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Abstract Cosmeceuticals are cosmetic products containing bi-
ologically active ingredients purporting to offer a pharmaceuti-
cal therapeutic benefit. The active ingredients can be extracted
and purified from natural sources (botanicals, herbal extracts, or
animals) but can also be obtained biotechnologically by fer-
mentation and cell cultures or by enzymatic synthesis and mod-
ification of natural compounds. A cosmeceutical ingredient
should possess an attractive property such as anti-oxidant, an-
ti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or
photoprotective activity, among others. During the past years,
there has been an increased interest on the enzymatic synthesis
of bioactive esters and glycosides based on (trans)esterification,
(trans)glycosylation, or oxidation reactions. Natural bioactive
compounds with exceptional theurapeutic properties and low
toxicity may offer a new insight into the design and develop-
ment of potent and beneficial cosmetics. This review gives an
overview of the enzymatic modifications which are performed
currently for the synthesis of products with attractive properties
for the cosmeceutical industry.
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Introduction

Articles defined as cosmetics are intended for human body
application aiming at increased beauty and attraction or
cleaning use, without affecting the body structure or function
(Nelson and Rumsfield 1988). During the last few years, the
cosmetic industry is searching for bioactive compounds that
also promote health benefits. This combination resulted in a
new term called Bcosmeceutical^ where cosmetic products
assert medical benefits (Choi and Berson 2006).
Cosmeceuticals are different from cosmetics and drugs, as
they affect the function and structure of skin, while having
drug-like effects that are marketed using skin appearance-
based claims. Cosmeceutical industry numbers over 400 man-
ufacturers worldwide including Estée Lauder, L’Oréal, Procter
& Gamble, and Avon, with 80 % of the US and European
market dedicated to skin care (Brandt et al. 2011). In 2008,
Japan was by far the biggest market in cosmeceuticals valued
at $6–8 billion, followed by the USA ($5–6 billion) and EU
($3–5 billion) (Kim and Wijesekara 2012). Market growth is
expected to rise in economies like China, Brazil, the Russian
Federation, and India (Brandt et al. 2011). Nevertheless, the
Food and Drug Administration (FDA) does not recognize
cosmeceutical as a term even if it is widely used in industry,
while in the EU, most are considered as cosmetics (Sharma
2011). There is no regulation of cosmeceuticals in EU, the
USA, and Japan; however, as the interaction between
cosmetic and skin is complex, there is an increased attention
towards the need of toxicological tests of the final product and
its bioactive ingredients (Nohynek et al. 2010). Target
ingredients of cosmeceuticals may include phytochemicals,
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vitamins, peptides, enzymes, essential oils among others, which
are incorporated into lotions, creams, and ointments dedicated to
skin treatment. Desired properties, such as anti-oxidant, anti-
aging, anti-microbial, anti-wrinkling, photoprotective, or skin
whitening, are preferentially offered by natural compounds
derived from plant or sea organisms, instead of chemically
synthetic compounds. The guidelines of the Council of Europe
define a natural cosmetic as a product that consists of natural
substances of botanical, mineral, or animal origin, exclusively
obtained through physical, microbiological, or enzymatic
methods, with certain exceptions for fragrances and
preservatives. This demand has increased the sales of personal
care products based on natural ingredients; however, often a
modification of the bioactive compounds is required prior to

their application in the final product, e.g., by increasing its
lipophilicity or improving its biological properties.
Modification with fatty compounds generally results in more
lipophilic products, whereas modification with sugars results
in more hydrophilic derivatives. Chemical approaches have
numerous disadvantages such as the protection and de-
protection of groups resulting in many reaction steps, use of
strong acid as catalyst, high temperatures (150–200 °C), forma-
tion of unwanted products, dark color, burnt taste of product,
and high energy consumption (Kiran and Divakar 2001).
Enzymatic modification is employed under mild conditions, is
highly selective, and includes one single step.

In this review, the most important enzymatic modifications
that result to the synthesis of ingredients with attractive

Fig. 1 Reaction examples
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properties for the cosmeceutical industry are documented.
Properties such as anti-oxidant, anti-inflammatory, anti-micro-
bial, skin-whitening, and photoprotective effects were criteria
for the selection of the reported modification reactions. A
modification may follow different mechanisms: direct esteri-
fication or transesterification performed by esterases (such as
lipases, feruloyl esterases, or tannases) and proteases, glyco-
sylation (reverse hydrolysis) or transglycosylation performed
by transferases, and β-glucosidases and oligomerization per-
formed by laccases. Examples of such modification reactions
are presented in Fig. 1.

Esterases

Except for their hydrolytic ability, esterases are able to
perform (trans)esterification reactions. Triaglycerol li-
pases (EC 3.1.1.3) are most commonly used due to their
broad specificity, as shown in Table 1. Less popular,
ferulic acid esterases (FAEs; EC 3.1.1.73) generally cata-
lyze the hydrolysis of the ester bond between the main
chain polysaccharides of xylans or pectins and the mono-
meric or dimeric ferulic acid in plants; however, they are
able to modify hydroxycinnamic acids and their esters.
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are known
to be active on complex polyphenolics, catalyzing the
hydrolysis or synthesis of the Bester bond^ (galloyl ester
of an alcohol moiety) or the Bdepside^ bond (galloyl ester
of gallic acid) (Battestin et al. 2008). Low water content is
essential for the thermodynamic shift of equilibrium to-
wards synthesis. Different systems have been employed
including organic co-solvents, ionic liquids, solvent-free
systems, supercritical fluids, and molecular sieves as wa-
ter removal agents. The ideal solvent should aid solubili-
zation of substrates, not affect enzyme activity, have low
toxicity, and enable easy product recovery (Wei et al.
2002). Ionic liquids are a good alternative since they gen-
erally do not deactivate esterases and have exceptional
tailorability and low volatility (Zeuner et al. 2011).
However, a number of issues including the cost involved
in large-scale usage are to be addressed. Aids as micro-
wave irradiation and ultrasound treatment have been
employed in lipase-catalyzed reactions (Costa et al.
2014; Cui et al. 2013). Detergentless microemulsions, so
far employed in FAE-catalyzed reactions, consist of a hy-
drocarbon, a shor t -cha ined a lcohol , and water
representing thermodynamically stable dispersions of
aqueous microdroplets in the hydrocarbon solvent
(Khmelnitsky et al. 1988). An important advantage of
these mixtures is the separation of reaction products and
enzyme reuse, while the solubility of relatively polar phe-
nolic acids is high owing to the presence of large amount
of polar alcohol.

α-Hydroxy acid derivatives

α-Hydroxy acids (AHAs) are composed of carbon backbones
containing a carboxyl group and a hydroxyl group on the
adjacent carbon. Among them, glycolic acid, lactic acid, and
malic acid have been well known in cosmetics as beauty aids
and peeling agents due to their hygroscopic, emulsifying, and
exfoliating properties (Tung et al. 2000). Short-chain AHAs as
lactic acid are more active in regulating the rate of skin regen-
eration and improving dryness (Wei et al. 2002). However,
limiting factors for application are their acidicity and the rapid
penetration into the deep epiderm, causing irritant effects at
concentrations >10 %. To control their concentration and pen-
etration to the skin’s intercellular spaces, AHAs have been
grafted onto alkylglycosides, fatty acids, or fatty alcohols so
they can be gradually released by the epidermis esterases.
Short-chain alkylglycosides have been reported to relieve the
irritant effects on skin after UV radiation (Wei et al. 2003). A
major concern regarding enzymatic modification is that lactic
acid can undergo self-polymerization at high temperatures and
low water content forming linear polyesters or lactones be-
cause of the presence of groups that act as acyl donor and
nucleophile at the same time (Roenne et al. 2005). A key
factor is the choice of enzyme that favors the desired reaction.
Lactic acid does not act as nucleophile when the lipase B from
Candida antarctica (CALB) is used as biocatalyst due to ste-
ric hindrance at the enzyme’s active site (Form et al. 1997).
Another obstacle is the severe inactivation of enzymes in high
concentrations of lactic acid or in solvent-free systems, as it
decreases the logP of the reaction medium (Pirozzi and Greco
2004). Polar solvents aid lactic acid solubilization at higher
concentrations and seem to prevent enzyme inactivation be-
cause they show an acid-suppressive effect due to their basic-
ity (Hasegawa et al. 2008). However, esterification of glycolic
acid has been favored in apolar hexane producing high yield
of glycolate ester (91 % after 24 h) (Torres and Otero 1999).
Limitation of lactic acid self-polymerization has been
achieved in hexane although the esterification with fatty acids
resulted in lower yields (35 %) (Torres and Otero 2001).
Transesterification between α-butyl glycoside and butyl lac-
tate in a solvent-free system eliminating the butanol co-
product under reduced pressure resulted in more than 95 %
conversion and very high concentration of a less irritant prod-
uct (170 g/L) in a single batch reaction (Bousquet et al. 1999).

Kojic acid derivatives

Kojic acid (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one)
is an inexpensive water-soluble fungal secondary metabolite
produced by Aspergillus and Penicillium species. It possesses
valuable biological properties such as anti-oxidant, anti-mi-
crobial, and anti-inflammatory, while as an iron and copper
chelator has the capacity to prevent photodamage,

Appl Microbiol Biotechnol (2016) 100:6519–6543 6521



T
ab

le
1

L
ip
as
e-
ca
ta
ly
ze
d
re
ac
tio

ns

P
ro
du
ct

D
on
or

A
cc
ep
to
r

E
nz
ym

e
S
ol
ve
nt

sy
st
em

Y
ie
ld

(t
im

e)
T (°
C
)

R
ef
er
en
ce

E
xa
m
pl
es

of
α
-h
yd
ro
xy

ac
id

de
ri
va
tiv
es

C
6–
C
18

la
ct
at
es

C
6–
C
18

fa
tty

al
co
ho
ls

L
ac
tic

ac
id

N
ov
oz
ym

43
5

A
ce
to
ni
tr
ile

94
–9
6
%

(4
8
h)

30
To

rr
es

an
d
O
te
ro

19
99

C
6–
C
18

gl
yc
ol
at
es

C
6–
C
18

fa
tty

al
co
ho
ls

G
ly
co
lic

ac
id

N
ov
oz
ym

43
5

H
ex
an
e

91
%

(4
8
h)

E
th
yl

gl
yc
os
id
e
la
ct
at
e

E
th
yl

gl
yc
os
id
e

B
ut
yl

la
ct
at
e

N
ov
oz
ym

43
5

So
lv
en
t-
fr
ee

95
%

(3
6
h)

60
W
ei
et
al
.2
00
2

β
-M

et
hy
lg

ly
co
si
de

m
al
at
e/
gl
yc
ol
at
e/
la
ct
at
e

β
-M

et
hy
lg

ly
co
si
de

M
al
ic
/g
ly
co
lic
/

la
ct
ic
ac
id

N
ov
oz
ym

43
5

t-
B
ut
an
ol

48
–7
5
%

(1
20

h)
60

Pa
rk

et
al
.2
00
1

Pa
lm

ito
yl

or
st
ea
ro
yl

la
ct
ic

ac
id

C
16

or
C
18
:0

fa
tty

ac
id

L
ac
tic

ac
id

L
ip
oz
ym

e
IM

20
E
th
yl

m
et
hy
l

ke
to
ne

37
.5
–4
0
%

(7
2
h)

37
or

60

K
ir
an

an
d
D
iv
ak
ar
20
01

E
xa
m
pl
es

of
ko
jic

ac
id

de
ri
va
tiv

es
K
oj
ic
ac
id
m
on
or
ic
in
ol
ea
te

R
ic
in
ol
ei
c
ac
id

K
oj
ic
ac
id

L
ip
oz
ym

e
T
L
IM

So
lv
en
t-
fr
ee

87
.4
%

(6
h)

80
E
l-
B
ou
lif
ie
ta
l.
20
14

K
oj
ic
ac
id

m
on
oo
le
at
e

O
le
ic
ac
id

K
oj
ic
ac
id

A
m
an
o
G

A
ce
to
ni
tr
ile

36
.7
%

(4
8
h)

50
L
iu

an
d
Sh

aw
19
98

K
oj
ic
ac
id

m
on
op
al
m
ita
te

Pa
lm

iti
c
ac
id

K
oj
ic
ac
id

R
M

IM
A
ce
to
ni
tr
ile

29
.3
0
%

(1
2
h)

50
L
aj
is
et
al
.2
01
3

E
xa
m
pl
es

of
lip

oi
c
ac
id

de
ri
va
tiv

es
Py

ri
do
xi
ne
-O

-l
ip
oa
te
(5
′

an
d
4′
)/
ty
ro
so
l-
8-
O
-

lip
oa
te
/ty

ra
m
in
-8
-N

-
lip

oa
te

Py
ri
do
xi
ne

(v
ita
m
in

B
6)

L
ip
oi
c
ac
id

C
N
Ts
-C
6-
N
H
2-

C
aL

B
or

C
N
Ts
-

C
11
-C
H
3-
C
aL

B

(m
to
a)
N
T
f2

91
.1
–9
9.
5
%

(7
2
h)

60
Pa
pa
do
po
ul
ou

et
al
.2

01
3

Ty
ro
so
l/t
yr
am

in
e

(b
m
im

)P
F6

Ph
en
ol
ic
lip
oa
te
s

4-
H
yd
ro
xy
be
nz
yl

al
co
ho
l/v
an
ill
yl

al
co
ho
l/4
-

hy
dr
ox
yp
he
ny
le
th
an
ol
/c
on
if
er
yl

al
co
ho
l/

di
hy
dr
ox
yb
en
zy
la
lc
oh
ol
/d
ih
yd
ro
xy
ph
en
yl

et
ha
-

no
l

L
ip
oi
c
ac
id

N
ov
oz
ym

43
5

2-
B
ut
an
on
e:

he
xa
ne

64
–8
0
%

(1
5
h)

25
K
ak
ie
ta
l.
20
12

O
ct
an
yl

lip
oa
te

n-
O
ct
an
ol

α
-L
ip
oi
c
ac
id

W
ho
le
-c
el
ll
ip
as
e

fr
om

A
sp
er
gi
llu
s

or
yz
ae

W
Z
00
7

H
ep
ta
ne

75
.2
%

(4
8
h)

50
Y
an
g
et
al
.2
00
9

E
xa
m
pl
es

of
ar
bu
tin

de
ri
va
tiv
es

A
rb
ut
in

lip
oa
te

α
-L
ip
oi
c
ac
id

β
-A

rb
ut
in

Ty
pe

B
lip
as
e
fr
om

C
.a
nt
ar
ct
ic
a

t-
B
ut
an
ol

–
(7

da
ys
)

55
Is
hi
ha
ra
et
al
.2
01
0

C
2–
C
18

al
ky
la
rb
ut
in

es
te
rs

V
in
yl

es
te
rs
of

C
2–
C
18

al
ip
ha
tic

al
co
ho
ls

β
-A

rb
ut
in

Im
m
ob
ili
ze
d
lip

as
e

fr
om

P
en
ic
ill
iu
m

ex
pa
ns
um

A
nh
yd
ro
us

T
H
F

82
–9
9
%

(0
.5
–7
2
h)

35
Y
an
g
et
al
.2
01
0a

A
rb
ut
in

ph
en
ol
ic
ac
id

es
te
rs

V
in
yl

es
te
rs
of

ar
om

at
ic
ac
id
s

30
–9
9
%

(4
–9
6
h)

50
Y
an
g
et
al
.2
01
0b

A
rb
ut
in

fa
tty

ac
id

es
te
rs

Sa
tu
ra
te
d
fa
tty

ac
id
s
(C
6–
C
18
)

β
-A

rb
ut
in

C
hi
ra
zy
m
e
L
-2

C
2

A
ce
to
ni
tr
ile

U
p
to

45
%

(2
da
ys
)

60
N
ag
ai
et
al
.2
00
9

A
rb
ut
in

fe
ru
la
te

Fe
ru
lic

ac
id

β
-A

rb
ut
in

Ty
pe

B
lip
as
e
fr
om

C
.a
nt
ar
ct
ic
a

t-
B
ut
an
ol

57
%

(7
da
ys
)

55
Is
hi
ha
ra

et
al
.2

01
0

V
in
yl

fe
ru
la
te

p-
A
rb
ut
in

N
ov
oz
ym

43
5

A
ce
to
ni
tr
ile

50
%

(−
)

45
C
hi
go
ri
m
bo
-M

ur
ef
u
et
al
.

20
09

E
xa
m
pl
es

of
vi
ta
m
in

de
ri
va
tiv
es

L
-A

sc
or
by
lp

al
m
ita
te

Pa
lm

iti
c
ac
id

L
-A

sc
or
bi
c
ac
id

L
ip
as
e
fr
om

B
ac
ill
us

st
ea
ro
th
er
m
op
hi
l-

us
SB

1

H
ex
an
e

97
%

(6
h)

50
B
ra
do
o
et
al
.1
99
9

M
et
hy
lp

al
m
ita
te

L
ip
as
e
fr
om

B
ur
kh
ol
de
ri
a

m
ul
tiv
or
as

So
lv
en
t-
fr
ee

(u
nd
er

m
ic
ro
w
av
e

ir
ra
di
at
io
n)

83
%

(4
0
m
in
)

80
K
id
w
ai
et
al
.2
00
9

E
th
yl

pa
lm

ita
te

L
ip
oz
ym

e
T
L
IM

t-
B
ut
an
ol

20
%

(1
20

h)
40

R
ey
es
-D

ua
rt
e
et
al
.2
01
1

6522 Appl Microbiol Biotechnol (2016) 100:6519–6543



T
ab

le
1

(c
on
tin

ue
d)

Pr
od
uc
t

D
on
or

A
cc
ep
to
r

E
nz
ym

e
S
ol
ve
nt

sy
st
em

Y
ie
ld

(t
im

e)
T (°
C
)

R
ef
er
en
ce

V
in
yl

pa
lm

ita
te

10
0
%

(1
20

h)
T
ri
pa
lm

iti
n

50
%

(1
40

h)
L
-A

sc
or
by
lo

le
at
e

O
le
ic
ac
id

L
-A

sc
or
bi
c
ac
id

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

82
%

(5
2
h)

65
V
ik
lu
nd

et
al
.2
00
3

M
et
hy
lo

le
at
e

L
ip
oz
ym

e
T
L
IM

t-
B
ut
an
ol

50
%

(−
)

60
R
ey
es
-D

ua
rt
e
et
al
.2
01
1

T
ri
ol
ei
n

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

84
%

(1
40

h)
40

M
or
en
o-
Pe
re
z
et
al
.2
01
3

O
liv
e
oi
l

N
ov
oz
ym

e
43
5-
PE

I
85

%
(4
8
h)

45
C
on
ju
ga
te
d
lin

ol
eo
yl

as
co
rb
at
es

C
9t
11
C
L
A

L
-A

sc
or
bi
c
ac
id

C
hi
ra
zy
m
e
L
-2

C
3

A
ce
to
ne

~8
0
%

(~
48

h)
50

W
at
an
ab
e
et
al
.2
00
8

L
-A

sc
or
by
lb

en
zo
at
e

B
en
zo
ic
ac
id

L
-A

sc
or
bi
c
ac
id

N
ov
oz
ym

43
5

C
yc
lo
he
xa
no
ne

47
.7
%

(4
8)

66
.6

L
v
et
al
.2
00
8

L
-A

sc
or
by
la
ce
ta
te

V
in
yl

ac
et
at
e

L
-A

sc
or
bi
c
ac
id

L
ip
oz
ym

e
T
L
IM

A
ce
to
ne

99
%

(4
)

40
Z
ha
ng

et
al
.2
01
2

V
ita
m
in

E
su
cc
in
at
e

Su
cc
in
ic
an
yd
ri
de

R
ac
-a
ll-
α
-

to
co
ph
er
ol

Su
cc
in
yl
-N

ov
oz
ym

43
5

D
M
SO

:t-
bu
ta
no
l

94
.4
%

(4
8
h)

40
Y
in

et
al
.2
01
1

V
ita
m
in

E
ac
et
at
e

V
in
yl

ac
et
at
e

δ-
To

co
ph
er
ol

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

65
%

(1
6
da
ys
)

60
To

rr
es

et
al
.2
00
8b

α
-T
oc
op
he
ro
l

>
45

%
(1
6
da
ys
)

V
ita
m
in

E
fe
ru
la
te

E
th
yl

fe
ru
la
te

V
ita
m
in

E
N
ov
oz
ym

43
5

So
lv
en
t-
fr
ee

25
.2
%

(7
2
h)

60
X
in

et
al
.2
01
1

Su
ga
r
or

as
co
rb
yl

re
tin

yl
ad
ip
at
es

So
rb
ito
l/f
ru
ct
os
e/
gl
uc
os
e/

sa
cc
ha
ro
se
/m

al
to
se
/a
sc
or
bi
c
ac
id

R
et
in
yl

ad
ip
at
e

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

22
–8
0
%

(4
5
h)

40
R
ej
as
se

et
al
.2
00
3

V
ita
m
in

A
la
ct
at
e

L
ac
tic

ac
id

V
ita
m
in

A
ac
et
at
e

Im
m
ob
ili
ze
d
lip
as
e

fr
om

C
.

an
ta
rc
tic
a

H
ex
an
e

32
%

(7
h)

30
L
iu

et
al
.2
01
2

M
et
hy
ll
ac
ta
te

R
et
in
ol

L
ip
oz
ym

e
86

%
(5
0
h)

55
M
au
ga
rd

an
d
L
eg
oy

20
00

V
ita
m
in

A
ol
ea
te

M
et
hy
lo

le
at
e

H
ex
an
e

90
%

(5
0
h)

O
le
ic
ac
id

R
et
in
yl

ac
et
at
e

Im
m
ob
ili
ze
d
lip
as
e

fr
om

C
.

an
ta
rc
tic
a

79
%

(7
h)

30
L
iu

et
al
.2
01
2

V
ita
m
in

A
sa
tu
ra
te
d
fa
tty

ac
id

es
te
rs
(C
6–
C
18
)

C
6–
C
18

sa
tu
ra
te
d
fa
tty

ac
id
s

H
ex
an
e

51
–8
2
%

(7
h)

V
ita
m
in

A
m
et
hy
l

su
cc
in
at
e

D
im

et
hy
ls
uc
ci
na
te

R
et
in
ol

L
ip
oz
ym

e
H
ex
an
e

77
%

(5
0
h)

55
M
au
ga
rd

an
d
L
eg
oy

20
00

E
xa
m
pl
es

of
fl
av
on
oi
d
de
ri
va
tiv

es
Q
ue
rc
et
in

de
ri
va
tiv
es

C
18
–C

12
fa
tty

ac
id
s

Is
oq
ue
rc
et
in

N
ov
oz
ym

43
5

A
ce
to
ne

or
ac
et
on
itr
ile

81
–9
8
%

(1
8–
24

h)
45
–

60

Z
ia
ul
la
h
20
13

E
th
yl

es
te
rs
of

C
4–
C
18

fa
tty

ac
id
s

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

38
–6
6
%

(7
2
h)

65
Sa
le
m

et
al
.2
01
0

C
in
na
m
ic
ac
id
s

N
ov
oz
ym

43
5

t-
B
ut
an
ol

17
–8
9
%

(7
da
ys
)

60
St
ev
en
so
n
et
al
.2
00
6

D
ib
en
zy
lm

al
on
at
e

L
ip
as
e
fr
om

C
.a
nt
ar
ct
ic
a

M
e 2
C
O
:p

yr
id
in
e

74
%

(1
2
da
ys
)

45
R
iv
a
19
96

V
in
yl

ac
et
at
e

PS
L
-C

II
A
ce
to
ne

84
%

(9
6
h)

50
C
h-

eb
il
et
al
.2
00
7

Q
ue
rc
et
in

10
0
%

(2
4
h)

Si
ly
bi
n
de
ri
va
tiv

es
D
iv
in
yl

es
te
r
of

de
ca
no
ic
ac
id

Si
ly
bi
n

N
ov
oz
ym

43
5

A
ce
to
ni
tr
ile

26
–6
6
%

(7
2
h)

45
V
av
ri
ko
va

et
al
.2
01
4

V
in
yl

bu
ta
no
at
e

N
ov
oz
ym

43
5

A
ce
to
ne

10
0
%

(2
4–
96

h)
50

T
he
od
os
io
u
et
al
.2
00
9

V
in
yl

ac
et
at
e

N
ov
oz
ym

43
5

A
ce
to
ne

92
%

(4
8
h)

35
G
az
ak

et
al
.2
01
0

E
sc
ul
in

de
ri
va
tiv

es
Fa
tty

ac
id
s,
di
ca
rb
ox
yl
ic
ac
id
s,
ot
he
r
cy
cl
ic
ac
id
s

E
sc
ul
in

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

13
–9
0
%

(1
2
h)

60
A
rd
ha
ou
ie
ta
l.
20
04
a

Pa
lm

iti
c
ac
id

N
ov
oz
ym

43
5

T
O
M
A
T
F2

N
>
96

%
(6

da
ys
)

60
L
ue

et
al
.2
01
0

V
in
yl

bu
ty
ra
te

N
ov
oz
ym

43
5

[B
m
im

]B
F6

90
.6
%

(7
2
h)

60
K
at
so
ur
a
et
al
.2
00
7

Ph
lo
ri
dz
in

de
ri
va
tiv

es
C
2–
C
18

fa
tty

ac
id
s

Ph
lo
ri
dz
in

N
ov
oz
ym

43
5

A
ce
to
ni
tr
ile

70
–9
0
%

(7
da
ys
)

65
M
ili
sa
vl
je
ci
c
et
al
.2
01
4

Appl Microbiol Biotechnol (2016) 100:6519–6543 6523



T
ab

le
1

(c
on
tin

ue
d)

Pr
od
uc
t

D
on
or

A
cc
ep
to
r

E
nz
ym

e
S
ol
ve
nt

sy
st
em

Y
ie
ld

(t
im

e)
T (°
C
)

R
ef
er
en
ce

E
th
yl

ci
nn
am

at
e

N
ov
oz
ym

43
5

So
lv
en
t-
fr
ee

10
0
%

(4
h)

80
E
na
ud

et
al
.2
00
4

H
es
pe
re
di
n
de
ri
va
tiv

es
D
ec
an
oi
c
ac
id

H
es
pe
ri
di
n

N
ov
oz
ym

43
5

[B
m
im

]B
F4

:
ac
et
on
e

53
.6
%

(9
6
h)

50
B
ra
nc
o
de

A
ra
uj
o
et
al
.

20
11

Pa
lm

iti
c
ac
id

N
ov
oz
ym

SP
43
5

t-
A
m
yl

al
co
ho
l

U
p
to

40
%

(1
2
h)

60
A
rd
ha
ou
ie
ta
l.
20
04
b

V
in
yl

ac
et
at
e

H
es
pe
re
tin

PS
L
-C

II
A
ce
to
ni
tr
ile

30
%

(9
6
h)

50
C
he
bi
le
ta
l.
20
07

R
ut
in

de
ri
va
tiv

es
C
4–
C
18

fa
tty

ac
id
s

R
ut
in

C
A
L
B

t-
A
m
yl

al
co
ho
l

27
–6
2
%

(1
68

h)
60

V
is
ku
pi
co
va

et
al
.2
01
0

E
th
yl

lin
ol
ea
te

N
ov
oz
ym

43
5

A
ce
to
ne

50
%

(9
6
h)

50
M
el
lo
u
et
al
.2

00
6

M
et
hy
lp

al
m
ita
te

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

30
%

(4
8
h)

60
Pa
ss
ic
os

et
al
.2
00
4

V
in
yl

es
te
rs
of

fa
tty

ac
id
s

N
ov
oz
ym

43
5

[B
m
im

]B
F4

15
–6
5
%

(9
6
h)

60
K
at
so
ur
a
et
al
.2
00
6

D
ic
ar
bo
xy
lic

ac
id
s,
fa
tty

ac
id
s,

ot
he
r
cy
cl
ic
ac
id
s

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

10
–9
0
%

(−
)

60
A
rd
ha
ou
ie
ta
l.
20
04
a

D
iv
in
yl

di
ca
rb
ox
yl
at
e

N
ov
oz
ym

43
5

t-
B
ut
an
ol

36
%

(4
da
ys
)

50
X
ia
o
et
al
.2
00
5

D
ib
en
zy
lm

al
on
at
e

L
ip
as
e
fr
om

C
.a
nt
ar
ct
ic
a

M
e2
C
O
:p
yr
id
in
e

79
%

(1
2
h)

45
R
iv
a
19
96

V
in
yl

ci
nn
am

at
e

C
hi
ra
zy
m
e
L
-2

A
ce
to
ne

28
%

(1
4
h)

37
Is
hi
ha
ra

et
al
.2
00
2

N
ar
in
gi
n
de
ri
va
tiv

es
α
-L
in
ol
en
ic
ac
id
,l
in
ol
ei
c,
ol
ei
c
ac
id

N
ar
in
gi
n

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

83
.2
–9
0.
1
%

(7
2
h)

(a
ss
is
te
d

by
ul
tr
as
ou
nd

ir
ra
di
at
io
n)

50
Z
he
ng

et
al
.2
01
3

St
ea
ri
c
ac
id

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

46
%

(2
4
h)

60
D
ua
n
et
al
.2
00
6

V
in
yl

bu
ty
ra
te

N
ov
oz
ym

43
5

[B
m
im

]B
F 4

86
.9
%

(1
00

h)
60

K
at
so
ur
a
et
al
.2
00
7

M
et
hy
lp

al
m
ita
te

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

92
%

(4
8
h)

60
Pa
ss
ic
os

et
al
.2
00
4

C
10
–C

12
vi
ny
le
st
er
s
of

sa
tu
ra
te
d
fa
tty

ac
id
s

N
ov
oz
ym

43
5

A
ce
to
ne

22
–7
0
%

(9
6
h)

50
M
el
lo
u
et
al
.2
00
5

PU
FA

fr
om

by
fi
sh

pr
od
uc
ts

N
ov
oz
ym

43
5

t-
A
m
yl

al
co
ho
l

30
%

(9
6
h)

50
M
ba
tia

et
al
.2
01
1

V
in
yl

la
ur
at
e

L
ip
oz
ym

e
IM

T
L

t-
A
m
yl

al
co
ho
l

90
%

(3
0
m
in
)

52
L
uo

et
al
.2
01
3

L
au
ri
c
ac
id

C
hi
ra
zy
m
e
L
-2

C
2

A
ce
to
ni
tr
ile

~4
5
%

(~
30

h)
60

W
at
an
ab
e
et
al
.2
00
9

R
ic
in
ol
ei
c
ac
id

Im
m
ob
ili
ze
d
lip
as
e

fr
om

C
.

an
ta
rc
tic
a

A
ce
to
ne

24
%

(1
20

h)
50

A
lm

ei
da

et
al
.2
01
2

C
as
to
r
oi
l

33
%

(1
20

h)

V
in
yl

ci
nn
am

at
e

C
hi
ra
zy
m
e
L
-2

A
ce
to
ne

64
%

(1
4
da
ys
)

37
Is
hi
ha
ra

et
al
.2
00
2

D
ib
en
zy
lm

al
on
at
e

L
ip
as
e
fr
om

C
.a
nt
ar
ct
ic
a

A
ce
to
ne
:

py
ri
di
ne

69
%

(1
2
da
ys
)

45
R
iv
a
19
96

V
in
yl

ac
et
at
e

N
ar
in
ge
ni
n

PS
L
-C

II
A
ce
to
ni
tr
ile

10
0
%

(9
6
h)

50
C
he
bi
le
ta
l.
20
07

E
xa
m
pl
es

of
hy
dr
ox
yc
in
na
m
ic
ac
id

de
ri
va
tiv
es

Fe
ru
lo
yl
at
ed

lip
id
s

Fe
ru
lic

ac
id

G
ly
ce
ro
l

C
hi
ra
zy
m
e
L
2
C
-2

So
lv
en
t-
fr
ee

80
%

(>
3
h)

80
M
at
su
o
et
al
.2
00
8

T
ri
lin

ol
en
in

N
ov
oz
ym

43
5

H
ex
an
e:
2-

bu
ta
no
ne

14
%

(5
da
ys
)

55
Sa
ba
lly

et
al
.2
00
6

Fl
ax
se
ed

oi
l

N
ov
oz
ym

43
5

SC
C
O
2
m
ed
iu
m

57
.6
%

(2
7.
5
h)

80
C
if
tc
ia
nd

Sa
ld
an
a
20
12

E
th
yl

fe
ru
la
te

O
le
yl

al
co
ho
l

N
ov
oz
ym

43
5

H
ex
an
e

99
.1
7
%

(4
da
ys
)

60
C
he
n
et
al
.2

01
1b

T
ri
ol
ei
n

N
ov
oz
ym

43
5

To
lu
en
e

77
%

(1
44

h)
60

C
om

pt
on

et
al
.2
00
0

O
liv

e
oi
l

N
ov
oz
ym

43
5

2M
2B

:t
ol
ue
ne

59
.6
%

(2
.3
4
h)

60
R
ad
zi
et
al
.2
01
4

T
ri
bu
ty
ri
n

N
ov
oz
ym

43
5

So
lv
en
t-
fr
ee

94
.2
%

(1
20

h)
50

Z
he
ng

et
al
.2
00
8

M
on
os
te
ar
in

N
ov
oz
ym

43
5

E
th
an
ol

97
.8
%

(2
3
h)

74
Su

n
et
al
.2
01
3a
,b

So
yb
ea
n
oi
l

N
ov
oz
ym

43
5

G
ly
ce
ro
l

70
%

(1
40

h)
60

L
as
zl
o
an
d
C
om

pt
on

20
06

Fi
sh

oi
l

N
ov
oz
ym

43
5

To
lu
en
e

80
.4
%

(5
da
ys
)

70
Y
an
g
et
al
.2

01
2

Ph
os
ph
at
id
yl
ch
ol
in
e

N
ov
oz
ym

43
5

C
hl
or
of
or
m

40
.5
1
%

(4
da
ys
)

55
Y
an
g
et
al
.2

01
3

G
ly
ce
ro
l

N
ov
oz
ym

43
5

E
M
IM

T
F2

N
10
0
%

(1
2
h)

70
Su

n
et
al
.2
01
3a
,b

O
le
ic
ac
id

N
ov
oz
ym

43
5

So
lv
en
t-
fr
ee

96
%

(1
.3
3
h)

60
Su

n
et
al
.2
00
7

6524 Appl Microbiol Biotechnol (2016) 100:6519–6543



T
ab

le
1

(c
on
tin

ue
d)

Pr
od
uc
t

D
on
or

A
cc
ep
to
r

E
nz
ym

e
S
ol
ve
nt

sy
st
em

Y
ie
ld

(t
im

e)
T (°
C
)

R
ef
er
en
ce

G
ly
ce
ry
lf
er
ul
at
e

O
le
ic
ac
id

N
ov
oz
ym

43
5

[B
m
im

]P
F6

10
0
%

(3
h)

80
Su

n
et
al
.2
00
9

V
in
yl

fe
ru
la
te

T
ri
ol
ei
n

N
ov
oz
ym

43
5

So
lv
en
t-
fr
ee

91
.9
%

(6
2
h)

55
Y
u
et
al
.2
01
0

M
et
hy
lc
af
fe
at
e

C
af
fe
ic
ac
id

M
et
ha
no
l

N
ov
oz
ym

43
5

[B
m
im

][
T
f 2
N
]

99
.7
9
%

(9
h)

75
W
an
g
et
al
.2
01
5

Pr
op
yl

ca
ff
ea
te

M
et
hy
lc
af
fe
at
e

1-
Pr
op
an
ol

N
ov
oz
ym

43
5

[B
m
im

][
C
F
3
SO

3
]

99
.5
%

(2
.5
h)

60
W
an
g
et
al
.2
01
3

Si
to
st
er
yl

hy
dr
ox
yc
in
na
m
at
es

V
in
yl

fe
ru
la
te
/c
af
fe
at
e/
si
na
pa
te

Si
to
st
er
ol

L
ip
as
e
ty
pe

V
II
fr
om

C
an
di
da

ru
go
sa

H
ex
an
e:
2-

bu
ta
no
ne

30
–9
0
%

(−
)

45
Ta
n
an
d
Sh

ah
id
i2
01
1;
Ta
n

an
d
Sh

ah
id
i2

01
2;

Ta
n

an
d
Sh

ah
id
i2

01
3

E
xa
m
pl
es

of
ga
llo

yl
de
ri
va
tiv
es

Pr
op
yl

ga
lla
te

G
al
lic

ac
id

1-
Pr
op
an
ol

Im
m
ob
ili
ze
d
lip
as
e

fr
om

St
ap
hy
lo
co
cc
us

xy
lo
su
s

H
ex
an
e

90
%

(6
h)

52
B
ou
az
iz
et
al
.2
01
0

M
on
o-
,d
i-
,a
nd

tr
i-
ac
et
y-

la
te
d
E
G
C
G

V
in
yl

ac
et
at
e

E
G
C
G

L
ip
oz
ym

e
R
M

IM
A
ce
to
ni
tr
ile

87
.3
7
%

(1
.1
3
h)

40
Z
hu

et
al
.2
01
4

C
at
ec
hi
n
5-
O
an
d
7-
O

ac
et
at
e

V
in
yl

ac
et
at
e

C
at
ec
hi
n

PC
L

A
ce
to
ni
tr
ile

70
%

(4
8
h)

45
L
am

bu
st
a
et
al
.1
99
3

N
ov
oz
ym

43
5:

lip
as
e
B
fr
om

C
an
di
da

an
ta
rc
tic
a
im

m
ob
ili
ze
d
on

a
m
ac
ro
po
ro
us

ac
ry
lic

re
si
n
(C
A
L
B
);
lip

oz
ym

e
IM

20
/li
po
zy
m
e
R
M

IM
:l
ip
as
e
fr
om

R
hi
zo
m
uc
or

m
ie
he
ii
m
m
ob
ili
ze
d
on

du
ol
ite

an
io
n

ex
ch
an
ge

re
si
on
;l
ip
oz
ym

e
T
L
IM

:l
ip
as
e
fr
om

Th
er
m
om

yc
es

la
ni
gi
no
su
s
im

m
ob
ili
ze
d
on

si
lic
a
gr
an
ul
at
io
n;
am

an
o
G
:l
ip
as
e
fr
om

P
en
ic
ill
um

ca
m
em

be
rt
i;
C
N
Ts
-C

6
-N

H
2
-C
aL

B
,C

N
Ts
-C

11
-C
H
3
-C
A
L
-B
:

no
vo
zy
m

43
5
fu
nc
tio

na
liz
ed

w
ith

va
ri
ou
s
m
ul
ti-
w
al
le
d
ca
rb
on

na
no
tu
be

gr
ou
ps
;c
hi
ra
zy
m
e
L
-2
:i
m
m
ob
ili
ze
d
lip

as
e
B
fr
om

C
.A

nt
ar
ct
ic
a;

su
cc
in
yl
-n
ov
oz
ym

43
5:

no
vo
zy
m

43
5
m
od
if
ie
d
w
ith

su
cc
in
ic

an
hy
dr
id
e;
PS

L
-C

II
,P

C
L
:l
ip
as
e
fr
om

P
se
ud
om

on
as

ce
pa
ci
a

Appl Microbiol Biotechnol (2016) 100:6519–6543 6525



hyperpigmentation, and skin wrinkling. Its primary use in
cosmetics is as a skin whitening agent but there are concerns
regarding its skin compatibility, oil solubility, and storage sta-
bility even at ordinary temperatures. Additionally, there is
evidence of toxicity, irritancy, and carcinogenicity (Lajis
et al. 2012). The first attempts on the enzymatic modification
of kojic acid focused on the synthesis of kojic acid glycosides
using a sucrose phosphorylase from Leuconostoc
mesenteroides, an α-amylase from Bacillus subtilis and an
immobilized β-galactosidase from Bacillus circulans
(Nishimura et al. 1994; Kitao and Serine 1994; Hassan et al.
1995). However, many lipophilic derivatives such as saturated
fatty (C6-C18) acid esters and the unsaturated kojic acid
monoricinolate and monooleate have been synthesized by
commercial lipases (Liu and Shaw 1998; Lajis et al. 2013;
Khamaruddin et al. 2008; El-Boulifi et al. 2014; Ashari et al.
2009). A phospholipase from Streptomyces sp. has synthe-
sized phosphatidylkojic acid at 60 % yield from a
dipalmitoylphosphatidyl residue (Takami et al. 1994). Kojic
acid has two OH– groups, the primary at C-7 and the second-
ary one at C-5 which is essential to the radical scavenging and
tyrosinase interference activity. Many derivatives have been
synthesized by modifying the 5-OH group; nevertheless,
CALB showed moderate yield (53 %) synthesizing a laurate
product esterified at the primary C-7 (Kobayashi et al. 2001;
Chen et al. 2002).

Lipoic acid derivatives

α-Lipoic acid is a dithiol compound containing two sulfur
atoms at the C-6 and C-8 carbons connected by a disulfide
bond. It takes part in the anti-oxidant defense system of the
cell through its ability to scavenge free radicals both in lipid
and aqueous environments. This amphiphilicity constitutes it
an ideal candidate for use in both oil- and water-based formu-
lations. Moreover, it participates in the regeneration of anti-
oxidants (i.e., vitamic C, vitamin E) and in the de novo syn-
thesis of endogenous anti-oxidants (i.e., glutathione) and
shows metal ion chelating activity, while it can repair oxida-
tive damage in macromolecules (Papadopoulou et al. 2013).
Other attractive properties include anti-inflammatory activity,
aid in the treatment of diseases such as diabetes, atherosclero-
sis, cardiovascular, heavy-metal poisoning, radiation damage,
cancer, Alzheimer’s, and AIDS (Maczurek et al. 2008).
Synthesis of lipoic acid phenolic derivatives by CALB
showed that a prior aromatic hydroxylation of the donor of-
fered higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical
scavenging activity to the products. The hydroxytyrosol ester
of lipoic acid showed similar anti-oxidant activity to α-
tocopherol but higher than the commercial butylated hydroxy-
toluene (BHT) (Kaki et al. 2012). Lipoic acid is found in a
racemic mixture, where the (R)-enantiomer is much more ac-
tive than the (S)-enantiomer. Only lipases from Candida

rugosa and Aspergillus oryzae (whole cell) have been reported
to enable kinetic resolution of racemicα-lipoic acid (Yan et al.
2009; Fadnavis et al. 1998).

Hydroquinone derivatives

Hydroquinone, a phenolic compound with two –OH groups at
the para positions of the benzene ring, has been commercially
used in cosmetics at concentrations <1 % as an anti-oxidant,
fragrance, reducing agent, or polymerization inhibitor
(Andersen et al. 2010). Its most promising use is as a skin
whitening agent; however, it is prone to cause irritations and
dermatitis (Kang et al. 2009). Its glycosylated derivative,
arbutin, has attracted attention as a better tyrosinase inhibitor
when compared to conventional agents as it inhibits melano-
genesis without causing melanocytotoxicity (Sugimoto et al.
2005). It also plays an important role in scavenging free rad-
icals, as an anti-inflammatory, and an anti-microbial agent
(Lee and Kim 2012). Αrbutin has two isomers (α- and β-).
The first is synthesized by chemical or enzymatic methods and
shows higher efficiency and stability while the latter is extract-
ed from natural sources such as bearberry, cranberry, blueber-
ry, and pears (Seo et al. 2012a).α-Arbutin possesses a 10-fold
stronger inhibitory effect on the activity of tyrosinase from
human malignant melanoma cells compared to its anomer,
whereas β-arbutin reduces tyrosinase activities from mush-
room and mouse melanoma (Seo et al. 2012b). α-Arbutin
shows extremely increased browning resistance to light irra-
diation compared to hydroquinone (Kitao and Sekine 1994).
Lipases have been used for the acylation of β-arbutin with
aromatic or fatty acids showing absolute regioselectivity at
the 6′ position. This phenomenon can be attributed to the
hypothesis that the primary OH– group of the sugar moiety
is less hindered so it can enter more easily into the active site
of the lipase and attach the acyl-enzyme intermediate. Studies
on immobilized lipase from Penicillium expansum showed
that the elongation of the donor chain length (C2–C8) results
in higher initial yields perhaps due to stronger interactions
with the hydrophobic acyl binding site of the enzyme.
Branched-chain acyl donors affect negatively the initial rate
due to steric strain while the presence of a conjugated C–C
double bond adjacent to the carbonyl moiety decreases the rate
substantially (Yang et al. 2010a). The radical scavenging ac-
tivity of acyl (C6–C18) arbutin is independent of the chain
length (Nagai et al. 2009). Fatty acid derivatives of arbutin
show higher anti-melanogenesis and anti-oxidant activity than
arbutin which could be allied to the improved membrane pen-
etration, due to increased lipophilicity (Watanabe et al. 2009).
Synthesized by CALB, arbutin ferulate was found to have
19 % higher activity against the 2,2′-azino-bis(3-ethylbenzo-
thiazoline-6-sulphonic acid (ABTS) free radical than ferulic
acid and be 10 % more efficient towards low-density lipopro-
tein (LDL), showing higher anti-oxidant than Trolox, a well-
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known analog of vitamin E and commercial anti-oxidant
(Chigorimbo-Murefu et al. 2009).

Vitamin derivatives

L-Ascorbic acid (vitamin C) is a potent water-soluble natural
anti-oxidant that has been used in cosmetics as a preservative,
pH adjuster, or/and an active compound. It has been proved
that ascorbates promote collagen synthesis in human skin fi-
broblasts in vitro up to eightfold capacity, while they show
photoprotective activity against UVA and UVB irradiation
and have wound healing properties (Murad et al. 1981).
Drawbacks as instability, poor liposolubility, and low skin
penetrability have led to modifications. Common saturated
fatty acid derivatives, as ascorbyl palmitate and ascorbyl stea-
rate, have been synthesized showing that there is no negative
effect on the radical scavenging activity by introducing a sat-
urated group at the C-6 position of ascorbic acid (Watanabe
et al. 2003). Enzymatic synthesis of ascorbyl palmitate is fo-
cused on the esterification of palmitic acid with a vast use of
CALB in organic solvents or ionic liquids. Other commercial
lipases have been employed offering varying yields (6–97 %)
(Gulati et al. 1999; Costa et al. 2014; Park et al. 2003; Hsieh
et al. 2006, Bradoo et al. 1999). However, saturated fatty acid
esters still show moderate solubility in oils. Further improve-
ment can be done by introducing a double bond in the fatty
acid, resulting in superior products in terms of solubility and
radical scavenging capacity. For instance, oleic acid is readily
available and inexpensive (Viklund et al. 2003). There are
reports on esterification of olive oil, palm oil, or lard offering
a simple, direct, and natural route for synthesis (Moreno-Perez
et al. 2013; Zhao et al. 2014; Burham et al. 2009).
Derivatization of L-ascorbic acid requires mild conditions to
prevent oxidation of both acid and its esters and high regiose-
lectivity for the 6-O-position which is achieved by lipases
(Zhang et al. 2012). However, the demand of polar solvents
for enhancing substrate solubility tends to be deleterious for
their stability. Coating is an effective way to protect
immobilized lipases from denaturation reducing the interac-
tions with the solvent (Moreno-Perez et al. 2013). The use of
vinyl ester donors increases the reaction rate, but implies the
release of fatty acids from oils and their further activation. For
instance, CALB offered 100 % conversion of vinyl palmitate
in t-butanol (Reyes-Duarte et al. 2011). When methyl esters
are used, the by-product methanol is insoluble in oils, gets
adsorbed onto the surface of the immobilized lipase, and leads
to negative effects on enzyme activity and operational
stability.

Vitamin E is a general term for a group of amphiphilic
lipids, comprising of four tocopherols, having a saturated
phytyl side chain attached to the chromanol core and four
tocotrienols having an attached unsaturated isoprenoid side
chain. The analogs differ with each other by the presence

and placement of methyl groups around the aromatic ring. In
nature, vitamin E occurs only in the RRR-form, while RRR-α-
tocopherol is the most bioactive. Synthetic vitamin E (α-
tocopherol) is a racemic mixture of eight stereoisomers in
equal amounts (all-rac-α), of which not all are as bioactive
as the natural form (Torres et al. 2008a). Vitamin E is non-
irritant to the eyes and skin, has high anti-oxidant activity with
anti-aging and anti-tumor potential, inhibits the UVB-induced
lipid peroxidation, and shows skin-improving properties with
anti-inflammatory and beneficial effect on the skin barrier
function (Zondlo Fiume 2002). However, it is readily
destabilized by light and oxygen. Non-enantioselective acety-
lation of vitamin E at the C-6 carbon has been performed only
by CALB among other tested enzymes which can be ex-
plained by studies that show that the acceptor binding site is
deeper in lipase B (Torres et al. 2008b; Pleiss et al. 1998). δ-
Tocopherol gave higher rates due to its lower methylation
degree, while competitive acetylation experiments indicated
that there is steric hindrance caused by the aliphatic chain and
not the chromanol ring. Vitamin E succinate has been synthe-
sized by modified CALB yielding 94 % and by a lipase from
C. rugosa with moderate yields (Yin et al. 2011; Jiang et al.
2013). Synthesized at lower yields (25.2 %) by CALB, novel
vitamin E ferulate inhibits melanogenesis in humanmelanoma
cells, being an attractive candidate as a skin-whitening agent
(Xin et al. 2011).

VitaminA includes a group of unsaturated compounds, i.e.,
retinol, retinoic acid, and retinaldehyde, which are widely
used in cosmetic and skin care products because of their an-
ti-oxidant, anti-aging, and skin-whitening properties. Retinol
is the most active form of vitamin A; however, retinoids are
readily oxidized in air and inactivated by UV light while they
are water-insoluble and skin-irritating (Maugard and Legoy
2000). The most common modification of retinol is retinyl
palmitate, which is stable, slightly irritating, and not sensitiz-
ing at concentrations between 0.1 and 1 % (CIR 1987). It has
been synthesized by the esterification of palmitic acid using
CALB, a lipase from Candida sp. and a modified lipase from
Pseudomonas fluorescens (Ajima et al. 1986; Yin et al. 2006;
Liu et al. 2012). Other vitamin A modifications include satu-
rated fatty acid esters, oleate, lactate, and succinate/
methylsuccinate derivatives catalyzed by CALB or
Rhizomucor miehei lipase (Maugard and Legoy 2000; Liu
et al. 2012). Rejasse et al. (2003) proposed a vitamin A
inter-esterification reaction using CALB. The first step includ-
ed esterification of adipic acid with retinol in t-amyl alcohol,
while after 24 h, a polyol was added resulting in products with
varying yields (22–80 %).

Flavonoid derivatives

Aglycon and glycosylated flavonoids are natural compounds
of plant origin that have aroused interest for their anti-viral,
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anti-allergic, anti-inflammatory, anti-oxidant activities, and
the protection against cardiovascular diseases and cancer
(Salas et al. 2011). Their basic structure is derived from 2-
phenylbenzo-γ-pyran, where the original skeleton is substitut-
ed with numerous OH– groups that result in a considerably
hydrophilic nature. The effect of acyl donors on esculin and
rutin modification byCALB has been studied inmicroreactors
offering conversion rates higher than 9.5 10−2 mmol
L−1 h−1(Ardhaoui et al. 2004a). Naringin esterification in a
continuous flow microreactor offered more than 85 % conver-
sion to 6-O″-monoesters. Regioselective acylation in
microreactors offers mild reaction conditions, short reaction
times, and high yields (Luo et al. 2013). Vinyl esters of satu-
rated fatty acids are more reactive giving approximately a
threefold increase in the conversion of naringin (Mellou
et al. 2005). The enzymatic acylation of two isolated
chrysoeriol glucosides by CALB resulted in products with
higher anti-oxidant and anti-microbial activity against Gram-
negative and Gram-positive bacteria that can be attributed to
the increased interaction of the hydrophobic chain with the
cell membrane due to modified lipophilicity. Irilone, chrysin,
and dihydromyricetin acetate have been synthesized by
Pseudomonas (syn Burkholderia) cepacia lipases and an
immobilized lipase from P. expansum (Nazir et al. 2009;
Chebil et al. 2007; Li et al. 2015). Orientin, vitexin, salicin
fatty acid esters, and helicin butyrate have been synthesized by
CALB (Liu et al. 2015; Katsoura et al. 2007). Silibyn, which
occurs in nature as an equimolar mixture of two diastereoiso-
mers (A and B) with different biological activities, has been
acylated by CALB at the C-23 position producing new anti-
viral and anti-tumor compounds (Gazak et al. 2010).
Modification (e.g., methylation) of the C-7 OH which bears
a pro-oxidant potential significantly improves the anti-radical
activity of silybin.

The nature of flavonoid and the origin of lipase are crucial
for product formation. Generally, flavonoids with a primary
OH– group on the glycosyl moiety as naringin are more reac-
tive than those with secondary OH– groups only, as rutin.
Chebil et al. (2007) showed that isoquercetrin, the glycosylat-
ed form of quercetin, could be acylated by both CALB and
P. cepacia lipase (PSL) although only the latter could acylate
quercetin. In the absence of the 4′-OH group of quercetin
(hesperetin), PSL showed preference for the 7-OH group,
followed by the 3′-OH group which can be explained by steric
hindrance from the C-4′methoxy group. Chrysin was acylated
only at the 7-OH group since the 5-OH group is not reactive
when a 4-oxo group is present in the structure of the flavonoid.
Molecular modeling regarding the regioselectivity of CALB
showed that the aglycon part of both rutin and isoquercitrin
was localized at the entrance of the enzyme’s binding pocket
stabilized by hydrogen bond and hydrophobic interactions (de
Oliveira et al. 2009). The sugar part was placed close to the
pocket bottom. Only the primary 6′-OH group of isoquercitrin

glucose and the secondary 4″-OH group of rutin rhamnose
were expected to be acetylated as they were the only ones to
stabilize simultaneously near the catalytic histidine and the
acetate bound to the catalytic serine. CALB synthesized
monoesters on the primary OH of glucose moiety of esculin
and on the secondary 4″′-OH of the rhamnose residue of rutin
(Ardhaoui et al. 2004b). Acylation of quercetin was not
achieved as the 4′-OH is conjugated with the C-4 carbonyl
group favoring a planar formation of the molecule, which
may not be suitable for the catalytic site of the enzyme
(Nazir et al. 2009).

Hydroxycinnamic acid derivatives

Hydroxycinnamic acids (HCAs; ferulic, FA; p-coumaric,
p-CA; caffeic , CA; sinapic, SA) are a class of
phenylpropanoids known as more active anti-oxidants
than hydroxybenzoic acids due to the presence of the
C=COOH group (Widjaja et al. 2008). They are ubiqui-
tous in nature as a component of arabinoxylans in plant
cell walls offering linkage with lignin while they present
broad spectrum of biological activities including anti-bac-
terial, anti-viral, anti-inflammatory, anti-carcinogenic, an-
ti-HIV, and anti-tumor effects (Tan and Shahidi 2012).
However, their solubility is poor in hydrophilic and lipo-
philic media. Among many natural photoprotective
agents, feruloylated lipids have gained attention due to
their strong anti-oxidant, skin-whitening, anti-wrinkling,
and UV absorptive ability (Radzi et al. 2014). FA is be-
lieved to suppress melanin generation by antagonizing
tyrosine because its structure is similar to tyrosine
(Chandel et al. 2011). Enzymatic synthesis of green sun-
screens offers stability and selectivity in contrast with
chemical synthesis that is limited due to heat sensitivity
and oxidation susceptibility of FA in alkaline media. A
two-step synthesis of feruloylated diacylglycerols using
CALB has been proposed by Sun et al. (2007) including
the transesterification of ethyl ferulate with glycerol and
the subsequent transesterification of glyceryl ferulate with
oleic acid offering high yield of products (up to 96 %).
Esterification of FA to glyceryl ferulate by CALB has
been performed in a continuous reactor reaching 80 %
conversion and productivity of 430 kg/m3/reactor day
(Matsuo et al. 2008). Biocatalysis under vacuum-rotary
evaporation contributes to increased conversion by elimi-
nating external mass transfer resistance, effective interac-
tion among different phases of enzymatic reaction, mini-
mizing the negative effects of by-product ethanol (when
ethyl ferulate is used as donor) on lipase activity (Xin
et al. 2009). 1,3-Diferuloyl-sn-glycerol has been synthe-
sized by CALB in a pilot plant scale bed reactor as by-
product of the transesterification of ethyl ferulate with
soybean oil (Compton and Laszlo 2009). One hundred
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twenty kilograms of diferuloyl glycerol by-product could
be isolated annually. Enzymatic esterification of olive,
flaxseed, and fish oil offers low cost and greener config-
urations to the process (Ciftci and Saldana 2012; Yang
et al. 2012; Radzi et al. 2014). Transesterification of ethyl
ferulate with castor oil, catalyzed by CALB, yielded
62.6 % lipophilic and 37.3 % hydrophilic products (Sun
et al. 2014). Esterification of FA with fatty (C2–C8) alco-
hols improves the anti-oxidant capacity towards the oxi-
dation of HDL, LDL, and total serum. Probably, the lipo-
philic properties of anti-oxidants affect their incorporation
into the lipid part of lipoproteins reaching the site of
lipoperoxidation, accounting for the increased anti-
oxidant activity (Jakovetic et al. 2013).

Transesterification of methyl caffeate to propyl caffeate by
CALB was performed in a continuous flow packed bed
microreactor offering 99.5 % yield. The calculated kinetic
constant Km was 16 times lower than than of a batch reactor
(Wang et al. 2013). Caffeic acid phenethyl ester (CAPE) is a
flavonoid-like compound and one of the major components of
honeybee propolis possessing anti-inflammatory, anti-carci-
nogenic, and neuroprotective properties (Widjaja et al.
2008). High yield CAPE synthesis has been performed by
CALB in a packed bed reactor, using ultrasound treatment
or in one-pot reactions using organic solvents or ionic liquids
(Chen et al. 2010, 2011a; Ha et al. 2012; Wang et al. 2014).
One-pot synthesis of a CAPE analog, 3-cyclohexyl caffeate,
has been performed by esterification of caffeoylquinic acids
derived from coffee beans with methanol using a chlorogenate
hydrolase followed by the transesterification of methyl
caffeate with 3-cyclohecylpropyl caffeate using CALB in
[Bmim][NTf2] (Kurata et al. 2011). Synthesized by a C.
rugosa lipase, phytosteryl caffeate showed twofold increase
in oxygen radical absorbance capacity (ORAC) comparing to
the parent vinyl HCA, while phytosteryl ferulate showed a 10-
fold increased anti-oxidant activity compared to Trolox and a
twofold increase comparing to vinyl ferulate (Tan and Shahidi
2011, 2012). Chigorimbo-Murefu et al. (2009) synthesized
arbutin and hydroxyl steroid esters of FA in t-methyl-ethyl
ether showing higher anti-oxidant activity than Trolox and
their starting hydroxycinnamate. Arbutin ferulate possessed
19 % higher anti-radical activity against ABTS free radical
than FA and inhibited 10 % more efficiently LDL oxidation
than its precursors.

Although FAEs are less stable in organic media and low
water content than lipases, they show higher substrate speci-
ficity (Zeuner et al. 2011). Some examples of FAE-catalyzed
reactions are presented in Table 2. In 2001, Giuliani et al.
succeeded for the first time the synthesis of 1-pentyl-ferulate
using a FAE from Aspergillus niger in a water-in-oil
microemulsions. Since then, novel FAEs from filamentous
fungi such as Fusarium oxysporum, Myceliophthora
thermophila (syn Sporotrichum thermophile), and

Talaromyces stipitatus have been employed in detergentless
microemulsions for the transesterification of methyl donors to
alkyl hydroxycinnamates , fe ruloyla ted-arabino-
oligosaccharides showing regioselectivity for the primary hy-
droxyl group of the non-reducing arabinofuranose ring and
other sugar ferulates (Topakas et al. 2003a; Vafiadi et al.
2005, 2006, 2007b, 2008a). Although esterification with fatty
alcohols generally results in more lipophilic products, the
glyceryl esters of HCAs have been proved more hydrophilic
than their donors. Fed-batch esterification of FA with
diglycerin was performed by a FAE from A. niger under re-
duced pressure yielding 69 % feruloyl and 21 % diferuloyl
diglycerols (Kikugawa et al. 2012). The major product (FA-
DG1) showed highest water solubility while all products
maintained their radical scavenging activity against DPPH
and their UV absorption properties. Diferuloyl diglycerols
showed a twofold increase of anti-oxidant activity comparing
to feruloyl diglycerols and FA. Esterification of SA and p-CA
with glycerol yielded 70 % glycerol sinapate and 60 % glyc-
erol-p-coumarate, respectively, with indication of the forma-
tion of minor dicinnamoyl glycerol esters (Tsuchiyama et al.
2007). The ability of glycerol sinapate to scavenge DPHH
radicals was higher than BHT while it maintained its UV ab-
sorption properties.

Galloyl derivatives

Tannins, natural occurring polyphenols that can be found in
pine and spruce bark, vegetables, and fruits, are categorized
into hydrolysable, condensed, and complex. The simplest hy-
drolysable tannins, commonly named gallotannins, consist of
gallic acid molecules esterified to a core polyol. The biocata-
lytic synthesis of gallic acid esters is performed mainly by
tannases and may follow different routes: (1) hydrolysis of
tannic acid into gallic acid and further esterification to galloyl
esters, (2) direct esterification of tannic acid into a galloyl
ester, or (3) transesterification of galloyl esters into another
ester. Examples of tannase-based reactions are presented in
Table 3. A well-known synthetic galloyl ester widely used in
skin cleaning/care products, make up, sunscreen, and tanning
products is propyl gallate. Its biological activities are not lim-
ited to the free-radical scavenging ability as it exhibits anti-
microbial, anti-nociceptive activity, ultraviolet (UV) radiation
protection, anti-cariogenesis, anti-mutagenesis, and anti-
carcinogenesis effects. However, in cosmetic formulations,
its concentration is low (up to 0.1 %) due to indications for
skin irritation or sensitization (CIR 2007). Applications of
propyl gallate expand into the food, pharmaceutical, adhesive,
lubricant, and biodiesel industry where it has been used as an
anti-oxidant additive, for more than 20 years (Zhang 2015).

The majority of tannases used for the synthesis of propyl
gallate are carrier-bound or modified. A mycelium-bound
tannase from A. niger esterified gallic acid at 65 % yield (Yu
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et al. 2007), whereas its microencapsulation by a chitosan-
alginate complex showed more moderate results (Yu and Li
2005). Mycelia could protect the enzyme from the harshness
of organic solvents as an immobilization matrix does and offer
avoidance of costly and time-consuming purifications.
Tannases from Aspergillus species, Lactobacillus plantarum,
and Emericella nidulans immobilized on different carriers,
catalyzed the esterification of tannic acid in organic and aque-
ous media offering high yields (43–88%) (Fernandez-Lorente
et al. 2011; Prasad et al. 2011; Nie et al. 2012a; Goncalves
et al. 2013). A bioimprinted commercial tannase esterified

tannic acid with propanol resulting in 50 % yield increase
compared to the non-imprinted enzyme. Bioimprinting locks
the enzyme into a favorable conformation for catalysis during
lyophilization through the addition of the targeted substrate
prior to freezing. Moreover, the ligand may impede the for-
mation of inactive Bmicroconformations^ in the active site
(Aithal and Belur 2013). Bioimprinting methods can activate
tannase remarkably offering a 100-fold increase of conversion
(Nie et al. 2012b). Techniques such as pH tuning, interfacial
activation, and cryogenic protection have been applied (Nie
et al. 2012a, 2014). Free tannases from Aspergillus species,

Table 2 Ferulic acid esterase-catalyzed reactions

Product Donor Acceptor Enzyme Solvent system Yield (time) T
(°C)

Reference

1-Pentyl ferulate Ferulic acid 1-Pentanol FAEA CTAB: hexane:
pentanol: buffer

60 % (n.q.) 40 Giuliani et al.
2001

1-Butyl ferulate Methyl ferulate 1-Butanol CLEAs
immobilized
Ultraflo L

Hexane: 1-butanol:
buffer

97 % (144 h) 37 Vafiadi et al.
2008a

1-Butyl sinapate Methyl sinapate 1-Butanol AnFaeA Hexane: 1-butanol:
buffer

78 % (120 h) 35 Vafiadi et al.
2008b

2-Butyl sinapate Methyl sinapate 2-Butanol AnFaeA Hexane: 2-butanol:
buffer

9 % (120 h) 37 Vafiadi et al.
2008a

1-Butyl caffeate Methyl caffeate 1-Butanol StFae-A Hexane: 1-butanol:
buffer

Up to 25 % (144 h) 35 Topakas et al.
2004

1-Butyl-p-coumarate Methyl p-coumarate 1-Butanol FoFae-I Hexane: 1-butanol:
buffer

Up to 70 % (144 h) 35 Topakas et al.
2003a

1-Propyl-p-
hydroxyphenylacetate

p-Hydroxyphenylacetic
acid

1-Propanol FoFae-II Hexane: 1-
propanol: buffer

75 % (224 h) 30 Topakas et al.
2003b

1-Propyl-p-
hydroxylphenylpropio-
nate

p-
Hydroxylphenylpropio-
nic acid

70 % (224 h)

Glycerol sinapate Sinapic acid Glycerol AnFaeA [C5OHmim][PF6]:
buffer

76.7 % (24 h) 50 Vafiadi et al.
2009Methyl sinapate Up to 7 % (120 h)

Glycerol ferulate Ferulic acid Glycerol FAE-PL Glycerol: DMSO:
buffer

81 % (n.q.) 50 Tsuchiyama
et al. 2006

Diglycerol ferulates
(mixture of isomers)

Ferulic acid Diglycerin S FAE-PL Diglycerin S:
DMSO: buffer

95 % (12 h) 50 Kikugawa et al.
2012

Glycerol p-coumarate p-Coumaric acid Glycerol FAE-PL Glycerol: DMSO:
buffer

~60 % (72 h) 50 Tsuchiyama
et al. 2007

L-Arabinose ferulate Methyl ferulate L-Arabinose StFae-C Hexane: t-butanol:
buffer

Up to 50 % (120 h) 35 Vafiadi et al.
2005Ethyl ferulate 6.3 % (−)

D-Arabinose ferulate Methyl ferulate D-Arabinose Hexane: t-butanol:
buffer

45 % (−) 35 Vafiadi et al.
2007a

Ferulic acid D-Arabinose Multifect P3000 Hexane: 1-
butanol:buffer

36.7 % (144 h) 35 Couto et al.
2010D-Galactose ferulate Ferulic acid D-Galactose Depol 670 61.5 % (144 h)

D-Xylose ferulate Ferulic acid D-Xylose Hexane: 2-
butanone:buffer

37.3 % (144 h)

Feruloyl raffinose Ferulic acid Raffinose Depol 740L Hexane: 2-
butanone:buffer

11.9 % (7 days) 35 Couto et al.
2011

Feruloyl galactobiose Ferulic acid Galactobiose Hexane: 1,4-
dioxane:buffer

26.8 % (144 h)

Feruloyl xylobiose Ferulic acid Xylobiose Hexane: 2-
butanone:buffer

9.4 % (144 h)
Feruloyl arabinodiose Ferulic acid Arabinodiose 7.9 % (144 h)
Feruloyl sucrose Ferulic acid Sucrose 13.2 % (n.q.)
Feruloyl FOS Ferulic acid FOS 9.6 % (n.q.)

FAEA: FAE from Aspergillus niger; Ultraflo L, Depol 740L: multi-enzymatic preparation fromHumicola insolens; AnFaeA: type A FAE from A. niger;
StFae-A, StFae-C: FAE from Sporotrichum thermophileATCC 34628; FoFae-I, FoFae-II: FAE from Fusarium oxysporum; FAE-PL: FAE from A. niger
purified from the commercial preparation Pectinase PLBAmano^; Multifect P3000: multi-enzymatic preparation fromBacillus amyloliquefaciens; Depol
670: multi-enzymatic preparation from Trichoderma reesei
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Penicillium variable, and Bacillus massiliensis (whole-cell)
have synthesized propyl gallate in organic solvents (Yu and
Li 2008; Sharma and Gupta 2003; Sharma and Saxena 2012;
Beena et al. 2011). Regarding other galloyl esters, Toth and
Hensler (1952) reported the synthesis of methyl and ethyl
esters but not the phenyl ester of gallic acid in the presence
of tannase dissolved in buffer, revealing for the first time the
ability of soluble tannases to esterify. Gallic acid esters were
synthesized by an immobilized tannase from A. niger
performing esterification of gallic acid with alcohols (C1–
C12) and with several diols. This system proved that the en-
zyme had broad specificity for alcohols but absolute specific-
ity for the acid moiety (Weetall 1985).

Representing proanthocyanidin monomers, green tea cate-
chins mainly compris ing of epicatechins (ECs) ,
epigallocatechins (EGCs), epicatechin gallate (ECG), and epi-
gallocatechin gallate (EGCG) have gained attention for their
strong anti-oxidant and cardiovascular protective activity.
Green tea is considered a useful agent for promoting skin
regeneration or treatment for psoriasis, rosacea, and actinic
keratosis and repairs UV-damaged skin in vivo, which leads
to the improvement of wrinkles (Hong et al. 2012). EGCG is
an anti-inflammatory and anti-irritant anti-oxidant, which is
responsible for health benefits like the stimulation of collagen
production while reducing oxidative damage within the skin.
EGCG vehiculated in cosmetic formulations presents good
skin penetration and retention favoring its skin effects (dal
Belo et al. 2009). Among epicatechin derivatives, EGC is
the most effective photoprotector, following in a descending
order by EGCG, EC, and ECG (Hong et al. 2013). However, it
is present in natural green tea preparations in low amounts
compared to EGCG, which is the most abundant catechin in
green tea (Cao and Ito 2004). Low-yield galloylation of
epicatechins has been achieved by an immobilized commer-
cial tannase from A. niger in ionic liquids (Raab et al. 2007). It
is evident that tannases could be proved to be a powerful
biocatalyst in order to modify the active constituents of green
tea and synthesize tailor-made compounds with preferred bi-
ological activities for use in different cosmeceutical products.
High yield acetylation of catechin and ECGG has been report-
ed using commercial lipases from R. miehei and P. cepacia
(Lambusta et al. 1993; Zhu et al. 2014).

Proteases

Besides catalyzing the cleavage of peptide bonds for the pro-
duction of peptide cosmeceuticals, proteases (EC 3.4) find
application in transesterification reactions in organic solvents,
lowering the cost of ester production and increasing reaction
specificity. Enzymes from different sources display different
features; for example, contrary to serine proteases,
the rmolys in ( a me ta l lo -p ro tease f rom Bac i l l usT

ab
le
3

Ta
nn
as
e-
ca
ta
ly
ze
d
re
ac
tio

ns

Pr
od
uc
t

D
on
or

A
cc
ep
to
r

E
nz
ym

e
So

lv
en
t

sy
st
em

Y
ie
ld

(t
im

e)
T
(°
C
)

R
ef
er
en
ce

M
et
hy
lg

al
la
te

G
al
lic

ac
id

M
et
ha
no
l

Ta
nn
as
e
fr
om

A
sp
er
gi
llu

s
ni
ge
r

H
ex
an
e

90
.7
%

(8
h)

50
Sh

ar
m
a
an
d
Sa
xe
na

20
12

Pr
op
yl

ga
lla
te

1-
Pr
op
an
ol

94
.8
%

(8
h)

Ta
nn
ic
ac
id

C
N
B
r-
ag
ar
os
e
im

m
ob
ili
ze
d

ta
nn
as
e
fr
om

E
m
er
ic
el
a

ri
du
la
ns

B
uf
fe
r

88
%

(4
8
h)

60
–7
5

G
on
ca
lv
es

et
al
.2
01
3

M
et
hy
lg

al
la
te

C
N
B
r-
ag
ar
os
e
im

m
ob
ili
ze
d

ta
nn
as
e
fr
om

La
ct
ob
ac
ill
us

pl
an
ta
ru
m

B
uf
fe
r

55
%

(−
)

25
F
er
na
nd
ez
-L
or
en
te

et
al
.2
01
1

C
1–
C
12

ac
yl

ga
lla
te
s

G
al
lic

ac
id

C
1–
C
12

fa
tty

al
co
ho
ls

Ta
nn
as
e
fr
om

A
sp
er
gi
llu

s
ni
ge
r
im

m
ob
ili
ze
d
on

al
ky
la
m
in
os
ila
ni
ze
d

po
ro
us

si
lic
a

So
lv
en
t-
fr
ee

10
–9
5
%

(1
8–
48

h)
R
T

W
ee
ta
ll
19
85

C
3–
C
5
di
ol

ga
lla
te
s
(s
tr
on
g

in
di
ca
tio

n
of

m
or
e
th
an

on
e

fo
rm

of
es
te
r)

D
io
ls

50
–8
0
%

(2
4
h)

C
at
ec
hi
n
ga
lla
te

G
al
lic

ac
id

C
at
ec
hi
n

Ta
nn
as
e
fr
om

A
sp
er
gi
llu

s
ni
ge
r

im
m
ob
ili
ze
d
on

E
up
er
gi
tC

[Β
M
IM

][
M
E
E
SO

4
]:

bu
ff
er

1.
3
%

(2
0
h)

R
T

R
aa
b
et
al
.2
00
7

E
pi
ca
te
ch
in

ga
lla
te

E
pi
ca
te
ch
in

5.
4
%

(2
0
h)

E
pi
ga
llo

ca
te
ch
in

ga
lla
te

E
pi
ga
llo

ca
te
ch
in

3.
1
%

(2
0
h)

Appl Microbiol Biotechnol (2016) 100:6519–6543 6531



t h e rmopro t eo l y t i cu s ) i s no t gene r a l l y u sed in
transesterifications (Pedersen et al. 2002). Studies have
proved that the S1 pocket of thermolysin active site can bind
medium and large hydrophobic amino acids, suggesting that
the vinyl group can bind as well, allowing the possibility of
using thermolysin for the synthesis of sugar esters. For these
reasons, the use of proteases for ester production in the cos-
metic field is of great interest and potential (Fornbacke and
Clarsund 2013). The main compounds synthesized by prote-
ases are summarized in Table 4.

As a typical flavonoid glycoside with anti-oxidant activity,
rutin has been enzymatically esterified with different acyl do-
nors to enhance its solubility and stability in lipophilic media.
The regioselective transesterification of rutin with divinyl car-
boxylates in pyridine was performed at 50 °C for 4 days by an
alkaline protease from B. subtilis (Xiao et al. 2005). Only 3″-
O-substituted rutin ester was obtained in these conditions
showing that regioselective acylation can be controlled by
regulation of solvents and enzymes. Pre-irradiated alkaline
protease from B. subtilis increased transesterification of
troxerutin with divinyl dicarboxylates by 31 % in pyridine
using an ultrasound bath (150 W and 80 kHz) (Xiao et al.
2011). Ultrasonic treatment is an environmentally benign
method based on the cavitation phenomenon, which causes
the formation, expansion, and collapse of cavities generating

high temperatures and pressures of the neighboring surround-
ings (Khan and Rathod 2015). Thus, cavitation can accelerate
enzymatic reactions maintaining ambient conditions of the
overall environment. Ultrasonic treatment represents an effi-
cient route of performing transterification in order to modify
solubility of anti-oxidant molecules.

Arbutin derivative with undecylenic acid located at its sug-
ar moiety has been enzymatically synthesized using an alka-
l i ne p ro t ease f rom B. sub t i l i s i n a mix tu re o f
dimethylformamide and water (95:5) (Tokiwa et al. 2007a).
The produced arbutin undecylenic acid ester showed to inhibit
the activity of tyrosinase from mushroom; in addition, the
arbutin ester seemed to have high dermal absortion and did
not show the peculiar smell of undecylenic acid which com-
monly prevents its application in cosmetics. Further studies
have proven that after 6 days of incubation of B16 melanoma
cells with arbutin undecylenic ester, melanin production levels
were decreased to approximately 30 % compared with that of
the control cells (Tokiwa et al. 2007b). Alkaline protease from
B. subtilis was also applied in regioselective esterification of
the hydroxyl group at C-7 position of kojic acid to produce
diverse lipophilic kojic acid esters in dimethylformamide
(Raku and Tokiwa 2003). Kojic acid esters were effective as
scavengers against DPPH radical, and they are expected to
prevent oxidational stress in vivo. Moreover, their

Table 4 Protease-catalyzed reactions

Product Donor Acceptor Enzyme Solvent system Yield (time) T
(°C)

Reference

7-O-Vinyl adipoyl kojic
acid

Kojic acid Divinyl adipate Bioprase from
Bacillus
subtilis

Dimethylformamide 25 % (7 days) 30 Raku and
Tokiwa
20037-O-Hexanoyl/octanoyl/

decanoyl kojic acid
Vinyl hexanoate/

octanoate/
decanoate

13–27 %
(7 days)

6-O-Undecylenoyl p-
hydroxyphenyl β-D-
glucopyranoside

Arbutin Undecylenic acid
vinyl ester

Bioprase from
Bacillus
subtilis

Dimethylformamide 62 % (7 days) 40 Tokiwa et
al.
2007b

3″-O-Vinylsuccinyl or
vinylsebacoyl-rutin

Rutin Divinyl succinate/
sebacate

Subtilisin from
Bacillus
subtilis

Pyridine 12.8/19.8 %
(4 days)

50 Xiao et al.
2005

Vinylsuccinyl/
vinylglutaryl/
vinyladipoyl/
dinylnonanedioyl/
vinylsebacoyl/
vinyltridecanedioyl-
troxerutin

Troxerutin Divinyl succinate/
glutarate/
adipate/
nonanedioate/
sebacate/
decanedioate

Subtilisin from
Bacillus
subtilis(-
enzyme pre-
irradiated)

Pyridine 10.6–33.10 %
(4 h)

50 Xiao et al.
2011

2-O-Lauroyl-sucrose Sucrose Vinyl laurate Alkaline
protease from
Bacillus
pseudofirmus

Dimethylformamide:pyridine 50–60 %
(24 h)

45 Pedersen
et al.
2003

6-O-Vinyladipoyl-D-
glucose/-D-mannose/-D-
galactose/-methyl D-
galactoside

D-Glucose/D-
mannose/D-
galactose/α-
methyl D-
galactoside

Divinyl adipate Alkaline
protease from
Streptomyces
sp.

Dimethylformamide 49–74 %
(7 days)

35 Kitagawa
et al.
1999
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biodegradability exceeded 60 %, allowing their application in
cosmetics for the production of eco-friendly and oil-based
product products.

Transferases

A broad variety of bioactive glycosides has been synthesized
using glycosyltransferases (GTFs; EC 2.4); enzymes that

catalyze the transfer of sugar moieties from an activated donor
to specific acceptors forming glycosidic bonds. Novel EGCG
mono- and di-glycosides with increased UV irradiation stabil-
ity, browning resistance, and water solubility regardless of the
position or linkage of the glycosylation have been synthesized
by transferases from L. mesenteroides (Kitao et al. 1995;
Moon et al. 2006a). EC mono-, di-, and tri-glycosides have
been synthesized by a β-cyclodextrin glucosyltransferase
from Paenibacillus sp. while various catechin derivatives by

Table 5 Transferase catalyzed reactions

Product Donor Acceptor Enzyme Solvent
system

Yield (time) T
(°C)

Reference

EGCG glycosides (EGCG-G1,
EGCG-G2A, EGCG-G2B)

Sucrose EGCG Glucansucrase from
Leuconostoc mesenteroides

Buffer 62.2 % (6.5 h) 28 Moon et al. 2006a

EC glycosides (EC3A, EC3B,
EC3C, EC4A)

β-
Cyclode-
xtrin

(−)-
Epicatechin

β-Cyclodextrin transferase
from Paenibacillus sp.

Βuffer 18.1 % (24 h) 50 Aramsangtienchai
et al. 2011

Catechin 3′-O-α-D-
glucopyranoside

Maltose (+)-Catechin Glycosyltransferase from
Streptococcus sobrinus

Buffer 13.7 % (24 h) 45 Nakahara et al.
1995

Catechin 3′-O-α-D-
glucopyranoside (main product)

Starch Cyclodextrin
glucanotransferase from
Bacillus macerans

18.3 % (40 h) 40 Funayama et al.
1993

Catechin 3′-O-α-D-
glucopyranoside

Maltose Enzyme with transfer activity
from Xanthomonas
campestris WU-9701

57.1 % (36 h) 45 Sato et al. 2000

Hydroquinone fructoside Sucrose Hydroquinone Levansucrase from
Leuconostoc mesenteroides

Buffer 14 % (6 h) 28 Kang et al. 2009

β-Αrbutin-α-G1/β-arbutin-α-G2 Sucrose β-Arbutin Glucansucrase from
Leuconostoc mesenteroides
B-1299B

Buffer 27.1 % (10 h) 28 Moon et al. 2007a

Starch β-Arbutin Cyclomaltodextrin
glucanotransferase from
Bacillus macerans

Buffer 70 % (16 h) 40 Sugimoto et al.
2003

α-Αrbutin-α-G1/β-arbutin-α-G2 α-Arbutin Buffer 70 % (16 h) 40 Sugimoto et al.
2005

α-Arbutin Sucrose Hydroquinone Amylosucrase from
Deinococcus geothermalis

Buffer 90 % (24 h) 35 Seo et al. 2012a

α-Arbutin (in a mixture of
products, G2–G7)

α-
Cyclode-
xtrin

Cyclodextrin glycosyltranferase
from Thermoanaerobacter
sp. (Toruzyme 3.0 L; after
amyloglucosidase treatment)

Buffer 30.0 % (24 h) 40 Mathew and
Adlercreutz
2013

β-Arbutin-α-glycoside Sucrose β-Arbutin Amylosucrase from
Deinococcus geothermalis
DSM 11300

Buffer 98 % (−) 35 Seo et al. 2009

Kojic acid glycosides (5-O-α-D-
and 7-O-α-D-glucopyranoside)

Kojic acid Sucrose phosphorylase from
Leuconostoc mesenteroides

DMSO:buffer 19.7 % (24 h) 42 Kitao & Serine
1994

Quercetin glycosides (3′-O-α-D
and 4-O-α-D glycopyranoside)

Quercetin Glucansucrase from
Leuconostoc mesenteroides

Acetone 23.1 % (5 h) 28 Moon et al. 2007b

Ampelopsin glycosides up to
5 units(4′-O-α-D-
glycopyranoside as main
product)

Ampelopsin Dextransucrase from
Leuconostoc mesenteroides

DMSO:
buffer

87.3 % (1 h) 28 Woo et al. 2012

Astragalin glycosides (kaempferol-
3-O-β-D-isomaltoside, 3-O-β-
D-nigeroside, polymerized 3-O-
β-D-isomaltooligosaccharides)

Sucrose Astragalin 24.5 % (5 h) 28 Kim et al. 2012

Ascorbic acid glycosides (2-O-α-
D-glucopyranosyl L-ascorbic
acid as main product)

α-
Cyclode-
xtrin

Ascorbic acid Cyclomaltodextrin
glucanotransferase form
Bacillus stearothermophilus

Buffer 45.6 % (1 h) 60 Aga et al. 1991

Benzoyl glycosides (1-O-benzoyl-
α-D-, 2-O-benzoyl-α-D- and 2-
O-benzoyl-β-D-
glucopyranoside)

Sucrose Benzoic acid Sucrose phosphorylase from
Streptococcus mutans

Buffer 70 % (48 h) 37 Sugimoto et al.
2007
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amylosucrases from Deinococcus geothermalis, Streptoco
ccus sobrinus, a cyclodextrin glucanotransferase from
Bacillus macerans and an enzyme with glycosyl transfer ac-
tivity from Xanthomonas campestris (Aramsangtienchai et al.
2011; Cho et al. 2011; Nakahara et al. 1995; Funayama et al.
1993; Sato et al. 2000). Transferase-based modification of
hydroquinone has been focused on its glycosylation or the
production of arbutin (α- and β-) glycosides. A two-step syn-
thesis ofα-arbutin including prior treatment ofα-cyclodextrin
with an amyloglucosidase from A. niger and subsequent trans-
fer reaction using a commercial cyclodextrin glucano
transferase from Thermoanaerobacter sp. has been reported
(Mathew and Adlercreutz 2013). Before treatment, hydroqui-
none was glycosylated with up to 7 glucose units while after
treatment, α-arbutin was an absolute product. Results on the
synthesis of arbutin glycosides show that the α-glucosidic
linkage plays an important role in the inhibitory effect on
human tyrosinase (Sugimoto et al. 2005).

2-O-α-D-glycopyranosyl L-ascorbic acid has been synthe-
sized by a cyclomaltodextrin glucanotransferase fromBacillus
stearothermophilus and a sucrose phosphorylase from
Bifidobacterium longum (Aga et al. 1991; Kwon et al.
2007). The first transglycosylation of CA was performed by
a sucrose phosphorylase from B. longum in aqueous CO2

supercritical media resulting in the formation of caffeic
mono- and di-glycosides (Shin et al. 2009). Ampelopsin is a
flavonoid with numerous activities such as anti-inflammatory,
anti-microbial, anti-oxidant, anti-hypertension, hepatoprotec-
tive, anti-carcinogenic, anti-viral, and skin-whitening effects.
A dextransucrase from L. mesenteroides synthesized a mix-
ture of novel ampelopsin glycosides with up to 5 attached
glycoside units. The primary product, ampelopsin-4′-O-α-D-
glucopyranoside, reached an optimal yield of 34 g/L while it
showed an 89-fold increase in water solubility, 14.5-fold in-
crease in browning resistance comparing to ampelopsin, and

10-fold higher tyrosinase inhibition comparing to β-arbutin.
Browning resistance was similar to ECGC glycosides and
anti-oxidant activity superior to ampelopsin (Woo et al.
2012). Another major flavonoid found in plants, astragalin,
was modified by a dextransucrase from L. mesenteroides giv-
ing products with increased inhibitory effects on matrix
metalloproteinase-1 expression, anti-oxidant effect, and mel-
anin inhibition (Kim et al. 2012). Quercetin glycosides were
synthesized by a glucansucrase from L. mesenteroides show-
ing increased water solubility, slower scavenging activity, and
no improvement in tyrosinase inhibition (Moon et al. 2007b).
Three main benzoyl and two main kojic acid glycosides were
synthesized by a sucrose phosphorylase from Streptococcus
mutans and L. mesenteroides, respectively (Sugimoto et al.
2007; Kitao and Serine 1994). Examples of transferase cata-
lyzed reactions are presented in Table 5.

Glucosidases

Glucosidases, such as α- (EC 3.2.1.20) and β-glucosidases
(EC 3.2.1.21), are a group of enzymes that hydrolyze individ-
ual glucosyl residues from various glycoconjugates including
α- or β-linked polymers of glucose under physiological con-
ditions. However, these enzymes are able to synthesize a
broad variety of sugar derivatives under defined conditions
in two different manners: transglycosylation or reverse hydro-
lysis (Park et al. 2005). Active compounds that have been
obtained by enzyme-catalyzed glucosidation include vitamin
and arbutin derivatives as presented in Table 6.
Pharmacological properties of vitamin E can be improved by
increasing its water solubility, absorbtivity and stability
through glycosylation. A novel water-soluble vitamin E de-
r ivat ive, 2-(α -D-glucopyranosyl)methyl-2 ,5,7,8-
tetramethylchroman-6-ol (TMG) has been synthesized from

Table 6 Glucosidase-catalyzed reactions

Product Donor Acceptor Enzyme Solvent
system

Yield (time) T
(°C)

Reference

4-Hydroxyphenyl-β-
isomaltoside

Sucrose Arbutin α-Glucosidase from
Saccharomyces
cerevisiae

Buffer 50 % (20 h) 40 Milosavić
et al.
2007

Hydroquinone α-D-
glucopyranoside

Maltose Hydroquinone α-Glucosidase from
Saccharomyces
cerevisiae

Buffer 13 % (20 h) 30 Prodanović
et al.
2005Hydroquinone α-D-

isomaltoside
15 % (20 h)

2-(α-D-
Glucopyranosyl)methyl-
2,5,7,8-tetramethylchroman-
6-ol

Maltose 2-Hydroxymethyl-2,5,7,8-
tetramethylchroman-6-ol
(vitamin E derivative)

α-Glucosidase from
Saccharomyces sp.

DMSO (20 h) 40 Murase
et al.
1998

β-D-Glucosyl-(1-6)-arbutin Cellobiose Arbutin β-Glucosidase from
Thermotoga
neapolitana

Buffer 2.8 % (12 h) 80 Jun et al.
2008β-D-Glucosyl-(1-4)-arbutin

β-D-Glucosyl-(1-3)-arbutin
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2-hydroxymethyl-2,5,7,8-tetramethylchroman-6-ol (TM) and
maltose using α-glucosidase from Saccharomyces sp. in a
transglycosylation reaction (Murase et al. 1998). Anti-
oxidant activity of TMG was investigated on peroxidation of
phosphatidylcholine-liposomal (PC)-suspension, which is
usually adopted as model for cellular biomembranes. TMG
showed higher efficacy on lipid peroxidation than ascorbic
acid, when peroxidationwas provoked by lipid-soluble radical
generator such as 2,2′-azobis(2,4-dimethylvaleronitrile
(AMVN). Moreover, TMG showed to inhibit cupric ion-
induced peroxidation of (PC)-suspension and rat brain ho-
mogenate while it delayed the generation of cholesteryl ester
hydroperoxides when exposing human plasma to lipid or
water-soluble radical generators.

A β-glucosidase from Thermotoga neapolitana has syn-
thesized arbutin-β-glycosides to be used as novel skin whit-
ening agents (Jun et al. 2008).β-D-glucosyl-(1–3)-arbutin has
been proved to inhibit mushroom tyrosinase and it has been
tested on B16F10 murine melanoma cell line showing the
strongest inhibitory effect on melanin synthesis in a dose-
dependent manner without causing cytotoxicity. β-D-
glucosyl-(1–3)-arbutin showed to be a more efficient inhibitor
of melanin synthesis compared to arbutin. Similarly, arbutin
has been glycosyla ted by a α -glucosidase from
Saccharomyces cerevisiae to produce 4-hydroxyphenyl-β-
isomaltoside (Milosavić et al. 2007), whose inhibitory capac-
ity on tyrosinase is being investigated. α-Glucosidase from
S. cerevisiae also catalyzed the synthesis of hydroquinone
α-D-glucopyranoside and hydroquinone α-D-isomaltoside
(Prodanović et al. 2005). Glycosylation of hydroquinone in-
creased its water solubility and enhanced pharmaceutical
properties such as skin whitening and anti-bacterial capacity.

Laccases

Laccases are dimeric or tetrameric glycosylated proteins,
which usually bear four copper atoms per monomer distribut-
ed in three redox sites (Gianfreda et al. 1999). These enzymes
are able to catalyze the one-electron oxidation of phenols gen-
erating phenoxy radicals and simultaneously reducing molec-
ular dioxygen to water (Kudanga et al. 2011). Due to their
features, including broad substrate specificity, catalysis in air
without using H2O2, and production of water as only by-prod-
uct, laccases are considered the ideal green catalysts. Besides
catalyzing catabolic and depolymerization processes, based
on reaction conditions, these enzymes can also carry out syn-
thetic processes including the oxidization of aromatic com-
pounds followed by heteromolecular coupling with co-
substrates or simple oligomerization (Mikolasch and Schauer
2009). The main compounds that have been synthesized by
laccase-catalyzed reactions include flavonoids, HCAs, and

other phenolics. Conditions of their production are described
in the following sections and summarized in Table 7.

The anti-oxidant activity of flavonoids derives from the B-
ring, which is important for the H-transfer, and 2–3 double
bond ensuring electron delocalization. Moreover, in vitro
studies have demonstrated the importance of the 3-OH group
for the anti-oxidant capacity. Rutin has been oxidized by a
laccase from Myceliophtora thermophyla to produce flavo-
noid polymers (Kurisawa et al. 2003a). The same result was
achieved by using Pycnoporus coccineus and Pycnoporus
sanguineus laccases as biocatalysts. Oxidized poly-rutin
showed enhanced anti-oxidant, anti-inflammatory, and anti-
aging capacities compared to the rutin monomer (Uzan et al.
2011). Enzymatic oxidation of catechin was also performed
by a laccase from M. thermophyla producing poly-catechin
with greater superoxide scavenging and inhibitory capacity
of xanthine oxidase (Kurisawa et al. 2003b). Laccase-
catalyzed oxidation has been applied in order to enhance the
anti-oxidant property of FA. Two dimeric products, β-5 and
β-β, were obtained by oxidation of FA in organic media using
a laccase from Trametes pubescens (Adelakun et al. 2012b).
Reaction was performed in a biphasic system, as the concen-
tration of ethyl acetate increased, and in monophasic system
using dioxane or ethanol as co-solvents. The β-5 dimer
showed higher anti-oxidant capacity than FA evaluated by
DPPH and Trolox equivalent antioxidant capacity (TEAC)
assays. Different oxidized products of HCAs were used to
improve anti-oxidant and anti-microbial activities of poly-
mers, such as chitosan. A laccase from M. thermophyla was
used to functionalize chitosan with oxidated FA and ethyl-
ferulate (Aljawish et al. 2012). Both derivatives showed
higher anti-oxidant activity than the substrates, especially the
FA chitosan. The same strategy was applied to functionalize
chitosan with CA using a laccase from Trametes versicolor,
obtaining a functionalized polymer with higher anti-oxidant
and anti-microbial activity than the substrates (Božič et al.
2012b). These results indicated that the addition of an H-
atom donating group, produced by laccase-mediated
oxidization, could generate a good chain breaking anti-oxi-
dant. Laccase-mediated oxidation is proved to be a good strat-
egy to develop functionalized polymers with enhanced anti-
oxidant and anti-microbial activities.

Oxidation of tannic acid by a laccase from T. versicolor
resulted in a variety of products including gallic acid, gallic
acid dimers, partially gallic acid-esterified glucose, and glu-
cose, while oxidation of quercetin offered an oligomeric
derivative (Božič et al. 2012a). Both oxidative products of
gallic acid and quercetin showed higher anti-oxidant activity
than the origin compounds. Furthermore, tannic acid or
quercetin was used to functionalize chitosans by laccase
without organic or acidic solvents. Both chitosan derivatives
exhibited amplified radical scavenging ability and anti-
microbial activity compared to the untreated chitosans. The
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laccase grafting method was also applicable to other pheno-
lic compounds, as in the case of graft copolymers of starch
with lignosulfonates (Shogren and Biswas 2013). Enzymatic
polymerization of 8-hydroxyquinoline was achieved by
using a laccase from T. pubescens (Ncanana and Burton
2007). Oxidization of 8-hydroxyquinoline was established
to generate aromatic radicals which combined to form a
polymeric product with a powerful anti-oxidant capacity
and anti-radical efficiency. Laccase-mediated oxidization
was also performed in organic solvents, due to their advan-
tages as medium in biocatalysis. Oxidation of 2,6-dimetho
xyphenol by T. versicolor laccase was investigated in bi-
phasic or monophasic systems, leading the formation of a
dimeric product with anti-oxidant capacity twofold higher
than the substrate. The dimer production was increased in
the monophasic solvent using acetone as co-solvent, while
its production increased as the concentration of ethyl acetate
was increased to 90 % in the biphasic system. Organic sol-
vents were also applied in the synthesis of resveratrol dimers
catalyzed by laccases from M. thermophyla and
T. pubescens (Nicotra et al. 2004). M. thermophyla

laccase-catalyzed dimers were obtained in butanol saturated
with buffer; and resveratrol dimers catalyzed by
T. pubescens laccase were synthesized using a biphasic sys-
tem of ethyl acetate and buffer. The products may serve as
lead for the development of new drugs and as nutraceuticals,
showing anti-oxidant activity comparable to resveratrol and
its analogs.

Conclusions

A large variety of compounds with potential cosmeceutical
application can be obtained through biotechnological process-
es. The reported examples of enzymatic synthesis or modifi-
cation of natural compounds so far exploited highlight the
possibility of developing biologically active ingredients with
anti-oxidant, anti-aging, anti-microbial, anti-wrinkling,
photoprotective, or skin-whitening properties. The use of es-
terases (such as lipases, feruloyl esterases, tannases), transfer-
ases, glucosidases, proteases, and laccases allows the modifi-
cation of target compounds under mild conditions,

Table 7 Laccase-catalyzed reactions

Product Donor Acceptor Enzyme Solvent system Yield (time) T
(°C)

Reference

Caffeic acid-chitosan Caffeic acid Chitosan Laccase from Trametes
versicolor

Phosphate
buffer

– (24 h) 30 Božič et al.
2012aGallic acid-chitosan Gallic acid – (24 h)

Quercetin-chitosan Quercetin Chitosan – (24 h) Božič et al.
2012bGallic acid-chitosan Tannic acid

Starch–sodium
lignosulfonate graft
copolymers

Sodium
lignosulfonate

Starch Sodium acetate – (4 h) 30 Shogren and
Biswas
2013

3,3,5,5-Tetramethoxy
biphenyl-4,4-diol

2,6-
Dimethoxyphenol

2,6-
Dimethoxyphenol

Laccase from Trametes
pubescens

Ethyl acetate – (24 h) 28 Adelakun
et al.
2012a

Acetone – (24 h)

Ferulic acid dimers (5-
β, β-β)

Ferulic acid Ferulic acid Ethyl acetate or
dioxane or
ethanol

– (24 h) Adelakun
et al.
2012b

Poly 8-
hydroxyquinoline

8-
Hydroxyquinoline

8-
Hydroxyquinoline

Acetone 76 % (24 h) 30 Ncanana and
Burton
2007

Resveratrol trans-
dehydrodimer

Resveratrol Resveratrol Ethyl acetate 18 % (4 days) 45 Nicotra et al.
2004Laccase from Myceliophtora

thermophyla (supported on
glass beads)

n-Butanol 31 % (4 days)

Ethyl-ferulate-
chitosan

Ethyl ferulate Chitosan Laccase from Myceliophtora
thermophyla

Phosphate
buffer

(4 h) 30 Aljawish
et al. 2012

Ferulic acid-chitosan Ferulic acid (4 h)
Poly-catechin (+) - Catechin (+) - Catechin Acetone 95 % (24 h) RT Kurisawa

et al.
2003b

Poly-rutin Rutin Rutin Methanol 79 % (24 h) RT Kurisawa
et al.
2003a

Oligorutin Rutin Rutin Laccase from Pycnoporus
coccineus

Glycerol/
ethanol/
buffer

67 % (24 h) RT Uzan et al.
2011

Laccase from Pycnoporus
sanguineus
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maintaining their biological activity and avoiding the forma-
tion of by-products. These advantages fit the increasing de-
mand for natural cosmetics, boosting eco-friendly design and
production of active compounds in order to replace chemical
processes currently used.
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