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Abstract Alcohols are a rich source of compounds from re-
newable sources, but they have to be activated in order to
allow the modification of their carbon backbone. The latter
can be achieved via oxidation to the corresponding aldehydes
or ketones. As an alternative to (thermodynamically
disfavoured) nicotinamide-dependent alcohol dehydroge-
nases, alcohol oxidases make use of molecular oxygen but
their application is under-represented in synthetic biotransfor-
mations. In this review, the mechanism of copper-containing
and flavoprotein alcohol oxidases is discussed in view of their
ability to accept electronically activated or non-activated alco-
hols and their propensity towards over-oxidation of aldehydes
yielding carboxylic acids. In order to facilitate the selection of
the optimal enzyme for a given biocatalytic application, the
substrate tolerance of alcohol oxidases is compiled and
discussed: Substrates are classified into groups (non-activated
prim- and sec-alcohols; activated allylic, cinnamic and ben-
zylic alcohols; hydroxy acids; sugar alcohols; nucleotide al-
cohols; sterols) together with suitable alcohol oxidases, their
microbial source, relative activities and (stereo)selectivities.
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Introduction

Oxidation represents a fundamental reaction in nature
(Hollmann et al. 2011; Turner 2011), and oxidases are a prom-
inent subclass of redox enzymes, which use oxygen either as
oxidant or as electron acceptor. This property made them par-
ticularly attractive for the production of chemicals
(Vennestrom et al. 2010). In this context, the oxidation of
alcohols is an important transformation in synthetic chemistry,
which allows to introduce carbonyl groups, which represent
excellent acceptors for C-, N-, O- and S-nucleophiles and
thereby allows the extension of a given carbon backbone.
Consequently, a large number of protocols has been devel-
oped, which depend on (i) transition metals in stoichiometric
(e.g. Cr, Mn) or catalytic amounts (e.g. Ru, Fe), (ii) metal-free
oxidations according to Swern or Pfitzner-Moffat (Pfitzner
and Moffatt 1963; Omura and Swern 1978), (iii) molecular
oxygen as oxidant (Tojo and Fernández 2006) and more re-
cently, (iv) organocatalysts, such as TEMPO (Wertz and
Studer 2013).

In a related fashion, alcohol oxidases convert primary and
secondary alcohols to aldehydes and ketones, respectively.
During this reaction, molecular oxygen is reduced to hydro-
gen peroxide. In order to avoid enzyme deactivation, a cata-
lase is usually employed, particularly on preparative scale. For
screening purposes, a spectrophotometric assay based on
horse radish peroxidase (HRP) together with a suitable artifi-
c ial electron acceptor, such as 2,2 ′ -azino-bis(3-
ethylbenzthiazoline-6-sulfonic acid) (ABTS) may be
employed (Scheme 1). The ABTS-radical generated shifts its
absorption maximum (Baron et al. 1994; Uwajima and Terada
1980).

Although cofactor-lacking oxidases are reported (Fetzner
and Steiner 2010), commonly used alcohol oxidases depend
on flavin (Macheroux et al. 2011; Dijkman et al. 2013) or a
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metal (Cu) as a cofactor (Whittaker 2003), which mediates the
electron transfer. In flavoprotein oxidases, the oxidation pro-
ceeds via two half reactions, where the alcohol is first oxidised
by a two-electron transfer during the reductive half reaction,
yielding reduced flavin. The oxidised flavin is regenerated by
a stepwise single-electron transfer via the oxidative half
reaction, which requires triplet oxygen, as it is a spin-
forbidden reaction. Hence, di-oxygen acts as single-electron
acceptor and forms superoxide (O2

−·), stabilised by a positive-
ly charged histidine residue (Dijkman et al. 2013; Wongnate
et al. 2014). Another single-electron transfer yields a covalent
hydroperoxy flavin intermediate, which eliminates hydrogen
peroxide and re-forms oxidised flavin (Scheme 2) (Gadda
2012). The highly unstable C4a-hydroperoxyflavin intermedi-
ate has only been detected for pyranose oxidase (P2O)
(Mattevi 2006; Chaiyen et al. 2012; Wongnate and Chaiyen
2013).

The oxidation of primary alcohols catalysed by flavopro-
tein oxidases does not necessarily stop at the aldehyde stage,
but may further proceed to the corresponding carboxylic acid.
This second oxidation step is mechanistically less investigat-
ed, but it is obvious that the actual substrate is the aldehyde
hydrate (gem-diol), rather than its carbonyl form, because hy-
dride abstraction from the former yields a doubly resonance-

stabilised oxocarbenium cation, which upon expulsion of H+

furnishes the carboxylic acid. In contrast, hydride abstraction
from the carbonyl form would lead to a highly unstable
(hypothetical) acylium cation, which would be quenched by
a water molecule (Scheme 3).

This mechanism for over-oxidation has been proposed for
choline oxidase (CHO), whose natural role is the formation of
N-trimethylammonium glycine (‘betaine’) from choline via
the aldehyde hydrate through a two-step oxidation (Scheme 4)
(Rungsrisuriyachai and Gadda 2008).

The over-oxidation of alcohols to carboxylic acids has been
observed not only for choline oxidase but also for other fla-
voprotein oxidases, such as alditol oxidase (AldO), aryl alco-
hol oxidase (AAO), hydroxymethyl furfuryl oxidase
(HMFO), hexose oxidase (HOX, Dbv29), isoamyl alcohol
oxidase (IAO) or short- and long-chain alcohol oxidases
(SCAOs, LCAOs). Labelling studies proved the existence of
the aldehyde hydrate as intermediate (Van Hellemond et al.
2009), and for AAO, which naturally oxidises benzylic alco-
hols, NMR studies revealed that the gem-diol intermediate
was favoured (Ferreira et al. 2010) (Scheme 3).

Structurally, most of the flavoprotein oxidases either be-
long to the glucose-methanol-choline (GMC) oxidase or the
vanillyl alcohol oxidase (VAO) family. Both families have a
flavin present in the active site where the binding domain and
the binding mode of the flavin differ. In case of VAO, the
flavin is covalently linked to a histidine, cysteine or tyrosine
residue, while in the GMC family, the majority of the enzymes
contain a dissociable flavin adenine dinucleotide (FAD) moi-
ety. In P2O or CHO, a covalent linkage was found. The active
sites and consequently the substrate scope of these enzymes
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show high variance (Fraaije et al. 1998a; Kiess et al. 1998;
Leferink et al. 2008; Dijkman et al. 2013).

Another redox cofactor found in alcohol oxidases, such as
galactose oxidase (GOase), is the transition metal copper,
whose role in catalysis is well described in several reviews
(Ridge et al. 2008; Guengerich 2013). Since only a single
copper(I) ion is found in the active site, it seems surprising
that a two-electron transfer can occur. Detailed investigations
revealed that the latter proceeds via two consecutive single-
electron transfer steps. Thus, abstraction of the first electron
byCu2+ yields Cu+, which transfers its electron onto a tyrosine
residue, which forms a transient radical anion (Monti et al.
2011). The latter is stabilised by a rare covalent thioether
bridge with an adjacent cysteine (Ito et al. 1991). The second
electron transfer yields a Cu+-tyrosine radical. From this, ox-
ygen accepts two electrons (Wang 1998; Whittaker 2003)
(Scheme 5). GOase from Fusarium NRRL 2903 is the most
prominent member of Cu-containing alcohol oxidases and
belongs to the family of radical copper oxidases, a family with
a wide phylogenetic distribution and broad range of functions.
The crystal structure of the enzyme revealed that a mononu-
clear copper ion is centred in a distorted pyramid structure,
which is coordinated by two tyrosine residues (Tyr272 and
Tyr495) and two histidine side chains (His496 and His581)
(Whittaker and Whittaker 2001).

For Cu-containing alcohol oxidases, the oxidation stops at
the aldehyde stage and over-oxidation was not observed
(Monti et al. 2011).

From a biocatalytic viewpoint, alcohol oxidases are a
promising group of enzymes, because they are biochemically
well characterised and a broad range of enzymes have been
described (Whittaker 2003; Leferink et al. 2008; Dijkman
et al. 2013) which were also employed in cascade reactions
(Fuchs et al. 2012; Perez-Sanchez et al. 2013; Schrittwieser
et al. 2011). Depending on their role in nature, substrates for
alcohol oxidases vary to a great extent in terms of substrate

size and/or polarity (Turner 2011). In fungi, extracellular al-
cohol oxidases produce hydrogen peroxide (needed for lignin
degradation by peroxidases) by oxidation of cinnamyl alco-
hols (e.g. coniferyl, coumaryl and sinapyl alcohol). Further-
more, hydrogen peroxide acts as antibiotic in the rhizosphere
to protect roots (Monti et al. 2011). As an alternative to alco-
hol oxidases, NAD(P)+-dependent alcohol dehydrogenases
provide a well-investigated enzyme platform for the oxidation
of prim- and sec-alcohol functionalities. Although these en-
zymes are more abundant than alcohol oxidases, the equilib-
rium for oxidation is strongly disfavored but can be overcome
by NAD(P)+ recycling (Hollmann et al. 2011).

In the following, an overview on the current literature of
alcohol oxidases is given, by focussing on their substrate tol-
erance to facilitate the choice of an appropriate enzyme for a
given type of alcohol substrate.

Non-activated alcohols

Primary aliphatic alcohols

The enzymatic oxidation of non-activated aliphatic prim-alco-
hols by alcohol oxidases shows a remarkably broad substrate
tolerance (Table 1) and encompasses straight-chain or
branched substrates with chain lengths ranging from C1 to
C16. In addition, functional groups, such as aromatics, halo-
gens (Cl, Br), non-allylic olefins, alkylamino groups and car-
boxylates, are tolerated (Scheme 6). Vicinal, 1,3- and α,ω-
diols are selectively oxidised at the prim-hydroxy group,
while sec-alcohols remain untouched. Depending on the
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enzyme, the oxidation products are the corresponding alde-
hydes and carboxylic acids, which are formed by over-
oxidation with flavoprotein oxidases.

Aliphatic alcohols with a chain length of one to seven C
atoms were oxidised by short-chain alcohol oxidases
(SCAOs) [EC 1.1.3.13] from Pichia pastoris, Hansenula sp.
(Table 1, entry 1) and Aspergillus terreus (Table 1, entry 2)
while methanol and ethanol were also converted by alcohol
oxidases from Candida boidinii, Thermoascus aurantiacus
and A. terreus (Table 1, entry 1) (Kato et al. 1976; Siebum
et al. 2006; Menon et al. 1995; Couderc and Baratti 1980;
Kumar and Goswami 2006; Ko et al. 2005; Perez-Sanchez
et al. 2013). In general, the activity decreases with increasing
chain length of the fatty alcohol, e.g. 1-pentanol shows 24 %
relative activity compared to methanol (Ko et al. 2005).
SCAO from Hansenula sp. was employed together with a
C–C lyase in a cascade reaction, where short-chain alcohols
(methanol, ethanol, 1-propanol and 1-pentanol) were oxidised
with excellent conversion to the corresponding aldehydes,
which were subjected to cross-acyloin condensation with ben-
zoin generated in situ from benzaldehyde by benzaldehyde
lyase to yield 2-hydroxyketones (Shanmuganathan et al.
2012; Perez-Sanchez et al. 2013). prim-Alcohols with a chain
length of 7 to 16 carbon atoms were best oxidised by long-
chain alcohol oxidases (LCAOs) [EC 1.1.3.20] from
A. terreus, Candida tropicalis and Arabidopsis thaliana
(Table 1, entry 2). Both, SCAOs and LCAOs, are flavopro-
teins located in fungal microsomes (Kemp et al. 1988; Eirich
et al. 2004; Kumar and Goswami 2006, Cheng et al. 2004).
Terminal alcohols bearing a polar functional group, such as α,
ω-diols (Table 1, entries 5 and 6) and ω-carboxy fatty alco-
hols (Table 1, entry 12), with a long hydrocarbon backbone
were also oxidised by long-chain alcohol oxidases (Kumar
and Goswami 2006).

Short-chain alcohol oxidase from several microorganisms
(C. boidinii, Hansenula sp., P. pastoris and T. aurantiacus)
was described to convert racemic branched alcohols (Table 1,
entries 16–17) in an enantioselective fashion with conversions
of 16–76 %, the non-reacted substrate enantiomers showed

ees of up to 90 % for SCAO from C. boidinii (Clark et al.
1995). Isoamyl alcohol oxidase (IAO) [EC 1.1.3.x] from As-
pergillus oryzae exhibits a narrow substrate range and prefers
branched short-chain alcohols, such as 3-methyl-1-butanol
(Table 1, entry 17) (Yamashita et al. 1999). Halogen-
substituted alcohols, which were oxidised by SCAO, were
used as molecular probes for mechanistic studies (Menon
et al. 1995).

Saturated and unsaturated vic-1,2-diols were the substrates
of choice for alditol oxidase [EC 1.1.3.41] from Streptomyces
coelicolor and Acidothermus cellulolyticus (Table 1, entries
7–9, 11 and 15). This enzyme apparently prefers a glycol or
1,3-diol moiety. For rac-1-phenyl-1,2-ethanediol carrying a
bulky aryl moiety, the (R)-enantiomer was preferentially
oxidised by alditol oxidase (Table 1, entry 11) (Van
Hellemond et al. 2009). Short (non-allylic) unsaturated alco-
hols lacking a second hydroxy group were completely (4-
penten-1-ol) or partially (3-buten-1-ol) oxidised by short-
chain alcohol oxidase from P. pastoris (Table 1, entry 14)
(Siebum et al. 2006).

Another prominent enzyme of this group is choline oxidase
from A. globiformis which oxidises choline and analogues,
such as N,N-dimethylethanolamine, N-methylethanolamine,
triethanolamine, diethanolamine and 3,3-dimethylbutan-1-ol
(Table 1, entries 13 and 19) in a two-step oxidation to the
corresponding carboxylic acid (Ikuta et al. 1977; Gadda
et al. 2004).

Secondary aliphatic alcohols

Racemic secondary aliphatic alcohols are interesting sub-
strates, because enantioselectivities in kinetic resolution are
usually much higher than with prim-alcohols bearing a stereo-
genic centre. In contrast to prim-alcohols, which may undergo
over-oxidation to carboxylic acids, the oxidation products de-
rived from sec-alcohols are solely ketones (Scheme 7). Com-
pared to prim-alcohol oxidases, enzymes acting on secondary
alcohols are less abundant, but several enzymes were found to
be highly active (Table 2). Secondary alcohol oxidase (SAO)
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[EC 1.1.3.18] from Pseudomonas putida, Pseudomonas
vesicularis and A. terreus has shown high activity for the
polymeric substrate polyvinyl alcohol (PVA) (Table 2, entry
1) (Sakai et al. 1985; Kawagoshi and Fujita 1997), and it was
discovered that one non-heme Fe2+ species is present in the
enzyme. To date, it remains unclear whether the iron species
serves as a cofactor like the copper in galactose oxidase or if it
does not participate in catalysis at all.

For monomeric sec-alcohols, the relative activity of SAO
from P. putida ranges between 5 and 30 % (compared to
PVA). High activity for 2-octanol was found with the enzyme
from P. vesicularis (83 % rel. activity), which also accepts
cyclohexanol (42 % rel. activity). Its oxidised product
(cyclohexanone) is used as a starting material for the synthesis
of the polymer building block ε-caprolactam. sec-Alcohols
bearing an additional OH group, such as 1,2-propanediol
and 2,4-pentanediol, were also accepted as substrates
(Table 2, entries 7 and 8); however, no details are reported
about the regioselectivity of the oxidation (Sakai et al. 1985;
Kawagoshi and Fujita 1997). Additionally, SCAO from
T. aurantiacus, A. terreus and P. pastoris as well as LCAO
from C. tropicalis showed broad activity on secondary alco-
hols (Table 2, entry 2) (Eirich et al. 2004; Kumar and
Goswami 2009; Kjellander et al. 2013; Ko et al. 2005). Fur-
thermore, 2-methyl-2-propanol was claimed to show 16 %

relative activity with SCAO, but this tert-alcohol should be a
non-substrate (Ko et al. 2005).

Activated alcohols

Allylic alcohols

In contrast to saturated (non-activated) aliphatic alcohols, al-
lylic and benzylic alcohols are much easier to oxidise, because
radicals and carbene ions occurring as intermediates are reso-
nance stabilised (see Electronic Supplementary Material,
Scheme S1). Owing to their high intrinsic reactivity, allylic
alcohols are easily oxidised by a broad range of alcohol oxi-
dases, such as copper-containing galactose oxidase (GOase)
[EC 1.1.3.9], flavoprotein cholesterol oxidase (ChOx) [EC
1.1.3.6], aryl alcohol oxidase (AAO) [EC 1.1.3.7] and
hydroxymethylfurfural oxidase (HMFO) [EC 1.1.3.47]
(Scheme 8, Table 3) (Guillen et al. 1992; Dieth et al. 1995;
Sun et al. 2002; Dijkman and Fraaije 2014).

Small allylic alcohol was oxidised poorly by galactose ox-
idase (Table 3, entries 1 and 2), which prefers large analogues,
such as cinnamyl alcohol (Table 3, entry 4). A mutant of
galactose oxidase from Fusarium sp. oxidised cinnamyl alco-
hol with full conversion (Sun et al. 2002; Fuchs et al. 2012). In
contrast to galactose oxidase, which does not accept sec-allyl-
ic alcohols, cholesterol oxidase from Rhodococcus
erythropolis converted sterically demanding secondary allylic
alcohols in a complete stereo- and enantioselective fashion
with conversions up to 70 % and high to excellent ees. For
methyl-substituted bicyclic substrates (Table 3, entries 7 and
8), the relative (cis) position of the hydroxyl group with re-
spect to the methyl group were mandatory to be accepted and
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Scheme 7 Oxidation of secondary alcohols by alcohol oxidases

Table 2 Secondary aliphatic alcohols

Entry Substrate Oxidase Reference

1 Polyvinyl alcohol SAOa from P. putida and P. vesicularis Sakai et al. 1985; Kawagoshi and Fujita 1997

2 2-Alkanols C3–C12, C16 SAOa from A. terreus (C3, C8, C12), P. putida (C3–C7)
and P. vesicularis (C4–C8); SCAO

b from T. aurantiacus
(C3–C4), A. terreus (C8) and P. pastoris (C3); LCAO

b

from C. tropicalis (C10–C11, C16)

Ko et al. 2005; Kumar and Goswami 2006; Kjellander et al. 2013;
Sakai et al. 1985; Kawagoshi and Fujita 1997; Kumar and
Goswami 2009; Eirich et al. 2004

3 3-Alkanols C5–C8 SAOa from P. putida (C5–C8), A. terreus (C8)
and P. vesicularis (C6–C8)

Sakai et al. 1985; Kawagoshi and Fujita 1997; Eirich et al. 2004

4 4-Alkanols C7–C10 SAOa from P. putida (C7–C9) and P. vesicularis (C7, C10) Sakai et al. 1985; Kawagoshi and Fujita 1997

5 5-Nonanol SAOa from P. putida Sakai et al. 1985

6 Cycloalkanols C6, C8 SAOa from P. vesicularis (C6) and A. terreus (C8) Kawagoshi and Fujita 1997; Kumar and Goswami 2006

7 1,2-Propanediol SAOa from P. putida Sakai et al. 1985

8 2,4-Pentanediol SAOa from P. vesicularis Kawagoshi and Fujita 1997

a Non-heme Fe2+ containing
b Flavin-containing
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non-activated (non-allylic) hydroxy groups were unreactive.
Even comparably small monocyclic substrates could be con-
verted (Dieth et al. 1995). Aryl alcohol oxidase exhibits a
broad substrate scope and accepts phenyl substituted allylic
alcohols such as coniferyl and cinnamyl alcohol (Table 3,
entries 4 and 5), as well as slim counterparts, such as 2,4-
hexadien-1-ol (Table 3, entry 3), which shows that this

enzyme does not necessarily need a cyclic structure, but only
a conjugated system (Ferreira et al. 2005; Romero et al. 2009).
5-Hydroxymethylfurfural oxidase exhibited a similar behav-
iour and appears to be a promising candidate for the oxidation
of allylic alcohols, as it showed excellent acceptance of
cinnamyl alcohol (Table 3, entry 4) and 2,4-hexadien-1-ol
(Table 3, entry 3) (Dijkman and Fraaije 2014). With cinnamyl
alcohol and its p-methoxy derivative, AAO shows over-
oxidation and forms the corresponding acids (Table 3, entry 4)
(Guillen et al. 1992).

Benzylic alcohols

Due to their high degree of electronic activation, benzylic
alcohols (Scheme 9, Table 4) are easy to oxidise. In particular,
galactose oxidase from Fusarium NRRL 2903 and aryl alco-
hol oxidase from Pleurotus eryngii are ideally suited for this

Scheme 8 Oxidation of allylic alcohols by alcohol oxidases

Table 3 prim- and sec-Allylic alcohols

a Copper containing
b Flavin containing
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substrate type, together with a recently discovered flavin-
containing oxidase from Bjerkandera sp.

In the case of benzyl alcohol, two more AAOs (from
A. terreus and Pleurotus ostreatus) showed activity, as well
as SCAO from C. boidinii and T. aurantiacus, SAO from
P. vesicularis and HMFO from Methylovorus sp. (Table 4,
entry 2) (Kumar and Rapheal 2011). Although not visible on
a non-chiral substrate, AAO acts in a stereoselective fashion by
removing the pro-R hydride as shown by deuterium experi-
ments (Hernandez-Ortega et al. 2012b). Various substituents
on the aromatic ring system are freely tolerated: Although
wild-type galactose oxidase from Fusarium has a broad sub-
strate scope for benzylic prim-alcohols, the activity was con-
siderably increased by mutations. For instance, all
regioisomers of pyridine methanol were transformed by a
R330K, Q406T-mutant of galactose oxidase, which showed
up to 2000-fold enhanced activity towards 2-pyridinemethanol
compared to the canonical D-galactose (Sun et al. 2002).Meta-
and para-substituted substrates (3-F, 3-Br, 3-Cl, 3-NO2, 4-F, 4-
Cl, 4-Br, 4-I, 4-NO2, 4-OMe, 4-SMe, 4-Me, 4-CF3) (Table 4,
entries 4, 6, 7, 17, 18, 20–24) were converted with up to 20-
fold variation of relative rates (Whittaker andWhittaker 2001).

Secondary aryl alcohols undergo kinetic resolution with
partly excellent ees using an (R)-selective mutant of galactose
oxidase from Fusarium sp. created by directed evolution
(Table 4, entries 28–40) (Escalettes and Turner 2008). The same
group also reported a rare example of the successful recognition
of an atropisomeric pair of enantiomers possessing axial chiral-
ity (Table 4, entry 41) (Yuan et al. 2010). Furthermore, an
engineered variant of HMFOwas able to oxidise phenylethanol
in a stereoselective fashion (Dijkman et al. 2015).

Methoxy groups (Table 4, entry 6) were accepted indepen-
dently from the position on the ring with comparable activities
relative to unsubstituted benzyl alcohol, whereas para-
substituted analogues reacted more than fivefold faster with
aryl alcohol oxidase. Furthermore, dimethoxy benzyl alcohols
(Table 4, entries 8 and 9) were converted by aryl alcohol

oxidase with high activity (Hernandez-Ortega et al. 2011;
Hernandez-Ortega et al. 2012a). In particular, 3,4-
dimethoxybenzyl alcohol (veratryl alcohol, Table 4, entry 9)
was converted with 326 % activity, while the 2,4-substituted
pendant (Table 4, entry 8) was accepted with 178 % activity
relative to benzyl alcohol (Guillen et al. 1992). Sterically de-
manding 3,4,5-trimethoxybenzyl alcohol (Table 4, entry 10)
was converted slowly. Besides methoxy groups, also hydroxy
groups, combinations thereof and even a meta-substituted
phenoxy group were accepted (Table 4, entries 12–16). The
hydroxy substrates (Table 4, entries 12 and 13) were poorly
converted compared to the 3-phenoxybenzyl alcohol (Table 4,
entry 16) which was well accepted (Guillen et al. 1992). Ad-
ditionally, the name-giving enzyme for the VAO family,
vanillyl alcohol oxidase (VAO) [EC1.1.3.38] acts on 4-
hydroxy-3-methoxybenzyl alcohol (vanillyl alcohol, Table 4,
entry 15) (de Jong et al. 1992; Van den Heuvel et al. 1998;
Fraaije et al. 1998b; Van Den Heuvel et al. 2000; Van den
Heuvel et al. 2001a; Van den Heuvel et al. 2001b). While
the enzyme seems to accept bulky substituents, e.g. bearing
a phenoxy group, additional methoxy or especially hydroxy
groups (Table 4, entries 12–16) cause unfavourable interac-
tions in the active site. The aryl alcohol oxidase fromP. eryngii
also acts on 4-hydroxy-substituted α-aryl alcohols (Table 4,
entry 13) (Guillen et al. 1992). Piperonyl alcohol (1,3-
benzodioxole-5-methanol, Table 4, entry 11), a building block
in epinephrine synthesis, was oxidised with full conversion by
galactose oxidase from Fusarium sp. (Fuchs et al. 2012). A
broad range of chloro- and fluoro-substituted aryl alcohols
were accepted by both aryl alcohol oxidase and galactose
oxidase (Table 4, entries 20 and 21) (Guillen et al. 1992;
Whittaker andWhittaker 2001; Romero et al. 2009). The only
exception being meta-chlorobenzyl alcohol, which was not
converted at all. A substrate which is sterically demanding
and well accepted by AAO is 2-naphthalene methanol
(Table 4, entry 26). It showed a relative activity of 746 % com-
pared to the monocyclic substrate analogue (Table 4, entry 2).
In conclusion, the position of substituents and their polarity
seem to play a crucial role in substrate acceptance. The recently
characterised 5-hydroxymethylfurfural oxidase from
Methylovorus sp. MP688 showed a broad substrate acceptance
of various furfuryl alcohols (Table 4, entry 42), but it also
showed activity on benzylic alcohols with substituents in para--
position (Table 4, entries 3 and 5) and vanillyl alcohol (Table 4,
entry 15) (Dijkman and Fraaije 2014). In view of the growing
importance of furan derivatives, such as hydroxymethyl furfu-
ral, which can easily be obtained via double elimination of H2O
from hexoses or pentoses and hence constitute a promising C
source for organic synthesis (Schwartz et al. 2014), HMFO has
a considerable potential to be used in large-scale applications.
In a recent study, site-directed mutagenesis allowed to boost the
activity of HMFO on 5-formyl-2-furancarboxylic acid leading
to improved yields of 2,5-furandicarboxylic acid,
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Table 4 prim- and sec-Benzylic alcohols

a Copper containing
b Flavin containing
c Fe2+ containing
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which is a promising monomer for polyester production from
renewable resources (Dijkman et al. 2015).

α-Hydroxy acids

Owing to the negative charge ofα-hydroxy acids at neutral pH,
the latter are oxidised by a subgroup of flavoprotein oxidases,
which are specific for this type of polar substrate and furnish
the correspondingα-ketoacids (Scheme 10). On a first glimpse,
this transformation appears to have little value, because it goes
in hand with the destruction of a chiral centre. However, α-
hydroxy acids are usually more easily accessible than the cor-
responding sensitive α-keto-analogues, which are prone to de-
carboxylation; this transformation is of practical value, and in
addition, racemic α-hydroxy acids undergo kinetic resolution
with a preference for the (S)-enantiomer (Turner 2011).

A broad range of α-hydroxy acids were studied as sub-
strates for FMN-depending glycolate oxidase (GlyO), L-lac-
tate oxidase (LLO) or long-chain 2-hydroxyacid oxidase
(LHAO), which belongs to the group of (S)-2-hydroxy acid
oxidases (HAOX) [EC 1.1.3.15]. For GlyO, the natural sub-
strate is glycolic acid (Table 5, entry 1) and the most promi-
nent GlyO originates from spinach (Spinacia oleracea)
(Zelitch and Ochoa 1953). The name-giving substrate can be
over-oxidised to oxalic acid, although the second step is less
efficient (Richardson and Tolbert 1961). Short- and medium-
chain 2-hydroxy acids with up to ten carbon atoms (Table 5,
entries 10 and 11), unsaturated cis- and trans-2-hydroxydec-4-
enoic acid (Table 5, entry 14), bulky phenyllactic acid
(Table 5, entry 9) and the oxa-analogue 2-hydroxy-4-
pentoxybutyric acid (Table 4, entry 13) were well accepted
as substrates in kinetic resolution with good to excellent ees.
Furthermore, 3-chlorolactic acid (110 % rel. activity), 2-
hydroxybutanoic acid (120% rel. activity), 3-indolelactic acid
(18 % rel. activity) (Table 5, entries 9 and 10), 3,3,3-
trifluorolactic acid (11 % rel. activity) (Table 5, entry 15)
and 2-hydroxydecanoic acid (40 % rel. activity) (Table 4,
entry 12) were nicely converted relative to lactic acid (Adam
et al. 1997; Adam et al. 1998; Das et al. 2009; Stenberg et al.
1995). The substrate spectrum of FMN-containing L-lactate
oxidase from Aerococcus viridans and a mutant thereof en-
compasses also sterically demanding α-hydroxy acids, such
as para-substituted mandelic acid derivatives (Table 5, entries
5–7) and was analysed in a quantitative structure analysis
(Duncan et al. 1989; Maeda-Yorita et al. 1995; Yorita et al.

1997). Additionally, an enzyme originating from Pseudomo-
nas stutzeri was used to oxidise lactic acid to pyruvate
enantioselectively (Table 5, entry 2, Gao et al. 2009). LHAO,
on the contrary, originating from mammalian sources, such as
pig kidney, rat kidney or hog renal cortex, oxidises 2-hydroxy
acids with a carbon chain length of at least three C atoms
(Blanchard et al. 1946; Robinson et al. 1962). 2-Hydroxy-4-
methylpentanoic acid, 2-hydroxybutyric acid and also
mandelic acid (Table 5, entries 8–10, 12) were oxidised with
moderate conversions (Urban et al. 1988).

Sterols

The bioactivity of steroids strongly depends on their substitu-
tional pattern, which is dominated by secondary hydroxy
groups in α- or β-positions, which upon oxidation furnish
keto-steroids. This transformation can be achieved in a
regio- and stereoselective fashion by alcohol oxidases. Owing
to the spacious molecular framework, it is conceivable that
alcohol oxidases acting on steroids have a strong preference
for large substrates and are generally not ideally suited for
small alcohols (Scheme 11).

Cholesterol oxidase (ChOx) [EC 1.1.3.6] found in Strepto-
myces hygroscopicus, Rhodococcus and Brevibacterium
sterolicum is the enzyme of choice for the oxidation of the
secondary alcohol function at C3, which leads to rare keto-
steroids (Table 6). From a biochemical point of view, it is
remarkable that cholesterol oxidases are strictly FAD contain-
ing, although they belong to two different families: Cholesterol
oxidase from Streptomyces is a member of the GMC oxidase
family, whereas B. sterolicum ChOx belongs to the VAO fam-
ily. Remarkably, most cholesterol oxidases are bifunctional
enzymes (Pollegioni et al. 1999; Gadda et al. 1997; Pollegioni
et al. 2009; Vrielink and Ghisla 2009), as they not only oxidise
the alcohol functionality at C3 yielding 5-cholesten-3-one but
alsomediate the isomerisation of the C5–C6 double bond of the
latter into conjugation with the newly formed keto-function by
assistance of an active-site glutamate residue to furnish the
corresponding 4-en-3-one, as demonstrated in detail with
ChOx from B. sterolicum (Kass and Sampson 1995)
(Scheme 11). The enzyme exhibited a surprisingly broad sub-
strate scope, and a variant from R. erythropolis even lacks
enantiospecificity at the C3 position (Dieth et al. 1995;
Biellmann 2001). For the enzyme fromRhodococcus sp., mod-
erate activities (relative to the natural substrate cholesterol) on
β-sitosterol (80 % rel. activity) and stigmasterol (78 % rel.
activity) were found by Wang et al. (2008) (Table 6, entries 6
and 7). Furthermore, the enzyme was active on cholestanol, 7-
dehydrocholesterol and dehydroepiandrosterone (15–37% rel.
activity) (Table 6, entries 2, 4 and 8), and 5 % relative activity
was found on 5α-androstane-3α,17β-diol (Table 6, entry 11)
(Labaree et al. 1997; Toyama et al. 2002; Wang et al. 2008,

Scheme 10 Enzymatic oxidation of hydroxy acids by hydroxy acid
oxidases
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Fujishiro et al. 2002; Xiang and Sampson 2004). Moreover,
cholesterol oxidase from B. sterolicum was employed for the
oxidation of 7α- and 7β-hydroxycholesterol (90 % conv.)
(Table 6, entry 3) in a chemoenzymatic multistep synthesis
(Alexander and Fisher 1995).

Sugar-related alcohols

Sugars

Although sugars constitute the most abundant group of renew-
able compounds/materials (Straathof 2014), their polyhy-
droxy structure imposes several unsolved problems in view
of their utility as starting materials in organic synthesis: (i)
they possess only a single type of functional group—the hy-
droxy group, and (ii) there are too many of them with similar
reactivity (Scheme 12). This causes a selectivity problem,
which is usually circumvented by tedious and inefficient
protection-deprotection chemistry. (iii) Furthermore, except
for the anomeric carbon, the carbon framework is inaccessible
to C–C extension/modification, because the [CH–OH] moiety
cannot be directly accessed without prior activation of the
hydroxy group. In this context, regioselective oxidation of
OH groups in sugars at the expense of O2 offers an elegant
method to introduce a carbonyl group, which is an ideal ac-
ceptor for C nucleophiles in C–C bond forming reactions.

Due to the presence of numerous hydroxy groups, carbo-
hydrates are usually bound in the active site of proteins via a
tight hydrogen-bonding network, which is not possible for
lipophilic mono-alcohols or diols. Consequently, one might
surmise, that alcohol oxidases acting on lipophilic (mono)
alcohols would not accept polar carbohydrates, and vice versa.
However, comparison of Tables 1 and 3 shows that many
sugar alcohol oxidases are also surprisingly active on small
non-polar alcohols, in particular galactose oxidase and alditol
oxidase.

The relative reactivity of hydroxy groups in sugars can be
associated with different subgroups of alcohol oxidases, most
of which possess a strong regio-preference for a specific hy-
droxyl group, which is exemplified on a schematic hexose
(Scheme 12). With its hemiacetal structure, the anomeric
OH is most reactive, which can be oxidised by glucose oxi-
dase (GOX), hexose oxidase (HOX) and oligosaccharide ox-
idases forming the corresponding sugar lactone. Next, the ter-
minal prim-OH is sterically least hindered among the non-

activated hydroxy groups; it can be selectively oxidised by
GOase to yield the aldehyde; no over-oxidation to the acid is
observed in this case. Due to small steric and electronic dif-
ferences, internal secondary hydroxy groups show very simi-
lar reactivities, they are oxidised by P2O with mixed
regioselectivities with a prevalence of C2>C3 yielding keto-
ses. C3-Oxidation products are only formed on 2-deoxy and
methylated sugars.

(i) The most reactive anomeric hydroxy group in sugars can
be selectively oxidised by a range of well-studied oxidases
(Scheme 12): D-Glucose (Table 7, entry 1) is the natural sub-
strate of the flavoenzyme GOX [EC 1.1.3.4], well studied from
Aspergillus niger, which displayed a very narrow substrate
spectrum and oxidises glucose at the C1 position (Nakamura
and Ogura 1968). Furthermore, chitooligosaccharide oxidase
(ChitO) [EC 1.1.3.x] from Fusarium graminearum catalyses
the oxidation of C1 of D-glucose. The catalytic activity was
improved by mutation (Heuts et al. 2007a), and the wild-type
and mutant enzymes also accepted cellulose degradation prod-
ucts like cellobiose, cellotriose and cellotetraose (Table 7, entry
18). Mutants of chitooligosaccharide oxidase also accepted D-
lactose and D-maltose besides the before mentioned D-glucose
oligomers (Table 7, entries 9 and 10) (Heuts et al. 2007a).
Variants obtained by further mutagenesis studies showed a
switch in the preference for the oligosugar preference as well
as improved activities on D-lactose, D-maltose and D-glucose
(Ferrari et al. 2015).

Furthermore, also glucooligosaccharide oxidase (GOO)
[EC 1.1.3.x] from various sources oxidised D-glucose and
its oligomers at C1 (Huang et al. 2005). Lactose oxidase
(LAO) [EC 1.1.3.x] from Microdochium nivale displayed
a similar substrate preference. Cellobiose (Table 7, entry
18) with 100 % relative activity was the preferred substrate,
whereas di-sugars as D-maltose (84 % rel. activity) and D-
lactose (52 % rel. activity) were also well accepted
(Table 7, entries 9,10). Furthermore, the monosugars D-glu-
cose (69 % rel. activity) and D-galactose (31 % rel. activity)
were both oxidised at C1 (Xu et al. 2001) (Table 7, entries 1
and 2). Moreover, Pezzotti and Therisod synthesised
aldonic acids starting with C6 sugars (D-galactose, D-xy-
lose, D-mannose and 2-deoxy-D-glucose) employing glu-
cose oxidase for the oxidation of the C1 hydroxy group
(2006). HOX [EC 1.1.3.5] from Chondrus crispus
is an enzyme with a fairly broad substrate scope for the
oxidation of sugars at C1. Hexose oxidase accepted D-xy-
lose, D-arabinose and D-glucose containing di-sugars, like

HO

H

HH

R

O

H

HH

R

cholesterol oxidaseFlav

O2 H2O2

active-site glutamate

O

H

HH

R

C=C isomerization

3

4
5

6

Scheme 11 Enzymatic oxidation and C=C isomerisation of cholesterol derivatives by cholesterol oxidase
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D-lactose and D-cellobiose (Table 7, entries 4, 5, 10 and 18)
(Poulsen and Hostrup 1998; Savary et al. 2001; Rand et al.
2006).

(ii) The sterically least hindered prim-OH group of sugars
can be selectively oxidised by copper-containing galactose
oxidase (Scheme 12). Relative activities were measured in
relation to the reactivity of the C6-hydroxy group of D-galac-
tose as the canonical substrate. The most prominent galactose
oxidase from Fusarium converted D-galactose containing sub-
strates D-lactose (10 % conv.), lactitol (20 % conv.),
lactobionic acid and the synthetic disaccharide and laxativum
D-lactulose completely (Table 7, entries 8, 10 and 17) (Siebum
et al. 2006). For substrate acceptance of GOase, the axial po-
sition of the C4 position is crucial. The di-sugars D-melibiose,
D-raffinose and D-stachyose were good substrates for galactose
oxidase (83 % rel. activity for D-melibiose, up to 161 % rel.
activity for D-stachyose) (Table 7, entries 14–16) (Mendonca
and Zancan 1987). For D-fructose (Table 7, entry 7), a GOase
mutant from Fusarium seems to be an appropriate biocatalyst
(Deacon et al. 2004). Recently, a FAD-containing hexose ox-
idase was discovered. The so-called Dbv29 oxidised a glyco-
peptide at C6 to the corresponding carboxylic acid in a two-
step reaction (Li et al. 2007; Liu et al. 2011).

(iii) D-Glucose (Table 7, entry 1) was also oxidised by the
flavoenzyme pyranose oxidase (P2O) [EC 1.1.3.10] (Giffhorn
2000), which was obtained from several fungi (Peniophora
sp., Trametes sp., Tricholoma matsutake and Gloeophyllum
sepiarium). It oxidises hydroxyl groups on the C2 position, but
also oxidation at C3 can occur (Scheme 12) (Kujawa et al.
2006). The process based on C2 oxidation of D-glucose
followed by catalytic hydrogenation yielding D-fructose is
known as ‘Cetus process’, which was also utilised for the
synthesis of D-tagatose (Geigert et al. 1983; Freimund et al.
1996). D-Galactose was a rather poor substrate for pyranose
oxidase from P. gigantea (Table 7, entry 2) (Freimund et al.
1998; Cook and Thygesen 2003; Bastian et al. 2005). Further-
more, the configuration on C4 played an important role in
substrate acceptance. D-Allose (94 % overall yield), D-xylose
(100 % overall yield) and D-mannose (only moderate rel. ac-
tivity of 23 %) were all oxidised by pyranose oxidase origi-
nating from several microorganisms (Table 7, entries 3, 4 and
6) (Danneel et al. 1993; Freimund et al. 1998; Takakura and
Kuwata 2003; Bannwarth et al. 2006; Machida and Nakanishi

1984). Pyranose oxidase accepted the di-sugars D-trehalose
(54 % rel. activity), D-gentiobiose (1 % conversion) and D-
maltose (8–56 % rel. activity) as substrates (Table 7, entries
9, 13 and 19) (Danneel et al. 1993; Freimund et al. 1998;
Takakura and Kuwata 2003). Moreover, P2O was used as a
biocatalyst for the C2 oxidation of disaccharides to obtain 2-
keto-aldopyranose intermediates (Leitner et al. 2001) and the
di-sugar D-sucrose (Table 7, entry 11) was fully converted by
P2O in a multistep process (Seto et al. 2008).

Deoxy sugars were often employed in kinetic studies to
investigate the catalytic mechanism of enzymes. 1-, 2-, 3-
and 6-deoxy-D-glucose and 2-deoxy-D-galactose (Table 7, en-
tries 20–24) were used for this purpose showing full conver-
sions. The enzymes exhibited their expected regioselectivity.
For pyranose oxidase, activity was observed for 2-deoxy-D-
glucose (52 % rel. activity) for oxidation at C3 (Table 7, entry
21). 1-Deoxy-D-glucose (Table 7, entry 20) was converted by
pyranose oxidase (8 % rel. conversion P2O from
Phanerochaete gigantea, 22 % from Trametes versicolor
and 69 % from T. matsutake). The substrate 3-deoxy-D-glu-
cose was almost as good for pyranose oxidase as the natural
one, but 6-deoxy-D-glucose showed significantly diminished
relative conversion rate of 15 % (Table 7, entries 22 and 23).
Glucose oxidase also shows activity for 2-deoxy-D-glucose
and 6-deoxy-D-glucose (Table 7, entries 21 and 23). Galactose
oxidase showed 74 % relative activity for 2-deoxy-D-galac-
tose (Table 7, entry 24) (Danneel et al. 1993; Freimund et al.
1998; Takakura and Kuwata 2003; Leskovac et al. 2005;
Siebum et al. 2006; Masuda-Nishimura et al. 1999).

In addition, various sugar derivatives were tested: 4-O-
Methylated sugars were accepted by pyranose oxidase and
galactose oxidase (Schoevaart and Kieboom 2004). With py-
ranose oxidase, oxidation occurred at C3. Phenyl- and hexyl-
glucosides were well accepted, but underwent a glycosyl trans-
fer reaction forming a disaccharide (Table 7, entry 28). These
bulky substrates indicate that the size of the active site is not a
limiting factor. Nitro sugars were tested with pyranose oxidase,
and glycosyl transfer occurred yielding a 4:1 ratio of 1-6 vs. 1-
3 di-sugar at C2 position in 15% overall yield. At C4 position, a
2:1 mixture of 1-6 vs. 1-3 di-sugar was obtained in 24% yield.
α-D-Glucosyl fluoride (Table 7, entry 31) was a moderate sub-
strate for pyranose oxidase from P. gigantea (40 % yield,
Danneel et al. 1993; Freimund et al. 1998). Pyranose oxidase
also converted the unnatural L-sugar L-sorbose completely
(Table 7 entry 34). Mono- and poly-fluorinated galactose ana-
logues were oxidised by galactose oxidase (Table 7, entry 33)
(Ioannou et al. 2011), and also hydroxyacetone derivatives
represented excellent substrates. Dihydroxyacetone (Table 7,
entry 36) was also oxidised at a fair rate by glycerol oxidase
(GlycOx) from Aspergillus japonicus (59 % rel. activity)
(Uwajima and Terada 1980). Furthermore, galactose oxidase
was active on guaran, a galactomannan (Table 7, entry 38)
(47 % rel. activity) (Mendonca and Zancan 1987).Scheme 12 Regioselectivity of alcohol oxidases on a hexose framework
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This enzyme was also applied for the oxidation of the nucleo-
tide sugars uridine 5′-diphospho-α-D-galactose and uridine 5′-
diphospho-N-acetyl-α-D-galactosamine (Table 7, entry 39) for
subsequent biotinylation (Bülter et al. 2001; Namdjou et al.
2007).

Sugar alcohols and amino sugar alcohols

Several enzymes were reported to oxidise sugar alcohols
to the corresponding aldoses, and in case of flavoprotein
oxidases, aldonic acids were obtained via over-oxidation.
FAD-containing alditol oxidase (AldO) [EC 1.1.3.41] has
shown a broad acceptance for sugar alcohols: AldO from
Streptomyces sp. and thermophilic A. cellulolyticus acted
on several D- and even L-sugar alcohols (Table 8) and
oxidised them to the corresponding aldoses or even fur-
ther to carboxylic acids. D-Galactitol, D-xylitol, D-sorbitol,
D-mannitol, L-threitol and prochiral glycerol (Table 8, en-
tries 1–5, 9) were tested as substrates in kinetic studies
(Heuts et al. 2007b; Forneris et al. 2008; Van Hellemond
e t a l . 2 0 0 9 ; Mu r o o k a a n d Yama s h i t a 2 0 0 1 ;
Drueckhammer et al. 1991; Yamashita et al. 2000). Glyc-
erol was oxidised to L-glyceraldehyde as a building block
for a follow-up aldolase reaction in a multienzyme cas-
cade (Franke et al. 2003). The latter is also oxidised by
the Cu-containing glycerol oxidase which exhibited excel-
lent activity towards glycerol, which was selected as a
name-giving substrate (Uwajima and Terada 1980;
Uwajima et al. 1984). The building block dihydroxyace-
tone phosphate (DHAP), which is a popular C donor in
asymmetric aldol reactions, can be obtained using

flavoprotein glycerol 3-phosphate oxidase (GPO) [EC
1.1.3.21] for the oxidation of L-glycerol 3-phosphate
(Table 8, entry 10) at the sec-OH (Babich et al. 2011).
Furthermore, also copper-containing galactose oxidase
from Fusarium exhibited a broad acceptance of sugar al-
cohols without acid formation (Table 8, entries 1, 2, 5, 6
and 8).

For the oxidation of amino sugars, N-acyl-D-hexosamine
oxidase [EC 1.1.3.29] from Pseudomonas sp. is the enzyme of
choice, although also galactose oxidase showed activities on
this substrate class (Mendonca and Zancan 1987; Takahashi
and Kawamura 2000). N-Acetyl-D-galactosamine (Table 8,
entry 12) was converted almost as fast as the natural substrate
(98–99 % rel. activity) by N-acyl-D-hexosamine oxidase. It
seems that (in contrast to other enzymes) the configuration
of C4 is not relevant for substrate acceptance of N-acyl-D-
hexosamine oxidase. Amino sugars without N-acyl function,
such as D-glucosamine (26 % rel. activity) and D-galactos-
amine (81 % rel. activity), were moderate substrates
(Table 8, entry 11), like N,N′-diacetylchitobiose (31–49 %
rel. activity) and N-acetylmuramic acid (44 % rel. activity)
(Table 8, entry 14) with respect to the natural substrate N-
acetyl-D-glucosamine (Horiuchi 1989; Takahashi and
K aw amu r a 2 0 0 0 ) . T h e d i am i n o s u g a r N ,N ′ -
diacetyllactosamine and oligomers thereof were successfully
oxidised by galactose oxidase (Kupper et al. 2012). Another
enzyme which was found to be active on C1 of N-acetyl-D-
glucosamine and its oligomers N,N′-diacetylchitobiose, N,N′,
N″-triacetylchitotriose and N,N′,N″,N‴-tetraacetylchitotetraose
(Table 8, entry 16) is chitooligosaccharide oxidase (ChitO)
(Heuts et al. 2007a) (Table 9).

Table 7 (continued)
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Summary and outlook

The broad substrate scope coupled with high regio- and
stereoselectivity makes alcohol oxidases a fantastic tool for
the oxidation of primary and secondary alcohols using molec-
ular oxygen as an alternative to traditional chemical methods.
Owing to their mechanism, copper-depending oxidases selec-
tively yield aldehydes from primary alcohols, while over-
oxidation to furnish carboxylic acids may take place to a vary-
ing degreewith flavin-depending oxidases. For a broad range of
alcohols—non-activated prim- and sec-alcohols, activated al-
lylic, cinnamic and benzylic alcohols, hydroxy acids, hydroxy
steroids, carbohydrates and derivatives thereof—alcohol oxi-
dases are available from various microbial sources, which are
reviewedwith respect to their substrate tolerance to facilitate the
choice of the optimal enzyme for a given alcohol substrate.
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