A. bisporus and confirm crosses between homokaryons.
Later, RAPD markers were used (Khush et al. 1992; Moore
et al. 2001) mainly to identify button mushroom cultivars
illustrating the narrow genetic base of the past and present
button mushroom cultivars. Restriction fragment length poly-
morphism (RFLP) markers were used to both elucidate the life
cycle of A. bisporus (Summerbell et al. 1989), to genotype
commercial and wild lines (Loftus et al. 1988) and to generate
the first linkage map (Kerrigan et al. 1993). Foulongne-Oriol
et al. (2009) demonstrated that microsatellite markers were
more powerful to generate linkage maps for A. bisporus.
Since the publication of the whole genome sequence of the
button mushroom (Morin et al. 2012; Sonnenberg et al. 2016),
SNP markers can be used and they appear to be very useful in
generating linkage maps (Gao et al. 2016, 2015) and for pre-
cise location of meiotic crossovers (Sonnenberg et al. 2016).

A number of studies have been done on the genetic base of
useful phenotypic variations found in wild strains using a
range of genetic markers. Crosses between var. bisporus and
var. burnettii have been used to map the main determinant for
the number of spores on basidia (predominantly two- or four-
spored). The four-spored trait appeared to be dominant to
some extent with the main genetic determinant located on
chromosome I (Imbernon et al. 1996). The cap color was
mapped to chromosome VIII (Callac et al. 1998a; Callac
et al. 1998b) and interpreted as a single recessive allele for
the white color. Later work showed that additional minor QTL
for color are located on chromosomes II and VII (Foulongne-
Oriol et al. 2012a; Gao et al. 2015). For most crops, agronom-
ic traits are complex and controlled by a number of genes. The
button mushroom is no exception to this. QTL were found for
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complex traits as yield, disease resistance and shelf life (dis-
coloration). Foulongne et al. (Foulongne-Oriol et al. 2012a;
Foulongne-Oriol et al. 2012b) found 23 QTL related to yield
components in a segregating offspring between a bisporus x
burnettii cross explaining ca. 21% of the variation in yield.
This population was also used for quantitative genetics on
resistance to the fungal pathogen L. fungicola (Foulongne-
Oriol et al. 2011b). The study showed that the best description
of the disease progress is done by a separate assessment of the
two main symptoms (dry bubbles and spots), for which likely
independent mechanisms are involved differently affected by
the environment. Tolerance to L. fungicola was thus found to
be a polygenic trait with low sensitivity mainly contributed by
the var. burnettii. Moquet et al. (1999) mapped resistance to
bacterial blotch and found a QTL linked to the cap color
explaining 30% of the variation in resistance. Gao et al.
(2015) found QTL for sensitivity for bruising (discoloration
after damaging the cap skin). The trait appeared to be highly
heritable and the major QTL explained ca. 50% of the varia-
tion. Gao et al. (2016) also analysed the quality traits with five
additional agronomic traits through multi-trait QTL analyses
in a mixed model. Major and minor QTLwere detected for the
trait earliness (first day picking), firmness, cap color, compost
colonisation and scaling of mushroom caps. For a number of
important agronomic traits, variations are thus present in wild-
collected strains and these variations have a considerable her-
itability and are thus useful for breeding. The markers used to
map these traits can thus in principle be used to introduce new
traits in existing cultivars by marker-assisted selection.

Obstacles in breeding

As mentioned in a previous paragraph, the button mushroom
is mainly represented by two varieties, i.e. var. bisporus and
var. burnettii. The former produces mainly two-spored basidia
and recombination in meiosis is restricted to chromosome
ends, whereas the latter produces mainly four-spored basidia
and has a seemingly even distribution of recombination over
the entire chromosome. For breeding purposes, the burnettii
variety is obviously the preferred variety since isolation of
homokaryotic single spore cultures (SSI), used for
outcrossing, is less cumbersome and traits can be mapped
more precisely and introduced into germplasm without sub-
stantial linkage drag. All commercial cultivars and most wild
isolates represent the bisporus variety. Despite the beneficial
traits mentioned in the previous paragraph, the average quality
of most burnetti strains is poor. Especially the production of
abundant numbers of small mushrooms that show a quick
maturation (cap opening) is considered as poor quality
(A.S.M. Sonnenberg, unpublished observations). The
bisporus variety will thus remain for the time being the main
platform to produce new varieties. The obvious preliminary

breeding activity would be the introduction of the Bbreeding-
efficiency^ traits (tetrasporic, recombination evenly across the
chromosome) of the burnettii variety into a bisporus breeding
stock. That might require some investment since each of these
traits seems to be controlled by more than one gene.
Foulongne-Oriol et al. (2011a) compared genetic linkage
maps using a haploid offspring of an intervarietal cross
bisporus x burnettii (H population) with a map generated by
an offspring of a cross between a homokaryon of the H pop-
ulation backcrossed with a homokaryon of a bisporus variety
(designated as the Z population). The map generated with the
Z population was shorter (851 cM) than the map generated
with the H population (1156 cM). The authors explain this by
a reduction of the recombination frequency due to the back-
cross with the bisporus homokaryon. This reduction in ob-
served recombination can also be explained by the fact that a
backcross with a bisporus homokaryon shifts recombination
more towards chromosome ends where recombination is less
efficiently detected (Sonnenberg et al. 2016). This suggests
that the trait Brecombination landscape^ is quantitatively
inherited and likely polygenic and thus complex. Also, the
trait basidial spore number (BSN) appears to be complex al-
though less than the trait recombination landscape. BSN ex-
hibits dominancy with a variable degree of expression
(Kerrigan et al. 1994). The main genetic determinant for
BSN was mapped on chromosome I (Imbernon et al. 1996).
Attempts to retain the elevated basidial spore numbers by
selecting for markers linked to BSN in backcrosses to
bisporus varieties resulted in a gradual decrease of the average
number of spores per basidium (N. Sedaghat-Tellgerd, Plant
Breeding, WUR, pers. com). That indicates that also for BSN,
more than one gene is involved. The introduction of both of
these traits in all bisporus breeding stock will fix these traits
and certainly facilitate breeding.

Mushroom breeding versus plant breeding

Compared to plant breeding, (button) mushroom breeding has
advantages but also drawbacks. In plants, haploid nuclei fuse
immediately after fertilisation, whereas in most edible fungi,
the nuclei remain side by side after mating of homokaryons.
Only just before spores are formed in mushrooms does nuclei
fuse and undergoes meiosis. That allows the recovery of the
constituent nuclei as homokaryons and thus genotyping of the
haplotypes. The haploid SSI are similar to gametes in plants
and contrary to plant gametes, these single spore cultures can
be propagated and genotyped. Linkage maps can thus be gen-
erated directly on meiotic products. In some occasions, a ge-
nome of plant gametes can be doubled (double haploids)
allowing the generation of plants and thus phenotyping to
map quantitative traits directly on haplotypes. That is not pos-
sible in fungi. The haploid single spore cultures need to be
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crossed with a compatible homokaryon to produce mush-
rooms thus allowing phenotyping of mushroom traits. Plant
breeders often start with an outcross sometimes using artificial
or controlled pollination, followed by selfing to generate var-
iation. Selfing in mushroom breeding is not often used since it
has a number of drawbacks. The compatibility of mating be-
tween homokaryons is controlled by one or two, unlinked,
loci (Kües 2015). Homokaryons are compatible if they differ
in mating loci, a system directed to outbreeding. Selfing
(crosses between homokaryotic SSI of one spore print) is re-
stricted to 50 or 25% if compatibility is controlled by one or
two unlinked loci, respectively. Mapping of traits linked to the
mating type is impossible since this locus must remain hetero-
zygous in order to produce mushrooms. Next to that, selfing
also often leads to inbreeding depression in a number of fun-
gal species including the button mushroom (Xu 1995). One or
two backcrosses are usually possible without too much in-
breeding symptoms but a third backcross might produce no
fruiting bodies (A.S.M. Sonnenberg, unpublished observa-
tions). Backcrosses can thus be sed to some extent.
Mushroom breeders use tester homokaryons compatible to
the mating types present in a segregating haploid population
of SSI. The advantage is that all hybrids thus generated share
the genome of the tester line and segregation in phenotypes is
due to genetic differences of the nucleus derived from the
segregating SSI. The introduction of a new genome (the tester
line) can, however, have an effect on the expression of traits
resulting in some inconsistency in QTL mapping when
assessing traits in the same population with different tester
lines (Gao et al. 2016; Gao et al. 2015). The ability to recover
the constituent nuclei of strains as homokaryons allows the
estimation of a breeding value for traits of these nuclei com-
parable to what is done in some plant breeding programs
(Griffing 1956; Shattuck et al. 1993). A selection of strains
varying in the trait of interest can be protoplasted to recover
the constituent nuclei of each heterokaryon. Mating of these
homokaryons in all possible ways (a di-allel matrix) and test-
ing these hybrids for the trait of interest allow the expression
of the trait in different genetic backgrounds. That allows the
assessment of the general combining ability (GCA) of a par-
ticular homokaryon/nucleus which is calculated as the devia-
tion of the mean performance of a particular line from the
overall mean of all crosses in the di-allel matrix (Gao et al.
2013). GCA is equivalent to the breeding value of an individ-
ual (Lynch and Walsh 1998) and the GCA of a line is a reflec-
tion of the number of loci with positive alleles for the trait and
their effect (Adebambo 2011). Homokaryons with a positive
effects can be used to stack favourable alleles of genes in a
breeding program. Stacking multiple QTL in a cultivar can be
facilitated by combining different subsets of QTL in each of
the haplotypes of a receptor commercial cultivar using two
backcrosses and selection with the appropriate markers. The
resulting improved homokaryons can then be mated thus

combining all QTL in one cultivar. The di-allel matrix can
also identify parental lines with opposite GCA values which
are good parents for the creation of a dedicated mapping pop-
ulation to study the genetics of traits of interest.

Selfing or cross breeding in plants leads to the formation of
seeds that can be planted to study segregation of a trait. For
mushroom breeding, the generation of hybrids is much more
laborious. Each cross has to be generated separately by
confronting both parental homokaryons on artificial media
and selecting the heterokaryon after mating. The button mush-
room has only one mating type (Mat-A) and the lack of a
functional B-mating type results in the absence of nuclear
migration after fusion of homokaryons and the absence of
clamp connections, a structure that regulates the distribution
of nuclei over the daughter cells (see Kothe 2001 for an over-
view of mating-type genes in mushroom strain improvement).
The heterokaryon is thus only formed at the junction zone of
the confronting homokaryons and microscopically indistin-
guishable from these homokaryons. Fortunately, hetero-
karyons usually grow faster than homokaryons facilitating
selection of a potentially successful mating but each cross
has in principle to be confirmed by using polymorphic genetic
markers. For testing a phenotype, each cross has to be culti-
vated on substrate (compost). That requires the preparation of
inoculum (spawn) for each cross and the cultivation of mush-
rooms under controlled conditions (Griensven Van 1988).
Mushroom agronomic traits, such as yield, quality (scaling
of cap, discoloration) but also extent of symptoms after infec-
tions are influenced by the quality of substrate and climate
conditions. It is thus necessary to repeat trials. Studying a
phenotypic variation in a segregating population is thus a la-
borious and costly task in which often a trade-off has to be
made between the number of individuals to be tested and the
number of replicates within a trial (Gao et al. 2016).

Plant variety protection

Like plants, mushroom cultivars can be protected by plant
variety right in most countries and several titles of protection
have already been granted for mushroom strains (see for ex-
ample http://www.cpvo.europa.eu/main/nl/). Breeding of a
new cultivar in button mushrooms using outcrossing with
the bisporus variety is a considerable job requiring much
time and a large investment. Once generated, a very similar
cultivar (an essentially derived variety (EDV)) can be made
using fertile SSI derived from this first cultivar and can be
marketed under different names. Such EDVs may
outcompete the original cultivar and thus minimising the
return of investment of the first breeder. This has been a
practice for decades in the button mushroom industry as
shown in previous paragraphs, and one of the reasons why
only few truly different cultivars have been bred in the last
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30 years. The generation of new cultivars via heterokaryotic
SSI should thus be considered as EDVs as defined by UPOV
(http://www.upov.int/) since this way of generation of new
varieties meets all definitions of EDV: mainly derived from
the original variety, distinguishable from the original variety
but, having otherwise strong resemblance to the original
variety. This applies only to EDVs generated from protected
varieties. A definition of a new variety as an EDV requires the
breeder to negotiate with the first breeder for a license to
produce. The implementation and wide acceptation of this
system will encourage investment in breeding of button
mushrooms. For this purpose, a working group has been set
up in 2012 to come to a consensus on a definition of EDV in
general in edible mushroom breeding. The group consists of
four breeding/spawn producing companies (Sylvan, Amycel,
Limgroup and Lambert Spawn; representing 80% of the
spawn market in Europe) and two research groups (INRA
Bordeaux, France and Plant Breeding, Wageningen
University and Research, the Netherlands). As a first target,
the group has reached a consensus on considering fertile sin-
gle spore cultures derived from a protected A. bisporus

cultivar as an EDV (published on the different websites of
all members of the working group). This consensus is support-
ed by the main players in the mushroom industry in Europe
and by the international scientific organisations (International
Society for Mushroom Science and World Society for
Mushroom Biology and Mushroom Products; Sonnenberg
(2013)). The group has become recently part of the
International Seed Federation (ISF) and will use the expertise
of this organisation to generate a guideline for handling dis-
putes on Essential Derivation in Mushroom Varieties.
Relevant for EDV studies are the availability of global and
EDV specific populations, accepted and widely available ge-
netic marker technology and consensus on genetic similarity
threshold (Bruins 2013). Proof for EDVmight be more simple
for mushrooms than for plants. The advantage of fungi over
plants is their small genome and the ability to recover and
genotype haplotypes. That allows the complete genotyping
of haplotypes with the next generation sequencing
technologies. Sonnenberg et al. (2016) have shown that whole
genome sequencing can be used to correctly identify allele
di fference between var ie t ies and exact ly locate

Fig. 3 The whole genome sequencing can be used to precisely genotype
a cultivar of button mushrooms and thus identify its genetic relationship
to an original cultivar. The amount of retained heterozygosity and number
of CO at chromosome ends can be used to see if a cultivar has been
derived directly (primary EDV) or indirectly (secondary EDV) from the

original variety. New alleles indicate that outbreeding has been used to
generate a new cultivar based on the original variety and the number of
CO relative to the original cultivar is an indication for the number of
generations used (breeding effort)
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recombinations on each chromosome. That allows not only
the assessment of genetic relationship between cultivars but
can also reveal breeding history (Fig. 3). If a supposed new
variety has lost some heterozygosity (<5%) and has otherwise
identical alleles as the protected variety, this cultivar must have
been derived from the protected variety via the isolation of
heterokaryotic SSI. An EDV can be derived in this way direct-
ly from a variety or derived from a derivative. In the former
case, usually one recombination is seen at chromosome ends
relative to the original variety, while the latter will show on
some chromosomes two nearby recombinations. Assuming
that crossover interference is also active in the button mush-
room, two nearby recombination spots can only be generated
in separate (subsequent) generations. If new alleles are found
relative to the protected variety, it has clearly been generated
by outbreeding. The number of recombinations can be used as
a count for the number of generations used to generate a new
variety and thus estimate breeding effort. How to use these
tools and where to put the threshold is now under debate.

How to move on

The button mushroom A. bisporus is one of the most cultivat-
ed mushroom species with an annual crop value exceeding
$3.2 billion worldwide in 2009 (Sonnenberg et al. 2011) and
probably now more than $4 billion considering the large ex-
pansion in China. The progress made in the last decades in
yield and quality is mainly due to optimising substrate and
climate conditions and not by breeding improved cultivars.
New cultivars can have a large impact for a crop in the food
market as has been shown by breeders of tomato and sweet
pepper varieties. A similar effect could be generated for button
mushroom with development of new cultivars for the primary
producers but especially directed to consumer benefits (taste,
nutritional quality, shelf life, etc.). Despite the progress made
in the last 20 years, mushroom breeding is still lagging behind
plant breeding. Especially for breeding button mushrooms,
technical hurdles have to be tackled in order to make it more
efficient. The introduction of the tetrasporic trait and more
even recombination along chromosomes of the var. burnettii
into breeding stock of the var. bisporuswould facilitate breed-
ing enormously. Next to that, plant breeders derive their breed-
ing materials from advanced (elite) germplasm, improved
germplasm, landraces or wild lines (Acquaah 2015).
Because of lack of advanced breeding stock, (button) mush-
room breeders are forced to use wild germplasm for improve-
ment or introduction of new traits. Such breeding programs
often start with hybrids low in most of the agronomic traits
and need a substantial backcrossing to restore the desired ag-
ronomic traits. This takes time and so far has not led to com-
mercially viable cultivars. A joint effort similar to what has
been done in the past for plant breeders can generate a

platform of advanced breeding stock which can be used by
each breeder to generate its own new cultivars. Such pre-
breeding programs should include thorough and standardised
phenotyping of important traits in collections and a subse-
quent transfer of these traits into an advanced breeding stock
which has an acceptable yield and quality and can be used to
develop new cultivars within foreseeable future. As important
as solving these technical hurdles is the need to improve pro-
tection of new varieties. Without a proper protection, no sub-
stantial investment will be done in breeding and consequently
not in breeding research. The general acceptance that selection
of heterokaryotic SSI of A. bisporus should be considered as
generating EDVs will certainly help. A wider definition of
EDV for button mushrooms is needed and for edible mush-
rooms in general. Last but not least, although a protection of
new mushroom cultivars is possible by plant variety rights, it
still seems the common practice to copy protected cultivars
and market them under different names (A.S.M. Sonnenberg,
personal observations) facilitated by the ease of generating
tissue cultures from marketed mushrooms or generating
spawn from commercial spawn lots. Other thanWestern coun-
tries, breeding of mushrooms in China and Korea is mainly
financed by governments. In China, two new button mush-
rooms have been generated and these dominate now the
Chinese market (Meiyan et al. 2009; Wang et al. 1995).
Protection of new varieties is also an issue in China, but since
private investment in breeding is almost absent, infringement
is a lesser issue than in Western countries. Although the
present-day sequencing tools can be used to irrefutably prove
that a strain has been copied, it seems not easy to generate
proof of infringement due to limitations in freedom to sample
infringers and lack of track-and-trace of produce. Legal bodies
are nowworking on this issue. Important is also to increase the
awareness in the mushroom industry that infringement of
protected cultivars hampers the development of new varieties.
Despite the technical and legal hurdles to take, this review
shows that considerable progress has beenmade in our knowl-
edge on breeding the button mushroom. A number of prereq-
uisites have been met to improve traits in button mushroom
varieties. Introduction of these traits in existing cultivars will
benefit the primary producers in generating food products in a
more competitive and sustainable way. It offers also opportu-
nities for innovation in the final product, i.e. the mushrooms,
in order to enlarge the position of edible mushroom in food
markets.
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