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Abstract Polysialic acid (PSA) is a unique polysaccharide
that plays critical roles in many bioprocesses, which makes
it useful in a wide range of biomedical applications. The in-
creased demand for PSA has led to considerable efforts to
improve its production using bacteria, such as Escherichia
coli. Bioprocess optimization and metabolic engineering have
allowed the efficient production of PSA. This review aims to
summarize the metabolism of PSA with an emphasis on the
importance of the key pathway components. In addition, this
review provides an update on state of the art PSA production
using E. coli with a special emphasis on strategies of strain
engineering and process development for the enhanced pro-
duction of PSA.
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Introduction

Polysialic acid (PSA), a unique polymer of α-(2,8) and/or
α-(2,9)-linked sialic acid (Neu5Ac) monomers, which is
mainly attached onto glycoproteins, plays a major role in

many biological processes (Maarouf et al. 2006; Ferrero and
Aparicio 2010; Colley et al. 2014). Some bacterial pathogens
possess a PSA capsule as a masking agent by mimicking the
extracellular surface of mammalian cells (Muhlenhoff et al.
1998), such as Neisseria meningitidis (Bhattacharjee et al.
1975), Escherichia coli (Egan et al. 1977), Mannheimia
hemolytica (Puente-Polledo et al. 1998). In mammals, PSA
is involved in cell–cell and cell–matrix interactions, intermo-
lecular interactions at cell surfaces, and interactions with other
molecules in the cellular environment (Schnaar et al. 2014;
Colley et al. 2014). PSA is present on the surface of numerous
cells and contributes to the appropriate development, mainte-
nance, and health of the nervous system (Sato and Kitajima
2013a, b; Schnaar et al. 2014; Colley et al. 2014). PSA accu-
mulates on cancer cell surfaces in the later stages, which is
associated with invasion and metastasis of cancer cells
(Fukuda 1996; Falconer et al. 2012; Colley et al. 2014). PSA
acts as an anti-adhesive molecule, plays important roles in nor-
mal mammalian organs and tissues, and promotes extraneural
organ (e.g., lung, liver, testis, and placenta) development, re-
pair, and regeneration (Stamatos et al. 2014; Ulm et al. 2013;
Simon et al. 2013; Tsuchiya et al. 2014; Colley et al. 2014).

The various biological effects of PSA make it useful in a
wide range of biomedical applications. PSA has been used in
vaccine development to protect individuals from pathogenic
meningitis (Tan et al. 2010; Colley et al. 2014). PSA can be a
tumor-associated carbohydrate antigen to be used in cancer
immunotherapy (Heimburg-Molinaro et al. 2011; Krug et al.
2012; Colley et al. 2014). Due to the poor immunogenicity,
biodegradability, and biocompatibility of PSA, it has been
proposed as the next generation for bioavailable products.
Polysialylated enzymes are as effective as PEGylated en-
zymes in respect of prolonged activity and stability, but ex-
hibit lower immunogenicity and antigenicity with significant-
ly improved therapeutic functions (Gregoriadis et al. 2005).
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PSA has been used for the controlled release of drugs and as
scaffolds in biomedical applications (Steinhaus et al. 2010;
Colley et al. 2014). Polysialylation of therapeutic proteins
and peptides such as insulin, asparaginase, antibody, and its
fragment improved their stability and prolonged their half-life
in body circulation, which may potentially improve the phar-
macokinetics and pharmacodynamics of the drug molecules
(Fernandes and Gregoriadis 2001; Jain et al. 2003;
Constantinou et al. 2008, 2009). Antibody fragment (H17E2
Fab) with PSA conjugated had over a 5-fold increase in blood
exposure and over a 3-fold higher tumor uptake compared to
the unconjugated Fab (Constantinou et al. 2008).
Polysialylation can increase the half-life of single-chain Fv
antibody (scFv) 3.4- to 4.9-fold, resulting in a 10.6- to 15.2-
fold increase in blood exposure (Constantinou et al. 2009).
Polysialylation of insulin enhanced the therapeutic value of
insulin by 2- to 3-fold (Jain et al. 2003). Polysialylation tech-
nology offers a promising strategy for the enhancement of the
therapeutic value of peptide and protein drugs. Many
polysialylated pharmaceutical proteins and peptides have un-
dergone pre-clinical and clinical trials (Epenetos et al. 2002;
Jain et al. 2003; Constantinou et al. 2008, 2009).Moreover, by
treating PSA with enzymatic catalysis or chemical degrada-
tion, sialic acid has been derived from PSA which is subse-
quently used in pharmaceutical, food, and health-care indus-
tries. The resource availability of PSA is limited and the mar-
ket price of PSA is as high as $200/g (Liu et al. 2010). In the
last two decades, the feasibility of producing PSA from bac-
teria has focused on both industry and applied science. This
review focuses on the metabolism and current state of biotech-
nological production of PSA by E. coli with a special empha-
sis on both stain engineering and process development strate-
gies for the enhanced production of PSA.

Biosynthesis and metabolism of polysialic acid
in E. coli

Many bacteria including N. meningitidis (Bhattacharjee et al.
1975), E. coli (Egan et al. 1977; Rodríguez-Aparicio et al.
1988), and M. hemolytica (previously Pasteurella
haemolytica) (Puente-Polledo et al. 1998) produce PSA as
their extracellular capsules consisting of linear homopolymers
of N-acetyl-D-neuraminic acid (Neu5Ac) with α (2–8) or α
(2–9) linkages or as linear copolymers with alternating α-(2–
8)/α-(2–9)-linked polysialic acids (Ferrero and Aparicio
2010). These bacteria PSA as virulence factor mimic the
mammalian PSA’s structure and can escape protection by the
host’s immune system (Cress et al. 2014). E. coli is a model
microorganism for investigating bacterial exopolysaccharide
function and biosynthesis, especially in the case of PSA. The
biosynthesis of PSA in E. coli involves the synthesis of sialic
acid monomers, polymerization of PSA from sialic acid, and

transportation of PSA to the cell surface (Ferrero and Aparicio
2010).

Neu5Ac is the precursor of PSA. The biosynthesis of
Neu5Ac has been well characterized (Fig. 1). For the biosyn-
thesis of sialic acid in bacteria, Neu5Ac aldolase (NanA) (Tao
et al. 2011) or Neu5Ac synthase (NeuB) (Brody and Lundgren
2009; Ishikawa et al. 2010) is often used to catalyze the reac-
tion from ManNAc to Neu5Ac. NeuB catalyzes the energy-
dependent reaction of ManNAc and phosphoenolpyruvate
(PEP) to form Neu5Ac (Lundgren and Boddy 2007; Boddy
and Lundgren 2009). NanA catalyzes ManNAc and pyruvate
to produce Neu5Ac (Li et al. 2008; Kang et al. 2012; Lin et al.
2013). Pyruvate is more readily available compared to PEP,
making NanA a promising target in the engineered pathway
for Neu5Ac synthesis. NanA was identified as the rate-
controlling enzyme in the biosynthesis of Neu5Ac through
ManNAc and pyruvate. With increased expression of NanA,
a ninefold increase in Neu5Ac production was obtained (Lin
et al. 2013).

In E. coli, the kps gene cluster is involved in PSA biosyn-
thesis, modification, and transport of the bacterial PSA chains
(Fig. 2) (Barrett et al. 2002; Ferrero and Aparicio 2010). The
kps cluster comprises three regions: (1) kpsFEDUCS, (2)
neuDBACES, and (3) kpsMT The central neuDBACES region
encodes the proteins involved in the biosynthesis, activation,
and polymerization of Neu5Ac (Daines et al. 2000). NeuD, a
Neu5Ac 7-O (or 9-O)-acetyltransferase, acetylates Neu5Ac
residues at carbon position 7 or 9 (Steenbergen et al. 2006;
Cress et al. 2014). NeuA, a bifunctional enzyme with both
CMP-Neu5Ac synthetase (Vann et al. 1987; Zapata et al.
1989) and O-acetylesterase activity (Liu et al. 2004), catalyzes
free sialic acid to cytidine 5′-monophosphate-sialic acid, thus
generating the candidate donor form of sialic acid for all
known sialyltransferases. NeuA also converts most of the
CMP-O-acetyl-Neu5Ac to CMP-Neu5Ac before incorporation
into the polymers, and only a small amount of CMP-O-acetyl-
Neu5Ac is incorporated into the polymers (Song et al. 2011).
NeuS, a α-Neu5Ac α-2,8-sialyltransferase, is responsible for
polymerization of a homopolymer of α-2,8-linked Neu5Ac to
form PSA (Steenbergen et al. 2006; Song et al. 2011; Ferrero
and Aparicio 2010). The transcriptional antiterminator RfaH
regulates PSA metabolism at a transcriptional level (Bailey et
al. 1997). RfaH enhanced kps expression for the synthesis of
polysialic acid capsule in E. coli K92 (Navasa et al. 2014).

The kps region 1 (kpsFEDUCS) and region 3 (kpsTM)
genes participate in translocation of the polysaccharide across
the periplasmic space and onto the cell surface (Willis and
Whitfield 2013a; Colley et al. 2014). The E. coli kpsC and
kspS genes in region 1 encode β-Kdo-transferases that are
involved in the biosynthesis of a poly-Kdo linker at the reduc-
ing termini of PSA, which serves as a recognition signal for
translocation (Willis and Whitfield 2013b). It was reported
that KpsS could increase polysaccharide production by
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several folds (approximately 10 to 15 times) (Andreishcheva
and Vann 2006). KpsT and KpsM are the components of an
ABC transporter that enables PSA transfer from the cytoplasm

to the cell surface. ABC transporter-dependent assembly also
requires two other characteristic components: a member of the
polysaccharide co-polymerase (PCP-3) family (KpsE) and an

Fig. 1 Schematic representation of the polysialic acid metabolic pathway
in E. coli. AGE GlcNAc 2-epimerase, NanA Neu5Ac aldolase, NanT sialic
acid transporter, NanK ManNAc kinase, NanE ManNAc-6-P epimerase,
Pgi, glucose-6-phosphate isomerase, GlmS L-glutamine:D-fructose-6-
phosphate aminotransferase, GlmM phosphoglucosamine mutase, GlmU
bifunctional UDP-N-acetylglucosamine pyrophosphorylase/glucosamine-

1-phosphate N-acetyltransferase, NagA N-acetylglucosamine-6-phosphate
deacetylase, NagB glucosamine-6-phosphate deaminase, NagK GlcNAc
kinase, NagE GlcNAc-specific transporter, ManXYZ mannose transporter,
NeuA CMP-Neu5Ac synthetase, NeuS α-Neu5Ac α-2,8-sialyltransferase,
NeuBNeu5Ac synthase,NeuCUDP-GlcNAc-2-epimerase,NeuDNeu5Ac
7-O (or 9-O)-acetyltransferase

Fig. 2 Organization of gene
clusters for the metabolism of
polysialic acids: the sialic acid
and polysialic acid biosynthesis
cluster (kps cluster) and sialic acid
catabolism operon (nan operon)
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outer membrane polysaccharide (OPX) protein (KpsD)
(Willis and Whitfield 2013a; Colley et al. 2014).

Process engineering for enhanced polysialic acid
production in E. coli

Process engineering was used to improve PSA production
through optimizing the medium and cultivation conditions.
The production of PSA in E. coli was dependent on tempera-
ture, pH value, and composition of the culture mediums as
well as the control strategy for fermentation cultivation
(Table 1).

E. coli K92 synthesizes different capsular polysaccharides
at different temperatures. At the cell growth temperature
(37 °C), E. coli K92 synthesizes PSA, which belongs to the
group 2 capsule responsible for bacterial virulence. At 20 °C,
E. coli K92 accumulates colanic acid (CA), which provides
protection against stressful conditions outside of the mamma-
lian host (Navasa et al. 2009 and 2014). The production of
PSA in P. haemolytica A2 is strictly regulated by the growth
temperature, and above 40 °C, no production is detected. The
activity of NanA, NeuA, and NeuS increased rapidly when
bacteria grown at 43 °C were transferred to 37 °C; the en-
zymes decreased dramatically when the cells grown at 37 °C
were transferred to 43 °C (Barrallo et al. 1999). PSA is opti-
mally accumulated when bacteria are grown at 37 °C, and the
accumulation is negligible when the microorganisms grow
below 20 °C or above 40 °C (Barrallo et al. 1999; Navasa
et al. 2009, 2011, 2013, 2014; Ferrero and Aparicio 2010).

The effects of medium compositions on PSA production
were investigated. When bacteria grow in liquid medium, the
PSA generated is largely broth liberated during cellular
growth. The amount of PSA produced strongly depends on
the applied carbon and nitrogen sources for the bacteria
growth (Ferrero and Aparicio 2010). The optimal carbon
and nitrogen source for PSA production was investigated in

a batch culture (Revilla-Nuin et al. 1998, 2002; Ferrero and
Aparicio 2010; Rode et al. 2008; Ezquerro-Sáenz et al. 2006).
Sorbitol appears to induce PSA production (Honda et al.
1997) and has a significant effect on bacterial growth and
PSA formation (Liu et al. 2010;Wu et al. 2010). The substrate
xylose allowed E. coli K1 to produce more PSA (Wu et al.
2010). Using different nitrogen sources may result in a signif-
icant variation in the PSA level. When organic nitrogen
sources were used, PSA production was higher than when
inorganic nitrogen sources were used. Casamino acids were
found to be the most effective nitrogen source for PSA pro-
duction, and a high ammonia concentration inhibited PSA
production (Honda et al. 1997). The catabolism of specific
carbon and nitrogen sources causes a synergistic effect that
facilitates the synthesis of the precursors (pyruvate and
ManNAc) involved in the PSA biosynthesis pathway
(Rodríguez-Aparicio et al. 1988; Rode et al. 2008).

PSA production and cell growth were closely related. The
PSA concentration increased with a higher biomass in most
cases. During PSA production by E. coli, the fermentation
medium pH has a significant effect on the biosynthesis of
the PSA. Liu et al. (2010) developed a novel strategy by con-
trolling pH with ammonia water feeding coupled with sorbitol
supplementation, and the resulting PSA level increased to
5.5 g/L. Wu et al. (2010) also used an ammonia water feeding
strategy to control the pH at 6.4 in the bioreactor, and PSA
production reached as high as 5.2 g/L. Zheng et al. (2013)
developed a novel two-stage pH control fermentation process
for production of high molecular weight PSA. The pH value
was initially set at 6.4 to encourage cell growth and PSA
production, and then the pH was set at 7.4 to promote the
formation of higher molecular weight PSA. Their explanation
for the impact of pH on the molecular weight of PSAwas that
cell growth and the activity of key PSA biosynthesis enzymes
were affected by pH, thereby affecting its production rate.
However, mildly acidic conditions affect the stability of the
PSAmolecules. A high pKa acts as a proton donor for general

Table 1 Production of polysialic acids by process engineering and metabolic engineering in E. coli

Strain Description Molecular weight Chain length PSA yields References

E. coli K1 K235 Incubated in 250-ml shake flasks. D-xylose
and L-proline was were used as the only carbon
and nitrogen sources.

–- –- 1.35 g/L Rodríguez-Aparicio
et al. (1988)

E. coli K1 K235-WXJ4 pH control during fed-batch fermentation –- –- 2.61 g/lL Zhan et al. (2002)

E. coli K1 Multiple fed-batch cultivation –- >130 0.95 g/L Rode et al. (2008)

E. coli CCTCC M208088 Lower level of initial phosphate and
pH control during fed-batch fermentation.

16 ∼ 50 kDa –- 5.2 g/L Wu et al. (2010)

E. coli K1 A fed-batch cultivation at a constant glucose
concentration of 50 mg/L.

–- –- 1.35 g/L Chen et al. ( 2011)

E. coli CCTCC M208088 Dual-stage pH control and fed-batch
fermentation.

260 kDa 890 5.65 g/L Zheng et al. ( 2013)

E. coli SA9 Strengthen the biosynthetic pathway of PSA. 113 kDa –- 16.15 g/L Chen et al. (2015)
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acid catalysis intramolecular self-cleavage of the glycosidic
bonds of the internal sialic acid units adjacent to the carboxyl
group. Another possible explanation is that rapid cell growth
at the optimal conditions (37 °C and pH 6.4) would accelerate
PSA biosynthesis. Thus, the molecular weight of PSAwould
be maintained at a relatively high level due to the PSA pro-
duction rate significantly outpacing the degradation rate
(Manzi et al. 1994; Zheng et al. 2013).

Compared with batch cultivation, fed-batch cultivations
under a constant glucose supply were more efficient in PSA
production. Chen and his colleagues compared fed-batch cul-
tivation at a constant specific growth rate of 0.25/h with fed-
batch cultivation at a constant glucose concentration of 50mg/
L. They found that both fed-batch cultivations provided higher
yields than that of the batch cultivation and found that acetate
formation was prevented. Moreover, the PSAyield on glucose
resulted in higher PSA productivity. PSA formation was high-
ly associated to the specific growth rate of the cells. The
growth rate (0.32/h) in the fed-batch cultivation at a constant
glucose concentration of 50 mg/L was 82 % higher than that
of the fed-batch cultivation at a constant specific growth rate
of 0.25/h, demonstrating a positive correlation between the
specific growth rate and product formation (Chen et al. 2011).

Metabolic engineering for enhanced production
of polysialic acid

With the advent of synthetic biology and metabolic engineer-
ing, many engineering tools have been developed for heterol-
ogous production of valuable chemicals. These tools create
new opportunities for the efficient accumulation of PSA by
designing and optimizing of the metabolic pathway in E. coli.
N-Acetylneuraminic acid (Neu5Ac), the most ubiquitous spe-
cies among the sialic acids, is the precursor of PSA biosyn-
thesis and is widely distributed in the PSA of bacteria and
mammals. Metabolic engineering was applied for enhanced
Neu5Ac production. For the biosynthesis of sialic acid, the
Neu5Ac synthase (NeuB) (Samain 2008; Brody and
Lundgren 2009; Ishikawa et al. 2010) or the Neu5Ac aldolase
(NanA) (Tao et al. 2011; Kang et al. 2012; Lin et al. 2013) is
often employed to catalyze the reaction from ManNAc to
Neu5Ac in the engineered strains.

Brody and Lundgren (2009) overexpressed glucosamine
synthase (GlmS), NeuB, and UDPGlcNAc 2-epimerase
(NeuC) from N. meningitidis in E. coli, and 1.5 g/L of
Neu5Ac was produced from glucose after 98 h under shake-
flask conditions. Samain (2008) reported that 39 g/L of
Neu5Ac was produced through high cell density fer-
mentation with glycerol as carbon source. Ishikawa
et al. constructed a recombinant E. coli N18-14 strain
by overexpressing genes of GlcNAc 2-epimerase

(slr1975) and neuB resulting in a yield of 53 g/L of
Neu5Ac (2.41 g/L/h) after 22 h (Ishikawa et al. 2010).

Neu5Ac aldolase (NanA), which catalyzes Neu5Ac syn-
thesis using ManNAc and pyruvate as substrates, is used in
Neu5Ac production (Lee et al. 2007; Wang et al. 2009; Hu
et al. 2010; Tao et al. 2011; Kang et al. 2012; Lin et al. 2013).
Lee et al. developed a Neu5Ac production system by coupling
two E. coli strains that expressed GlcNAc 2-epimerase(AGE)
and NanA individually; when co-cultured, 122.3 g/L of
Neu5Ac was obtained with highly concentrated cells and
highly concentrated substrates (1.2 M of GlcNAc and 1.2 M
of pyruvate). Tao et al. (2011) constructed E. coli strains over-
expressing slr1975 and nanA for Neu5Ac production, and
Neu5Ac accumulated to 59 g/L after 36 h (1.64 g/L/h). Lin
et al. (2013) engineered E. coli by assembling a two-step het-
erologous pathway consisting of AGE and NanA, resulting in
a yield of 74.2 g/L Neu5Ac and a productivity of 6.2 g/L/h.

The nan operon (Fig. 2), which encodes the proteins for
sialic acid catabolism, is found in hundreds of bacterial spe-
cies (Vimr et al. 2004; Almagro-Moreno and Boyd 2009). The
products of sialic acid catabolism are GlcNAc and pyruvate,
which are the primary metabolism molecules (Almagro-
Moreno and Boyd 2009; Li and Chen 2012).The removal of
the nanA and nanT genes abolishes sialic acid catabolism and
increases Neu5Ac biosynthesis using the NeuB pathway
(Brody and Lundgren 2009). Knockout of both the nanK
and nanA genes improved the sialylation efficiency by
preventing ManNAc and Neu5Ac from being diverted from
the biosynthesis pathway (Fierfort and Samain 2008).
Knockout of the nanTEK genes blocked Neu5Ac uptake and
the competing pathway, which forced the reactions toward the
synthetic direction as the final product was secreted outside of
the cells and enhanced the Neu5Ac production by 3-fold (Lin
et al. 2013). NanA is the rate-controlling enzyme in the bio-
synthesis of Neu5Ac through ManNAc and pyruvate. With
the increased expression of NanA, a ninefold increase in
Neu5Ac production was obtained (Lin et al. 2013). By
blocking Neu5Ac uptake and degradation and abolishing the
ManNAc catabolic pathway by removing nanT and nanK,
respectively, the efficiency of the whole-cell biocatalyst for
Neu5Ac production was improved (Brody and Lundgren
2009; Lin et al. 2013).

For PSA biosynthesis, NeuD, NeuA, and NeuS are key
components of the biosynthetic pathway (Fig. 1)
(Steenbergen et al. 2006; Song et al. 2011; Ferrero and
Aparicio 2010). To investigate the effects of the key enzymes
of the PSA synthetic pathway on PSA production, NeuD,
NeuA, and NeuS were overexpressed separately or in combi-
nation (Chen et al. 2015). The strain overexpressing NeuD
produced threefold more PSA than that of the wild-type strain,
while the strains overexpressing NeuA or/and NeuS only
slightly increased PSA production. The results showed that
NeuD played an important role in the biosynthesis of PSA.
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The strain harboring pDB1S-DA, which co-expressed NeuD
and NeuA, enhanced the PSA biosynthetic pathway and im-
proved PSA production significantly. Neu5Ac is the precursor
of PSA, and blocking the Neu5Ac catabolic pathway by de-
leting NanA resulted in enhanced production of PSA. By
overexpressing NeuD and NeuA in the nanA-knockout strain,
the production of PSA increased by 85 % compared to the
original strain, and 16.15 g/L PSA was obtained (Chen et al.
2015).

Purification of polysialic acid in E. coli

Studies on the isolation of PSA from fermentation broth have
been reported. Rode et al. (2008) developed a process for
purification of PSA. The major PSA fraction could be suc-
cessfully isolated from the concentrated supernatant by con-
secutive precipitation steps with acetone, cetavlon, and etha-
nol. Final polishing of the purified fractionwas achieved using
size exclusion chromatography on a Sephacryl S-300 column.
The overall amount of the isolated product was greater than
20 % of the total PSA that was produced (Rode et al. 2008).

Bacterial PSA is negatively charged due to the high content
of carboxyl groups, which could be completely neutralized by
the typical positively charged cationic surfactants, such as cetyl
pyridinium chloride (CPC). Liu et al. (2010) developed a puri-
fication method for PSA and involved isolation from the broth
by ethanol precipitation, filtration with perlite as a filter aid,
CPC precipitation, and lyophilization. The final PSA product
had 98.1 ± 1.6 % purity at a 56.1 ± 1.7 % recovery rate.

Future perspectives

In recent years, PSA has attracted considerable interest due to
its important biological functions and has been a valuable re-
source in both the medical and biotechnological fields. Many
research studies focus on the link between quality and quantity
of PSA and their therapeutic applications. Avaccine using bac-
terial PSAwith the α 2,8-polysialic structure is weakly immu-
nogenic because it is identical to the polysialic acid expressed in
mammals. As a consequence, modified PSA has been used in
vaccine development to protect individuals from invasive men-
ingitis (Tan et al. 2010). PSA as an anti-adhesive biological
molecule is dependent on chain length (Colley et al. 2014).
Therefore, the use of more uniform chain length PSA has a
tremendous potential to improve the production of these thera-
peutic reagents, and may enable potential PSA strategies for
nervous system tissue and other tissue repair.

For biotechnological production, E. coli strains have been
process engineered and metabolically engineered for the effi-
cient production of PSA. Metabolic engineering strategies
have been successfully applied for improving Neu5Ac and

PSA production. The combination of metabolic engineering
and process engineering strategies, including enhancing the
precursor (Neu5Ac) supply, promoting capsule polysaccha-
ride exportation, and optimizing the fermentation process, will
lead to new approaches to further improve the PSA produc-
tion. These strategies will make the bioprocess a promising
cost-effective resource for PSA production with not only
higher titers, yields, and productivity but also regulated PSA
chain lengths.
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