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Abstract We have developed a wine fermentation procedure
that takes advantage of the metabolic features of a previously
characterized Metschnikowia pulcherrima strain in order to
reduce ethanol production. It involves the use of
M. pulcherrimal/Saccharomyces cerevisiae mixed cultures,
controlled oxygenation conditions during the first 48 h of
fermentation, and anaerobic conditions thereafter. The influ-
ence of different oxygenation regimes and initial inoculum
composition on yeast physiology and final ethanol content
was studied. The impact of oxygenation on yeast physiology
goes beyond the first aerated step and influences yields and
survival rates during the anaerobic stage. The activity of
M. pulcherrima in mixed oxygenated cultures resulted in a
clear reduction in ethanol yield, as compared to S. cerevisiae.
Despite relatively low initial cell numbers, S. cerevisiae al-
ways predominated in mixed cultures by the end of the fer-
mentation process. Strain replacement was faster under low
oxygenation levels. M. pulcherrima confers an additional
advantage in terms of dissolved oxygen, which drops to zero
after a few hours of culture, even under highly aerated condi-
tions, and this holds true for mixed cultures. Alcohol reduction
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values about 3.7 % (v/v) were obtained for mixed cultures
under high aeration, but they were associated to unacceptable
volatile acidity levels. In contrast, under optimized conditions,
only 0.35 g/L acetic acid was produced, for an alcohol reduc-
tion of 2.2 % (v/v), and almost null dissolved oxygen during
the process.

Keywords Low alcohol - Non-Saccharomyces yeast -
Respiratory quotient - Dissolved oxygen - Volatile acidity

Introduction

Consumer preferences toward well-structured, full body
wines have driven the requirement for late harvests in order
to ensure an optimal phenolic maturity of grapes. In the
context of global warming, this practice results in a noticeable
increase in the sugar content of the berries at harvest (Mira de
Orduiia 2010) that finally gives rise to higher alcohol levels in
wine. This leads to numerous wine quality, marketing, and
public health issues. In order to compensate for this increase,
the wine industry has been secking for new approaches to
reduce the alcohol content of wines. Several technological
solutions including winemaking practices adapted to unripe
berries (Kontoudakis et al. 2011; Canals et al. 2008) or partial
dealcoholization by physical methods (Schmidtke et al. 2012;
Catarino and Mendes 2011; Belisario-Sanchez et al. 2009)
have been proposed to this end. Additionally, several research
articles have focused on unconventional microbiological so-
lutions for this purpose. Among them, the development of low
alcohol yield yeast strains has been, and still is, a hot topic in
the field of winemaking. In this context, different metabolic or
evolutionary engineering strategies aiming to divert the car-
bon flux from ethanol production in Saccharomyces
cerevisiae have been proposed (Michnick et al. 1997,
Cadiere et al. 2011; Heux et al. 2006; Rossouw et al. 2013;
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Varela et al. 2012a). The topic has been extensively reviewed
by Kutyna et al. (2010). However, modifying ethanol yields in
this species has been proven to be a difficult task, mainly due
to the tight regulation of the pyruvate node under anaerobic
conditions (Varela et al. 2004; Quir6s et al. 2013).
Consequently, limited success has been generally achieved.
Additionally, the industrial application of most of these
approaches is currently limited by the concomitant over-
production of non-desired metabolites such as acetate,
acetaldehyde or acetoin (Heux et al. 2000), public atti-
tudes toward genetically modified organisms (GMOs)
and/or regulations that restrict their usefulness in the
wine industry. Recent reports indicate that experimental
evolution might be a feasible alternative to genetic
engineering in order to develop S. cerevisiae yeast
strains with reduced alcohol yield (Tilloy et al. 2014).

While S. cerevisiae is the main yeast species responsible
for conducting the alcoholic fermentation of grape must, the
contribution of a non-negligible number of other yeast species
to the initial stages of the process and to the sensorial proper-
ties of wine is currently well established (Fleet 2003; Medina
et al. 2013; Ciani et al. 2010; Rojas et al. 2003; Sadoudi et al.
2012; Cordero-Bueso et al. 2013). These species, naturally
present in sound grapes, are mainly represented by strains
belonging to the apiculate yeast genus Hanseniaspora (mainly
Hanseniaspora uvarum or its anamorph Kloeckera apiculata)
and other species of the genera Candida, Pichia,
Kluyveromyces, and Metschnikowia (Fleet 2007; Tamang
and Fleet 2009).

Our research group recently proposed the possibility of
using non-Saccharomyces yeast species for the reduction of
the alcohol content of wine (Gonzalez et al. 2013). Key
differences in sugar metabolism between some of these spe-
cies and S. cerevisiae could actually allow for an increased
breakdown of sugars via respiratory pathways rather than
through fermentation, provided that an appropriate amount
of oxygen is available. The possibility of using respiratory
catabolism as a clean way to limit sugar conversion to ethanol
had been previously suggested by other authors (Smith 1995;
Erten and Campbell 2001; Barwald and Fischer 1996).
However, most of these studies describe preliminary results
and went almost unnoticed for several reasons, including
limited availability of the original documents (Smith 1995),
limitations in the experimental setup, or low number of yeast
strains screened. A Crabtree-negative recombinant
S. cerevisiae wine yeast strain derivative developed by
Henricsson et al. (2005) would also be interesting in this
context. However, commercial application of such strain
would experience the inconveniences associated to its GMO
status.

In a recent work, our group surveyed around 60 non-
Saccharomyces yeast strains of 29 different species to evaluate
their potential application as starter cultures for lowering the
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ethanol content of wines (Quirds et al. 2014). This study,
which set the focus on yeast key physiological parameters
during the aerobic metabolism of synthetic must, concluded
that high acetic acid yields constituted the main handicap for
this application (Quirds et al. 2014). It was also found that
high dissolved oxygen (DO) levels were not required for
relevant yeast respiration (Quir6s et al. 2014). Among the
yeast species studied, different isolates belonging to the spe-
cies Metschnikowia pulcherrima stood out due to their low
ethanol and acetate yields on sugar and high sugar conversion
rate. The usefulness of this non-conventional species for the
aforementioned purpose was also remarked by Contreras et al.
(2014), where a reduction in the alcohol level between 0.9 and
1.6 % (v/v) was achieved in fermentations performed by
sequential inoculation. Nevertheless, the potential contribu-
tion of respiration to alcohol reduction was not explored or
discussed in that study.

As a proof of concept, we addressed the effect of different
aeration conditions and different co-inoculation ratios of
S. cerevisiae and M. pulcherrima strains selected from our
previous work (Quirds et al. 2014), with the aim of achieving
a significant reduction of the alcohol level of wine, while
limiting volatile acidity production and the contact of grape
must components with molecular oxygen.

Materials and methods
Yeast strains

A commercial S. cerevisiae wine yeast strain, EC1118
(Lallemand Inc., Montreal, Canada), and M. pulcherrima
CECT12841, selected from a previous study (Quirés et al.
2014). The strains were grown at 28 °C and maintained at 4 °C
on yeast peptone dextrose (YPD) plates (2 % glucose, 2 %
peptone, 1 % yeast extract, and 2 % agar), as well as in
glycerol stocks at —80 °C.

Controlled aeration fermentation assays

Fermentation experiments were performed in triplicate (for
cultures sparged with pure air or nitrogen) or duplicate (for
intermediate aeration conditions), using MiniBio bioreactors
(250 mL nominal volume) equipped with Peltier-refrigerated
gas condensers (Applikon Biotechnology B.V., Delft,
The Netherlands). Seed cultures were grown in YPD broth
for 48 h, at 25 °C and 250 rpm. Bioreactors were filled with
150 mL of a filter-sterilized natural white grape must, a
mixture of Malvasia and Viura varieties with no added carbon
or nitrogen sources (262-265 g/L of sugars; 200 mg/L yeast
assimilable nitrogen), and 200 pL (approx.) of antifoam 204
(Sigma-Aldrich, St. Louis, MO). The same batch of grape
must was used for all experiments. Temperature was set to
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25 °C, initial stirring to 1000 rpm, and inoculation to approx-
imately 0.2 initial optical density at 600 nm (ODgq). Initial
proportions of both strains in co-inoculation experiments were
based on ODgq, values. The cultures were sparged in a dis-
continuous regime with pure N,, pure air, or mixtures of both,
at a gas flow rate of 3.0 L/h (i.e. 20 gas volumes/culture
volume/h (vvh)). Gas flow was controlled with MFC17 mass
flow controllers (Aalborg Instruments and Controls, Inc.,
Orangeburg, NY), whose calibration was regularly verified
with a soap bubble flow meter. In a preliminary assay, aeration
was automatically controlled from time zero in order to main-
tain a DO level above 15 % (with air) in the pure culture of
M. pulcherrima CECTI12841. Sparging was totally
interrupted 48 h after inoculation, and stirring slowed down
to 200 rpm. Independently of the gas used and in order to
improve reproducibility of the experiments, as well as to
standardize any possible effect on the loss of volatile com-
pounds, successive experiments were performed using a pro-
grammed on/off pattern for the gas valve, mimicking the
pattern obtained in that preliminary experiment (Table S1 in
the Supplementary Material). Samples for determination of
metabolite concentrations were withdrawn every 12 h for the
first 2 days and every 24 h thereafter. Population dynamics
was monitored every 24 h.

Viable counts in pure and mixed cultures

Evolution of global biomass in all fermentation assays was
monitored by daily determination of ODg,. Viable cells for
each of the strains were quantified by plating appropriate
dilutions in YPD plates and incubating for 48—72 h at 25 °C.
Colonies of S. cerevisiae EC1118 in mixed cultures were
distinguished from those of M. pulcherrima CECT12841 by
the development of a pink coloration by the latter.

Determination of metabolite concentrations

The concentration of glucose, fructose, glycerol, ethanol, and
acetic acid was determined using a Surveyor Plus Liquid
Chromatograph (Thermo Fisher Scientific, Waltham, MA)
equipped with a refraction index and a photodiode array
detector (Surveyor RI Plus and Surveyor PDA Plus, respec-
tively) on a 300x 7.7 mm HyperREZ™ XP Carbohydrate H+
(8 wm particle size) column and guard (Thermo Fisher
Scientific). The column was maintained at 50 °C, and
1.5 mM H,SO,4 was used as the mobile phase at a flow rate
of 0.6 mL/min. Prior to injection in duplicate, the samples
were filtered through 0.22 pum pore size nylon filters (Micron
Analitica, Madrid, Spain) and diluted 10-fold in MilliQ water.

Yeast assimilable nitrogen in natural grape must was deter-
mined spectrophotometrically as the sum of the contributions
of free ammonium and free amino groups. Ammonium was
assayed using a specific R-Biopharm assay kit (Darmstadt,

Germany). Free amino groups were determined with o-
phthaldialdehyde (Dukes and Butzke 1998).

Statistical analysis

One way analysis of variance was carried out on the main
fermentation metabolites found on day 2 and on finished
fermentations sparged with pure air or nitrogen, with inocu-
lum composition as main effect on each aeration condition.
The effect of aeration on the main fermentation metabolites
was also analyzed by means of one-way ANOVA on each
inoculum composition. Means were compared using Tukey’s
test, with significance level set at 5 %. Data from fermenta-
tions sparged with gas mixtures (10 % or 25 % air) were
compared by Student’s ¢ test with significance level set at
5 %. Correlation between main yields and air content in the
sparging gas was analyzed by Pearson correlation analysis.
All analyses were performed using SPSS Statistics v. 20
program (IBM, Armonk, NY).

Results

To establish the aeration regime for all further experiments in
this study, we performed an initial assay with M. pulcherrima
CECT12841 in natural grape must. The gas valve control was
set to open every time DO level fell below 15 % (with air)
during the first 48 h. This saturation level was taken as a
suitable balance between the precision of oxygen saturation
measurement and the expected yeast requirements for
respiration. According to data from Saa et al. (2012) for
oxygen solubility in fermentation media at 25 °C (i.e. about
7 mg/L), 15 % oxygen saturation (with air) would be equiv-
alent to around 1 mg/L of molecular oxygen. The records of
the experiment indicated the total opening time for the air
valve that was about 30 h. This information, as well as the
timing of the actuator status (on/off), was used to design the
gassing pattern employed in the subsequent experiments
(Table S1 in the Supplementary Material). In order to mini-
mize any ambiguity in the interpretation of the analytical
results that could have arisen from variations in the gassing
regimes (mainly concerning ethanol stripping), all the exper-
iments analyzed in this work were sparged following the
above-mentioned pattern and with exactly the same gas flow
(20 vvh), independently of the composition of the sparging
gas.

We had previously demonstrated respiratory metabolism
for M. pulcherrima CECT12841, under similar conditions as
described in “Materials and methods” with lower but contin-
uous air flow (1.2 L/h). Indeed respiratory quotient (RQ)
values remained close to 1 (indicating pure respiration) until
dissolved oxygen levels were undetectable (Quirds et al.
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2014). From that point, a steady increase in RQ values was
observed. S. cerevisiae EC1118 also showed respiro-
fermentative metabolism under such conditions but always
with higher RQ values than M. pulcherrima (Quirés et al.
2014).

Impact of M. pulcherrima CECT12841 and aeration
on the initial yield of the main fermentation metabolites

Initial assays were performed using either air or nitrogen as
sparging gas and four different strain combinations: pure
cultures of S. cerevisiae EC1118 or M. pulcherrima
CECT12841, and mixed cultures with the same inoculation
level of M. pulcherrima, plus 1 or 10 % the inoculation level
of S. cerevisiae used in the pure culture.

Concentration and yield of the main fermentation metabo-
lites during the aerated step (first 48 h of culture) are shown in
Table 1. For S. cerevisiae, a clear impact of aeration is ob-
served on the yield of glycerol, ethanol, and acetic acid.
Glycerol and ethanol yields decreased with air, while acetic
acid yield increased by more than five times (Table 1).

M. pulcherrima responded differently to aeration (Table 1).
On one side, sugar consumption clearly increased with aera-
tion. On the other side, ethanol yield decreased to a higher
extent than observed for S. cerevisiae (from 0.357 to 0.197 g/
g). Finally, under air sparging conditions, M. pulcherrima
cultures showed a lower acetic acid yield and higher glycerol
yield than S. cerevisiae (Table 1).

Mixed cultures showed (i) lower sugar consumption values
than those of S. cerevisiae under both aerobic and anaerobic
conditions; (ii) similar acetic acid yields to those of
M. pulcherrima, with little impact of oxygen availability
(resulting in values clearly lower than S. cerevisiae under
these conditions); and (iii) a large reduction in ethanol yield
when sparged with air, down to values about half those of
S. cerevisiae (Table 1). Up to this point, no statistically sig-
nificant differences were found between cultures inoculated
with 1 or 10 %S. cerevisiae (Table 1).

Long-term impact of initial aeration

After 11 days, sugars were totally consumed, both for
S. cerevisiae and mixed cultures. However, fermentations with
pure M. pulcherrima cultures were sluggish, with more than
50 g/L residual sugar at this time point (data not shown).

By the end of the fermentation, a clear increase in ethanol
yield was observed for all cultures (Table 2), as compared to
data for the first 2 days.

Stage-specific yields on glucose for the non-aerated stage
were calculated taking into account the sugar consumed and
the increase in ethanol from day 2 to the end of fermentation.
Ethanol yields on glucose for this stage ranged from 0.431 to
0.481 g/g (Table 3). Different stage-specific yields were also
observed for acetic acid and glycerol as a function of both
inoculum and sparging gas composition (Table 3).

Table 1  Concentration and yields of the main fermentation metabolites for fermentations sparged with air or nitrogen, in the conditions described in

the text, after 48 h of culture (end of the aerated step

S. cerevisiae® M. pulcherrima M. pulcherrima M. pulcherrima®
+10 %S. cerevisiae® +1 %S. cerevisiae®
Glycerol (Y%ow/v) Air® 0.69+0.03*A 1.23+0.15B 1.21+0.04*B 1.18+0.17B
Nitrogen® 0.93+0.08* 1.05+0.03 1.09+0.06* 1.05+0.11
Ethanol (%v/v) Air® 5.1+0.2*B 1.8+0.5*A 2.0+0.5*A 2.6+1.5A
Nitrogen® 6.7+0.5*C 5.1+0.1*B 4.0£0.1*A 3.2+0.5A
Acetic acid (mg/L) Air® 878+62*B 93+43A 86+31A 83+£25A
Nitrogen 165+125* 64+16 58+5 45+11
Cons. sugars (Yow/v) Air® 12.9+0.7B 9.6+£0.8A 9.6+0.8A 10.1£1.2*%A
Nitrogen® 13.2+£0.9C 10.8+0.8B 8.8+1.0AB 7.1+0.6*A
Yes (g/g) Air® 0.316+0.005*B 0.150+0.032*A 0.165+0.025*A 0.197+0.091*AB
Nitrogen 0.399+0.001* 0.375+0.030* 0.362+0.043* 0.357+0.040%*
Yass (mg/g) Air® 6.831+0.523*B 0.953+0.394A 0.883+0.241A 0.821+0.227A
Nitrogen 1.218+0.831* 0.592+0.116 0.670+0.112 0.641+0.207
Y5 (g/8) Air® 0.054+0.001*A 0.129+0.028B 0.127+0.014B 0.120+0.031B
Nitrogen® 0.070+0.001*A 0.098+0.010AB 0.125+0.019BC 0.148+0.014C

Values are shown as mean=+standard deviation of three biological replicates.

Yg/s ethanol yield on sugar, Y, acetic acid yield on sugar, Y5 glycerol yield on sugar

* Statistically significant differences (ANOVA) between cultures sparged with air or nitrogen for the same parameter and inoculum are indicated by *

® Different capital letters indicate statistically significant differences (ANOVA) for values in the same row
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Table2 Concentration and yields of the main fermentation metabolites by the end (262265 g/L sugar consumed) of fermentations sparged with air or

nitrogen in the conditions described in the text

S. cerevisiae®

M. pulcherrima+10 % S. cerevisiae®

a

M. pulcherrima+1 % S. cerevisiae

Glycerol (Yow/v) Air® 0.83+0.02*A 1.86+0.18*B 1.79+0.06B
Nitrogen® 1.20+0.04*A 1.46+0.06*B 1.65+0.06C
Ethanol (%v/v) Air® 12.9+0.2*B 11.0£0.3%A 11.1+0.2%A
Nitrogen® 14.7+£0.2% 13.9£0.6* 13.920.4*
Acetic acid (mg/L) Air® 2158+329*B 676+£63*A 682+123*A
Nitrogen 185+47*B 63+3*A 62+£2%A
Yes (2/2) Air® 0.384+0.007*B 0.329+0.010%A 0.330+0.006*A
Nitrogen® 0.441+0.006* 0.417+0.014* 0.416+0.010%
Y5 (mg/g) Air° 8.159+1.241*B 2.553+0.237*A 2.579+0.461*A
Nitrogen 0.703+0.178*B 0.238+0.010%A 0.236+0.007*A
Ygss (g/2) Air® 0.031+0.001*A 0.070+0.007*B 0.067+0.002B
Nitrogen® 0.045+0.001*A 0.055+0.002*B 0.063+0.002C

Values are shown as mean+standard deviation of three biological replicates

Y5 ethanol yield on sugar, Yu,s acetic acid yield on sugar, Y5 glycerol yield on sugar

# Statistically significant differences (ANOVA) between cultures sparged with air or nitrogen for the same parameter and inoculum are indicated by *

® Different capital letters indicate statistically significant differences (ANOVA) for values in the same row

The lowest ethanol production values were observed for
aerated fermentations. Reduction was of about 1.8 % (v/v) for
S. cerevisiae and 2.8 % (v/v) for mixed cultures (Table 2), as
compared to anaerobic fermentation. The alcohol level reduc-
tion obtained with aerated mixed cultures, compared to anaer-
obic fermentations with S. cerevisiae, was around 3.7 % (v/v)
(11.0-11.1 vs 14.7 % ethanol, respectively) (Table 2).

Acetic acid production for mixed cultures was about one
third that of S. cerevisiae, under either air or nitrogen sparging.
Unfortunately, even for mixed cultures, the levels reached in
aerated fermentations were above 0.65 g/L (Table 2), which

Table 3 Anaerobic stage-specific yields calculated for the main fer-
mentation metabolites after sparging was completely stopped (from day 2
to the end of fermentation)

S. cerevisiae® M. pulcherrima

+10 %S. cerevisiae®

Yoss (g/8) Air® 0.010+0.004*A 0.037+0.000*B
Nitrogen 0.020+0.003* 0.026+0.006*

Ygsis (g/8) Air 0.451+0.023 0.431+0.024
Nitrogen 0.481+0.007 0.446+0.022

Yass (mg/g) Air 9.513+2.796*B 3.454+0.519*A
Nitrogen 0.125+0.619* —0.010+0.089*

Values are shown as mean=+standard deviation of three biological
replicates

Yg/s ethanol yield on sugar, Y, acetic acid yield on sugar, Y5 glycerol
yield on sugar

# Statistically significant differences (ANOVA) between cultures
sparged with air or nitrogen for the same parameter and inoculum
are indicated by *

® Different capital letters indicate statistically significant differences
(ANOVA) for values in the same row

would not be acceptable for most consumers or market regu-
lations in different countries. Finally, the trend toward in-
creased glycerol yield by mixed, aerated fermentations, al-
ready observed for 48 h samples, was confirmed as statisti-
cally significant by the end of fermentation (Table 2).

Impact of different aeration levels

Two additional oxygenation levels were assayed with pure
S. cerevisiae and mixed cultures (10 %S. cerevisiae). This was
done by following the same gassing pattern as above but using
gas mixtures containing 10 or 25 % air, which would result in
maximum dissolved oxygen levels around 0.7 and 1.7 mg/L
respectively. Data on main fermentation metabolites for these
experiments are shown in Table 4. Considering data from the
four oxygenation levels, a negative correlation between air
concentration and ethanol yield was found for both inocula
(Table 5). In addition, for each condition, ethanol yield was
always lower for the mixed culture than for S. cerevisiae
(Tables 2 and 4).

Positive correlations were confirmed between acetic acid
yield and oxygenation level (Table 5). However, glycerol
yields showed opposite trends when considering the pure
S. cerevisiae cultures or the mixed ones. In addition, while
the trend for S. cerevisiae pure cultures is clear, a J-shaped
graph was obtained for the mixed cultures (not shown).

Population dynamics

Under all experimental conditions, cell growth took place
mainly during the first 48 h of culture (Fig. 1). The highest
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Table4 Concentration and yields of the main fermentation metabolites
by the end of fermentations sparged with air/nitrogen mixtures in the

conditions described in the text

Inoculum

S. cerevisiae

M. pulcherrima+
10 %S.cerevisiae

Glycerol (%ow/v) 10 % Air® 1.06+£0.05A 1.21+£0.01B
25 % Air® 0.97+£0.02A 1.11+£0.01B
Ethanol (%v/v) 10 % Air® 14.2+0.0B 13.2+0.1A
25 % Air® 13.8+0.1B 12.6+0.2A
Acetic acid (mg/L) 10 % Air* 451+71B 208+3A
25 % Air 1074+£267 351+15
Y (2/g) 10 % Air*  0.425+0.001B  0.3940.002A
25 % Air"*  0.412+0.003B  0.377+0.005A
Yass (mg/g) 10 % Air*  1.706+0.268B  0.787+0.011A
25 % Air  4.060+1.008 1.326+0.055
Yo (g/2) 10 % Air*  0.040+0.002A  0.046+0.000B
25 % Air  0.036+0.001A  0.042+0.001B

Values are shown as mean+standard deviation of two biological
replicates

Ygs ethanol yield on sugar, Y5 acetic acid yield on sugar, Y5 glycerol
yield on sugar

*Different capital letters indicate statistically significant differences for
values in the same row (¢ test)

biomass values were obtained in fermentation experiments
sparged with air and inoculated with M. pulcherrima either
alone or in mixed culture, reaching ODg values close to 50
(Fig. 1). Under these conditions, ODggo values for
S. cerevisiae pure cultures were about half those of pure
M. pulcherrima. Cultures sparged with nitrogen reached much
lower biomass values, as expected for pure fermentative me-
tabolism. In addition, the relative advantages of S. cerevisiae
and M. pulcherrima were inverted when cultures were sparged
with nitrogen. Under these conditions, mixed and pure
S. cerevisiae cultures reached ODgq values clearly higher
than the M. pulcherrima pure culture (Fig. 1). In cultures
sparged with air/nitrogen mixtures (10 or 25 % air), biomass

Table 5  Correlation between the final yields of main fermentation
metabolites and air concentration in the sparging gas for different inocula

S.cerevisiae M.pulcherrima+10 %S.cerevisiae
Yes —0.947%* —0.953**
Yass 0.962%* 0.970%*
Yaors —0.908** 0.754*

Ygss ethanol yield on sugar, Y acetic acid yield on sugar, Y5 glycerol
yield on sugar

*Statistically significant at the 0.05 level
**Statistically significant at the 0.01 level
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Fig. 1 Cell growth in fermentations sparged with nitrogen (a) or air (b),
in the conditions described in the text, for different combinations of yeast
strains in the inoculums: pure M. pulcherrima (diamonds), pure
S. cerevisiae (squares), M. pulcherrima plus 1 %S. cerevisiae
(triangles), and M. pulcherrima plus 10 %S. cerevisiae (circles). Note
that vertical axes are different between panels

production was closer to cultures sparged with air than to
anaerobic cultures (data not shown). These results are in
agreement with our previous demonstration of respiratory
metabolism for S. cerevisiae EC1118 and M. pulcherrima
CECT12841 under similar experimental conditions (Quirds
et al. 2014).

In mixed cultures, M. pulcherrima was always replaced by
S. cerevisiae by the end of the fermentation (Fig. 2). This
replacement took place later for cultures sparged with air
(around day 7) than for those sparged with nitrogen (around
day 4). Indeed, growth of M. pulcherrima was dramatically
restricted under nitrogen sparging, even in pure culture
(Fig. 1). For oxygenated cultures, decay of this species was
slower with increasing proportion of air during the gassing
step, despite having reached similar maximum viable cell
numbers. Growth of S. cerevisiae in these mixed cultures
was very similar for all gassing conditions (Fig. 2).
Maximum colony forming unit (CFU) counts fell below those
of M. pulcherrima, except for the most anaerobic condition,
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but remained constant until the end of the fermentation pro-
cess, in contrast to the relatively quick decrease in
M. pulcherrima viability (Fig. 2). Viable counts for pure
S. cerevisiae cultures were generally higher than in mixed
cultures (Fig. 2).

Dissolved oxygen

We monitored DO levels during fermentation experiments as
an indicator of the potential risk of oxidation of grape must
components. DO levels during the first 48 h were absolutely
dependent of the composition of the gas used to sparge the
culture but also strongly dependent on the strain used. For all
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Fig. 2 Viable cell counts for fermentations sparged with different gas
mixtures, in the conditions described in the text, for a M. pulcherrima in
cultures inoculated with M. pulcherrim+10 %S. cerevisiae; b
S. cerevisiae in cultures inoculated with M. pulcherrima+10 %
S. cerevisiae; or ¢ S. cerevisiae pure cultures

cultures inoculated with M. pulcherrima (either pure or in
combination with S. cerevisiae), DO gradually dropped and
stabilized around zero, even between 24 and 40 h, when
sparging was continuous (Fig. 3). In contrast, cultures inocu-
lated with S. cerevisiae alone showed DO levels above 50 %
(i.e. about 3.5 mg/L) for most of the time; apart from the short
periods, sparging was stopped, especially from 40 to 48 h
(Fig. 3). As expected, DO values were clearly lower when
25 % instead of 100 % air was used (Fig. 3). Basal level was
reached faster than in experiments performed with 100 % air
and quicker for the mixed culture than for S. cerevisiae alone
(Fig. 3). Not surprisingly, DO levels dropped to zero imme-
diately after sparging was stopped, for any strain combination
or gas composition.

Discussion
Growth

In agreement with our previous observations, M. pulcherrima
showed better growth and sugar consumption under aerobic
conditions (Table 1 and Fig. 1), as compared to anaerobiosis.
However, after the switch to anaerobic conditions, the
M. pulcherrima pure cultures were not able to complete
fermentation. Slow or incomplete fermentations are common
for non-Saccharomyces yeast strains and have been previous-
ly described for M. pulcherrima (Medina et al. 2012), al-
though Sadoudi et al. (2012) recently described complete
grape must fermentation by one strain of this species.

Under anaerobic conditions, faster fermentative metabo-
lism confers a growth advantage to S. cerevisiae over
M. pulcherrima (Fig. 1). However, M. pulcherrima is able to
take better advantage of oxygen when it is available (Fig. 1).
In mixed cultures, changes in the initial aeration regime had a
stronger impact on the growth of M. pulcherrima than on
S. cerevisiae (Fig. 2), resulting in a quick yeast strain replace-
ment under anaerobic conditions. A competitive disadvantage
for other non-Saccharomyces species in the absence of oxy-
gen was previously described by Hansen et al. (2001).
However, other mechanisms might also be involved in
yeast-yeast competitive interactions, as shown by Nissen
et al. (2003) or Bely et al. (2008) for different S. cerevisiae/
Torulaspora delbrueckii strain combinations.

Ethanol

Both M. pulcherrima and S. cerevisiae showed reduced etha-
nol yield in aerobic as compared to anaerobic cultures
(Table 1). However, as expected for Crabtree-negative yeasts
(Quirds et al. 2014), the extent of this reduction was higher for
M. pulcherrima. The sudden removal of the air supply after
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Fig. 3 Evolution of dissolved oxygen levels (expressed as % saturation
with air) in fermentations sparged with 100 % air (a—d) or 25 % air (e-f)
in the conditions described in the text for different combinations of yeast

48 h resulted in increasing ethanol yields in the second part of
the experiments for all culture conditions (Table 3). In agree-
ment with our working hypothesis, as well as results by
Giovanelli et al. (1996), a strong and significantly negative
correlation between air concentration and the final yield of
ethanol was found for both S. cerevisiae and mixed cultures
(Table 5). Differences in final alcohol content between fully
anaerobic or air sparged cultures were already relevant for
pure S. cerevisiae cultures, 2.2 % (v/v), but were more impor-
tant for mixed cultures, 2.9 % (v/v) and up to 3.7 % (v/v), when
comparing anaerobic S. cerevisiae against aerated mixed cul-
tures (Table 2). In addition to the shift from respiro-
fermentative to pure fermentative metabolism, gradual re-
placement of M. pulcherrima by S. cerevisiae must also be
contributing to the increase in final ethanol yield observed for
mixed cultures in the second part of the experiments.
Contreras et al. (2014) described alcohol level reduction in
non-aerated sequential inoculation cultures with one strain of
M. pulcherrima and one of S. cerevisiae. This would be in
agreement with the trend observed in Table 2 for nitrogen-
sparged cultures. Other authors had also reported moderate
alcohol level reductions by using non-Saccharomyces yeast
strains, either pure or in co-culture, under non-aerated
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conditions (Ciani and Comitini 2006; Bely et al. 2008;
Gobbi et al. 2013). Understanding the fate of carbon in those
cases would require further analysis and improved knowledge
on the metabolism of these non-conventional yeasts.

Acetic acid and glycerol

The most noticeable impact of aeration on S. cerevisiae me-
tabolism was on acetic acid production (Table 1). Moreover, a
positive correlation was confirmed between acetic acid yield
and oxygenation level (Table 5). This is in agreement with
results by Giovanelli et al. (1996) who also found increased
acetic acid yield under aerobic conditions (as compared to
anaerobic) for the fermentation of commercial grape must.
Likewise, Franzén (2003) found increased acetic acid yields
with decreasing RQ values for this species. All these results
are in contrast to those by Aceituno et al. (2012) who de-
scribed acetic acid production to take place only under fully
anaerobic conditions. Probably, the use of nitrogen-limited
chemostat by Aceituno et al. (2012) is related to the differ-
ences they found in the pattern of acetic acid production, as
compared to other authors.
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Prior differences in the aeration regime had a huge impact
on stage-specific acetic acid yields, even after sparging was
completely stopped (Table 3). This can be related to differ-
ences in the biomass content or in the metabolic features of the
cells, depending on the environmental conditions during the
growth phase. Short-term aeration practices had been previ-
ously reported to influence global yeast physiology and fer-
mentation kinetics (Valero et al. 2001; Fornairon-Bonnefond
etal. 2003; Varela et al. 2012b). Interestingly, the use of mixed
cultures conferred a clear advantage over pure S. cerevisiae to
control volatile acidity, especially under intermediate oxygen-
ation levels (Tables 2 and 4).

Dependence of glycerol yields on oxygen availability
showed opposite trends for pure S. cerevisiae (negative corre-
lation) or mixed cultures (positive correlation). The J-shaped
graph obtained for mixed cultures seems to result from the
differential effect of oxygen availability on the yeast strains
used. By one side, according to data by Giovanelli et al.
(1996) and results shown in Table 1, S. cerevisiae shows a
greater glycerol yield under nitrogen sparging, being the most
active strain under these conditions. By the other side,
M. pulcherrima survival is favored under air sparging while
it shows a higher glycerol yield than S. cerevisiae under all
conditions (Table 1). Under intermediate oxygenation condi-
tions, S. cerevisiae will tend to lower glycerol yield, while
M. pulcherrima will not be so favored, resulting in lower
glycerol yields than the extreme conditions. Metabolic inter-
actions between the strains might also influence the different
yields, as described for other S. cerevisiae/non-
Saccharomyces strain combinations (Sadoudi et al. 2012;
Milanovic et al. 2012).

Dissolved oxygen

Oxygen consumption by M. pulcherrima in mixed cultures
led to low DO levels during most of the aeration step, in
contrast to pure S. cerevisiae cultures (Fig. 3). The use of air
mixtures further helped to reduce DO levels. In all cases, DO
fell to zero in the second, anaerobic step, as intended. Oxygen
affinity of wine polyhenols has been determined to be about
1000 times lower than fermenting S. cerevisiae cells (Salmon
2006), so according to data shown in Fig. 3, we can expect a
very low impact of the aeration regime described in this work
on the oxidation of grape must components for fermentations
driven by M. pulcherrima CECT12841 (alone or including up
to 10 % of S. cerevisiae EC1118).

In summary, both the use of M. pulcherrima CECT12841
and air sparging during the first 48 h have a great impact on
fermentation dynamics and the production of yeast metabo-
lites during growth in natural grape must. Most of the ob-
served effects could be explained in terms of differences in
central carbon metabolism between the two yeast strains
employed, either directly or through its influence on

population dynamics. This work shows the potential of sugar
respiration by non-Saccharomyces yeasts to help reduce alco-
hol levels in wine, as previously suggested (Gonzalez et al.
2013). More recently, Contreras et al. (2014) described de-
creased ethanol yields by sequential inoculation of
M. pulcherrima and S. cerevisiae. Using different strains of
both species and simultaneous inoculation, we showed the
crucial role of oxygen availability and respiratory metabolism
in order to reduce alcohol levels by up to 3.7 % (v/v) by the
end of fermentation of a natural white grape must. By choos-
ing and optimizing the appropriate gassing conditions (i.e.
25 9% air), we managed to find a good balance between alcohol
level reduction (2.2 % (v/v)), the increase in volatile acidity,
mostly associated to growth of S. cerevisiae under aerobic
conditions (below 0.35 g/L), and levels of dissolved oxygen
during the process (most time being almost undetectable).
However, we should keep in mind that practical constraints
will be different between the industrial and the laboratory
setup. For example, intermediate aeration levels were attained
in this work by using gas mixtures (for operational reasons),
but they could be reached in an industrial setup by simply
reducing the gas flow and avoiding agitation. Therefore, the
implementation at the industrial level of a strategy to lower
ethanol content of wine, based on the respiratory breakdown
of sugars by non-Saccharomyces yeasts, poses an interesting
challenge that would require further optimization, involving
yeast species and strain selection, inoculation strategies, de-
velopment of oxygenation and mixing conditions and devices,
or fermentation nutrients.

Acknowledgments Authors would like to thank Cristina Juez Ojeda
and Miguel Angel Fernandez Recio for excellent technical assistance, the
YeSVitE consortium (EU project, 7FP-IRSES-GA no. 612441) for help-
ful discussions, and Laura Lopez Ocafia (CECT) for help with yeast
species confirmation. This work was supported by grants MINECO
AGL2012-32064 and INIA RM2012-00007-00-00 from the Spanish
Government. M.Q. was the recipient of a CSIC training contract, JAE-
Doc, co-funded by the European Social Fund of the EU.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Aceituno FF, Orellana M, Torres J, Mendoza S, Slater AW, Melo F,
Agosin E (2012) Oxygen response of the wine yeast
Saccharomyces cerevisiae EC1118 grown under carbon-sufficient,

nitrogen-limited enological conditions. Appl Environ Microbiol 78:
8340-8352

@ Springer



4002

Appl Microbiol Biotechnol (2015) 99:3993-4003

Birwald G, Fischer A (1996) Crabtree effect in aerobic fermentations
using grape juice for the production of alcohol reduced wine.
Biotechnol Lett 18:1187-1192

Belisario-Sanchez Y'Y, Taboada-Rodriguez A, Marin-Iniesta F, Lopez-
Goémez A (2009) Dealcoholized wines by spinning cone column
distillation: phenolic compounds and antioxidant activity measured
by the 1,1-diphenyl-2-picrylhydrazyl method. J Agric Food Chem
57:6770-6778

Bely M, Stoeckle P, Masneuf-Pomarede I, Dubourdieu D (2008) Impact
of mixed Torulaspora delbrueckii-Saccharomcyes cerevisiae culture
on high-sugar fermentation. Int J Food Microbiol 122:312-320

Cadiere A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary
engineered Saccharomyces cerevisiae wine yeast strains with in-
creased in vivo flux through the pentose phosphate pathway. Metab
Eng 13:263-271

Canals R, Llaudy MDC, Canals JM, Zamora F (2008) Influence of the
elimination and addition of seeds on the colour, phenolic composi-
tion and astringency of red wine. Eur Food Res Technol 226:1183—
1190

Catarino M, Mendes A (2011) Dealcoholizing wine by membrane sepa-
ration processes. Inn Food Sci Emerg Technol 12:330-337

Ciani M, Comitini F (2006) Influence of temperature and oxygen con-
centration on the fermentation behaviour of Candida stellata in
mixed fermentation with Saccharomyces cerevisiae. World J
Microbiol Biotechnol 22:619-623

Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed
culture fermentation: a new perspective on the use of non-
Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123—
133

Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C
(2014) Evaluation of non-Saccharomyces yeast for the reduction of
alcohol content in wine. Appl Environ Microbiol 80:1670-1678

Cordero-Bueso G, Esteve-Zarzoso B, Cabellos JM, Gil-Diaz M, Arroyo
T (2013) Biotechnological potential of non-Saccharomyces yeasts
isolated during spontaneous fermentations of Malvar (Vitis vinifera
cv. L.). Eur Food Res Technol 236:193-207

Dukes BC, Butzke CE (1998) Rapid determination of primary amino
acids in grape juice using an o-phthaldialdehyde/N-acetyl-L-cyste-
ine spectrophotometric assay. Am J Enol Vitic 49:125-134

Erten H, Campbell I (2001) The production of low-alcohol wines by
aerobic yeasts. J Inst Brew 107:207-215

Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol
86:11-22

Fleet GH (2007) Yeasts in foods and beverages: impact on product quality
and safety. Curr Opin Biotechnol 18:170-175

Fornairon-Bonnefond C, Aguera E, Deyteieux C, Sablayrolles JM,
Salmon JM (2003) Impact of oxygen addition during enological
fermentation on sterol contents in yeast lees and their reactivity
towards oxygen. J Biosci Bioeng 95:496-503

Franzén CJ (2003) Metabolic flux analysis of RQ-controlled
microaerobic ethanol production by Saccharomyces cerevisiae.
Yeast 20:117-132

Giovanelli G, Peri C, Parravicini E (1996) Kinetics of grape juice fer-
mentation under aerobic and anaerobic conditions. Am J Enol Vitic
47:429-434

Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I,
Ciani M (2013) Lachancea thermotolerans and Saccharomyces
cerevisiae in simultaneous and sequential co-fermentation: a strate-
gy to enhance acidity and improve the overall quality of wine. Food
Microbiol 33:271-281

Gonzalez R, Quirés M, Morales P (2013) Yeast respiration of sugars by
non-Saccharomyces yeast species: a promising and barely explored
approach to lowering alcohol content of wines. Trends Food Sci
Technol 29:55-61

Hansen EH, Nissen P, Sommer P, Nielsen JC, Ameborg N (2001) The
effect of oxygen on survival of non-Saccharomyces yeasts during

@ Springer

mixed culture fermentations of grape juice with Saccharomyces
cerevisiae. ] Appl Microbiol 91:541-547

Henricsson C, de Jesus Ferreira MC, Hedfalk K, Elbing K, Larsson C,
Bill RM, Norbeck J, Hohmann S, Gustafsson L (2005) Engineering
of a novel Saccharomyces cerevisiae wine strain with a respiratory
phenotype at high external glucose concentrations. Appl Environ
Microbiol 71:6185-6192

Heux S, Sablayrolles JM, Cachon R, Dequin S (2006) Engineering a
Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol
production during fermentation under controlled microoxygenation
conditions. Appl Environ Microbiol 72:5822-5828

Kontoudakis N, Esteruelas M, Fort F, Canals JM, Zamora F (2011) Use of
unripe grapes harvested during cluster thinning as a method for
reducing alcohol content and pH of wine. Aust J Grape Wine Res
17:230-238

Kutyna DR, Varela C, Henschke PA, Chambers PJ, Stanley GA (2010)
Microbiological approaches to lowering ethanol concentration in
wine. Trends Food Sci Technol 21:293-302

Medina K, Boido E, Dellacassa E, Carrau F (2012) Growth of non-
Saccharomyces yeasts affects nutrient availability for
Saccharomyces cerevisiae during wine fermentation. Int J Food
Microbiol 157:245-250

Medina K, Boido E, L. F, Gioia O, Gomez ME, Barquet M, Gaggero C,
Dellacassa E, Carrau F (2013) Increased flavour diversity of
Chardonnay wines by spontaneous fermentation and co-
fermentation with Hanseniaspora vineae. Food Chem 141:2513—
2521

Michnick S, Roustan JL, Remize F, Barre P, Dequin S (1997) Modulation
of glycerol and ethanol yields during alcoholic fermentation in
Saccharomyces cerevisiae strains overexpressed or disrupted for
GPDI encoding glycerol 3-phosphate dehydrogenase. Yeast 13:
783-793

Milanovic V, Ciani M, Oro L, Comitini F (2012) Starmerella bombicola
influences the metabolism of Saccharomyces cerevisiae at pyruvate
decarboxylase and alcohol dehydrogenase level during mixed wine
fermentation. Microb Cell Factories 11:18

Mira de Ordufia R (2010) Climate change associated effects on grape and
wine quality and production. Food Res Int 43:1844—1855

Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces
cerevisiae cells at high concentrations cause early growth arrest of
non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-
mediated mechanism. Yeast 20:331-341

Quirés M, Martinez-Moreno R, Albiol J, Morales P, Vazquez-Lima F,
Barreiro-Vazquez A, Ferrer P, Gonzalez R (2013) Metabolic flux
analysis during the exponential growth phase of Saccharomyces
cerevisiae in wine fermentations. PLoS One 8:¢71909

Quirés M, Rojas V, Gonzalez R, Morales P (2014) Selection of non-
Saccharomcyes yeast strains for reducing alcohol levels in wine by
sugar respiration. Int J Food Microbiol 181:85-91

Rojas V, Gil JV, Pinaga F, Manzanares P (2003) Acetate ester formation in
wine by mixed cultures in laboratory fermentations. Int J Food
Microbiol 86:181-188

Rossouw D, Heyns EH, Setati ME, Bosch S, Bauer FF (2013)
Adjustment of trehalose metabolism in wine Saccharomyces
cerevisiae strains to modify ethanol yields. Appl Environ
Microbiol 79:5197-5207

Saa PA, Moenne MI, Pérez-Correa JR, Agosin E (2012) Modeling
oxygen dissolution and biological uptake during pulse oxygen ad-
ditions in oenological fermentations. Bioprocess Biosyst Eng 35:
1167-1178

Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-
Chacén JJ, Ballester J, Vichi S, Guérin-Schneider R, Caixach J,
Alexandre H (2012) Yeast-yeast interactions revealed by aromatic
profile analysis of Sauvignon Blanc wine fermented by single or co-
culture of non-Saccharomyces and Saccharomyces yeasts. Food
Microbiol 32:243-253



Appl Microbiol Biotechnol (2015) 99:3993-4003

4003

Salmon J-M (2006) Interactions between yeast, oxygen and polyphenols
during alcoholic fermentations: practical implications. LWT Food
Sci Technol 39:959-965

Schmidtke LM, Blackman JW, Agboola SO (2012) Production technol-
ogies for reduced alcoholic wines. J Food Sci 77:R25-R41

Smith PM (1995) Biological processes for the reduction of alcohol in
wines. Master’s Thesis. Lincoln University, Lincoln

Tamang JP, Fleet GH (2009) Yeasts diversity in fermented foods and
beverages. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology:
diversity and applications. Springer SciencetBusiness Media B.V,
Dordrecht, pp 169-198

Tilloy V, Ortiz-Julien A, Dequin S (2014) Reduction of ethanol yield and
improvement of glycerol formation by adaptive evolution of the
wine yeast Saccharomyces cerevisiae under hyperosmotic condi-
tions. Appl Environ Microbiol 80:2623-2632

Valero E, Millan C, Ortega JM (2001) Influence of oxygen addition
during growth phase on the biosynthesis of lipids in
Saccharomyces cerevisiae (M330-9) in enological fermentations. J
Biosci Bioeng 92:33-38

Varela C, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke
PA, Pretorius IS, Chambers PJ (2012a) Evaluation of gene modifi-
cation strategies for the development of low-alcohol-wine yeasts.
Appl Environ Microbiol 78:6068—-6077

Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermen-
tation rate in nitrogen-deficient wine musts. Appl Environ Microbiol
70:3392-3400

Varela C, Torrea D, Schmidt SA, Ancin-Azpilicueta C, Henschke PA (2012b)
Effect of oxygen and lipid supplementation on the volatile composition
of chemically defined medium and Chardonay wine fermented with
Saccharomyces cerevisiae. Food Chem 135:2863-2871

@ Springer



	The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture
	Abstract
	Introduction
	Materials and methods
	Yeast strains
	Controlled aeration fermentation assays
	Viable counts in pure and mixed cultures
	Determination of metabolite concentrations
	Statistical analysis

	Results
	Impact of M.�pulcherrima CECT12841 and aeration on the initial yield of the main fermentation metabolites
	Long-term impact of initial aeration
	Impact of different aeration levels
	Population dynamics
	Dissolved oxygen

	Discussion
	Growth
	Ethanol
	Acetic acid and glycerol
	Dissolved oxygen

	References


