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Abstract Here, we demonstrate display of beta-glucosidase
(BGL) on the surface of Schizosaccharomyces pombe cells
using novel anchor proteins. A total of four candidate anchor
proteins (SPBC21D10.06c, SPBC947.04, SPBC19C7.05, and
SPBC359.04c) were selected from among almost all of S.
pombe membrane proteins. The C-terminus of each anchor
protein was genetically fused to the N-terminus of BGL, and
the fusion protein was expressed using S. pombe as a host. The
highest cell surface-associated BGL activity (107 U/10° cells
was achieved with SPBC359.04¢ serving as the anchor, fol-
lowed by SPBC947.04 (44 U/10° cells) and SPBC21D10.06¢
(38 U/10° cells). S. pombe displaying BGL with SPBC359.04c
as an anchor showed the highest growth on 2 % cellobiose
(10.7x107 cells/mL after 41 h of cultivation from an initial
density of 0.1x10” cells/mL). Additionally, culturing BGL-
displaying S. pombe in medium containing cellobiose as the
sole carbon source did not affect protein expression, and eth-
anol fermentation from cellobiose was successfully demon-
strated using BGL-displaying S. pombe. This is the first
report describing a cell surface display system for the function-
alization of S. pombe.
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Introduction

Cell surface display is a versatile research technique, with
applications in vaccine development, gene therapy, cell-
based diagnostics, high-throughput polypeptide library
screening, whole-cell biocatalysis, bioremediation, biosen-
sor development, and even biofuels production (Kondo and
Ueda 2004; Chen and Georgiou 2002; Wu et al. 2008). The
immobilization of enzymes on surfaces is a crucial step in
the development of tailor-made biocatalysts (Bornscheuer
2003). Thus, the construction of novel, recyclable, and
regenerative whole-cell biocatalysts by arming the surface
of yeast cells with enzymes is of particular interest.
Moreover, it has been shown that cell wall immobilization
can significantly enhance the stability and regeneration of
particular enzymes (Schreuder et al. 1996). The cell surface
display technique also has applications in directed evolu-
tion, as it facilitates both access of a substrate to an enzyme
and selection of cells harboring the genetic information for a
corresponding enzyme variant displayed on the surface, thus
rendering tedious enzyme preparation and purification steps
largely dispensable.

Cell surface display systems are typically based on the
fusion of a protein of interest to a natural cell wall protein
(Lee et al. 2003; Kondo and Ueda 2004). Baker’s yeast
(Saccharomyces cerevisiae) is an attractive host for express-
ing biotechnologically, pharmaceutically, and medicinally
relevant proteins because the organism is safe to handle
and tolerates a variety of cell wall modifications. Several
S. cerevisiae display systems have been developed and
applied in recent years with varying degrees of success
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(Kondo and Ueda 2004; Matsumoto et al. 2002; Wang et al.
2007; Yue et al. 2008). Most of the cell surface display
methods developed for S. cerevisiae to date are based on
the agglutinin and flocculin model systems (Saleem et al.
2008). These cell wall proteins, including alpha-agglutinin,
Agal, Cwpl, Cwp2, Tiplp, Srpl (Van der Vaart et al. 1997),
Flolp (Tanino et al. 2007; Theunissen et al. 1993), Sedl1p
(Hardwick et al. 1992), and Tirlp (Marguet et al. 1988) all
contain the glycosyl phosphatidylinositol (GPI) signal motif
and are covalently crosslinked to beta-1,6-glucan in the cell
wall. Other yeast strains have recently been equipped with a
variety of functional displayed proteins, including antibod-
ies, enzymes, and even combinatorial protein libraries
(Breinig et al. 2006; Lee et al. 2006; Parthasarathy et al.
20006).

The fission yeast Schizosaccharomyces pombe is the
second most frequently used yeast host, after S. cerevisiae.
S. pombe, which is taxonomically and evolutionarily distant
from the budding yeast (Takegawa et al. 2009), has been
extensively characterized both genetically and physiologi-
cally. In contrast to budding yeast, S. pombe has not been
widely used in the manufacture of fermented beverages and
foods such as wine, beer, and bread. In terms of mRNA
splicing, cell division control, and post-translational mod-
ifications, S. pombe appears to resemble a multicellular
organism more than budding yeast (Zhao and Lieberman
1995). S. pombe is also being used extensively for high-
level heterologous protein production, primarily because it
shares many genetic and biochemical characteristics with
higher eukaryotes (Russel 1989; Giga-Hama 1997).
Recently, many types of recombinant human proteins have
been successfully expressed in fission yeast, including trans-
ferrin (Mukaiyama et al. 2010), papillomavirus E7 protein,
D2S dopamine receptor (Sander et al. 1994), human growth
hormone (Idiris et al. 2006), and ScFv-GFP fusion protein
(Naumann et al. 2011), in addition to recombinant proteins
from other organisms (Giga-Hama and Kumagai 1999).
However, to date, no cell surface display system suitable
for S. pombe has been developed.

In the present study, we developed a novel and useful cell
surface display system involving S. pombe by screening
novel anchor proteins. A cellobiose-assimilating S. pombe
strain was created by displaying beta-glucosidase (BGL) on
the cell surface. To our knowledge, this is the first report
describing a cell surface display system utilizing S. pombe.

Materials and methods
Bacterial strains and media

The S. pombe strains used in this study are listed in Table 1. All
strains were grown in complete YM medium (BD Biosciences,
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San Jose, CA, USA) or EMM broth (ForMedium, Norfolk,
UK) with the addition of appropriate auxotrophic supple-
ments (225 mg/L leucine, uracil; Nacalai Tesque, Inc.,
Kyoto, Japan) when necessary. In some experiments,
yeast were grown on EMM broth without dextrose
(ForMedium) containing 20 % cellobiose (Sigma-
Aldrich Corp., St. Louis, MO, USA) as the sole carbon
source. Escherichia coli NovaBlue (Novagen, San
Diego, CA, USA) was grown in LB medium and served
as the host strain for all plasmid manipulations.

Plasmids construction and yeast transformation

Plasmids for BGL expression on the cell surface using
various anchor proteins were constructed as follows. To
remove the Sa/l site of BGL gene, the Aspergillus aculeatus
gene encoding BGL was amplified by PCR using pdW-
PGAGBGL (Yamada et al. 2010) as a template with the
primer pairs Nhel Sall F/BGL delSal/l R and
BGL delSall F/BGL _Ncol R. A second round of PCR
was carried out using both amplified fragments as templates
with the primers Nhel Sall F and BGL Ncol R. The am-
plified gene fragment encoding BGL was digested with
Nhel/Ncol and ligated into plasmid pDUAL-FFH51
(Matsuyama et al. 2006). The resulting plasmid was desig-
nated pPDUALS1-BGL.

The gene fragment encoding a candidate anchor protein
was amplified by PCR using S. pombe FY7132 genomic
DNA as a template with the primers SPBC21D10.06¢c_F and
SPBC21D10.06¢ R. The amplified fragment was digested
with Nhel/Sall and ligated into plasmid pDUALS51-BGL.
The resulting plasmid was designated pDUALSI-
SPBC21D10.06c_BGL. The genes encoding the candidate
anchor proteins SPBC947.04, SPBC19C7.05, and
SPBC359.04c were amplified using the following primer
pairs: SPBC947.04 F/SPBC947.04 R, SPBC19C7.05_
F/SPBC19C7.05_R, and SPBC359.04c R/SPBC359.04c R,
respectively. Each amplified fragment was digested with
Nhel/Sall and ligated into plasmid pDUALS51-BGL.
The resulting plasmids were designated pDUALSI-
SPBC947.04 BGL, pDUAL51-SPBC19C7.05 BGL, and
pDUALS1-SPBC359.04c BGL. In these constructs, the
C-terminus of the anchor protein was fused to the N-
terminus of BGL.

All plasmids were introduced into S. pombe FY7132
(YGRC/NBRP) or S. pombe OB1 (kindly provided by Prof.
Kawamukai at Shimane University) after Nofl digestion as
described in a previous report (Matsuyama et al. 2006). The
resulting strains were designated SPBC21D10.06c-BGL-
7132, SPBC947.04-BGL-7132, SPBC19C7.05-BGL-7132,
SPBC359.04c-BGL-7132, SPBC21D10.06¢c-BGL-OBI,
SPBC947.04-BGL-OB1, SPBC19C7.05-BGL-OB1, and
SPBC359.04c-BGL-OBI1 (Table 1).
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Evaluation of BGL activity

Beta-glucosidase activity was screened using a simple plate
assay as follows. S. pombe FY7132 carrying one of the BGL
expression plasmids was seeded on an EMM agar plate.
After overnight incubation at 30 °C, 0.75 % soft agar con-
taining 0.034 % 4-methylumbelliferyl-p-p-glucoside
(Nacalai Tesque, Inc., Kyoto, Japan) in 50 mM acetate
buffer (pH 5.0) was overspread on the plate. The plate was
incubated for an additional 16 h at 30 °C, after which the
fluorescence of the colonies was observed using a UV
Transilluminator FAS-III (Toyobo, Osaka, Japan).
Beta-glucosidase activity was quantitatively assessed in
50 mM sodium acetate buffer (pH 5.0) at 30 °C with 2 mM
p-nitrophenyl-3-D-glucopyranoside (pNPG) (Nacalai
Tesque) as the substrate. After 24-h cultivation in EMM
medium, the cells were separated by centrifugation, washed
three times with PBS, and resuspended in reaction buffer.
The amount of p-nitrophenol released was determined by
measuring the absorbance at 400 nm. One unit of f3-
glucosidase activity was defined as the amount of enzyme
producing 1 pmol p-nitrophenol/min at 37 °C and pH 5.0.

Growth analysis

Growth on cellobiose was evaluated by incubating cells at
30 °C on EMM without glucose but containing 2 % cello-
biose. The initial number of cells was adjusted to 0.1x10’
cells/mL using hemocytometer and microscope.

Fluorescence microscopy analysis and flow cytometric
analysis

The EGFP expression plasmid pDUAL2-HFG1 (Matsuyama
et al. 2006) was introduced into BGL-expressing S. pombe
OBI1 cells using uracil auxotrophy. Cells were cultivated
EMM without glucose but containing 2 % cellobiose for
24 h and observed with fluorescent microscopy. For flow
cytometric analysis, the cells were collected and diluted into
test tubes containing sheath solution, and green fluorescence
was measured using a BD FACSCalibur flow cytometer (BD
Biosciences, San Jose, CA, USA). The green fluorescence
signal from 10,000 cells was excited with a 488-nm argon
laser and collected through a 530/30-nm band-pass (FL1)
filter. The data were analyzed using BD CELLQuest software
(BD Biosciences).

Ethanol fermentation from cellobiose or glucose
For ethanol fermentation, yeast cells were aerobically grown
in 100 ml of YM medium at 30 °C for 48 h. Cells were

centrifuged at 3,000xg for 5 min and inoculated into fer-
mentation medium (YM medium containing additional
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20 g/l glucose or cellobiose as sole carbon source). The
initial cell density was adjusted to 107 cells/mL. Ethanol
fermentation was carried out at 30 °C with mild agitation in
50 ml bottles.

Ethanol, cellobiose, and glucose concentrations were si-
multaneously measured using HPLC (Shimadzu, Kyoto,
Japan) with a Shim-pack SPR-Pb column (Shimadzu,
Kyoto, Japan). The operating conditions were carried out
at 80 °C, with water as the mobile phase at a flow rate of
0.6 ml/min, and detection was performed with a refractive
index detector (Shimadzu RID10A). HPLC analysis was
applied to a sample of culture supernatant after separating
the culture broth by centrifugation at 14,000xg for 10 min.

Results
Expression of active BGL on the surface of S. pombe cells

We cloned 31 S. pombe membrane protein genes to identify
candidate anchor proteins (Table S1). These proteins seems to
be membrane-localized, because their function (including pre-
dicted function) contain “cellular protein” and/or “mem-
brane”, and/or “surface”. The cloned genes were genetically
fused to the N-terminus of 4. aculeatus BGL (Yamada et al.
2010) and integrated into S. pombe FY7132 genome using
leucine auxotrophic maker. The anchor-BGL fusion protein
was expressed using S. pombe FY7132 as a host under con-
stitutive promoter tif51 promoter. The BGL activity of each
fusion protein was evaluated using a plate assay. Four S.
pombe colonies carrying the following anchor protein genes,
SPBC21D10.06¢, SPBC947.04, SPBC19C7.05, and
SPBC359.04c showed bright fluorescence when 4-
methylumbelliferyl-3-p-glucoside was used as a substrate (da-
ta not shown). The activity of BGL on the cell surface and in
the culture medium was quantitatively evaluated for each of
these colonies using pNPG as a substrate. After 24 h of
cultivation in EMM, the cell numbers were 6.0x 107 cells/mL
(SPBC21D10.06¢c), 6.5x107 cells/mL (SPBC947.04), 5.5x
107 cells/mL (SPBC19C7.05), and 5.5x107 cells/mL
(SPBC359.04c¢), which suggest almost as same levels among
these strains. When S. pombe FY7132 served as the host
(Fig. 1a, b), the highest BGL activity was associated with
SPB(C359.04¢ (85 U/10° cells), followed by SPBC947.04
(8.5 U/10° cells), SPBC21D10.06¢ (8.0 U/10° cells), and
SPBC19C7.05 (0.71 U/10° cells). In the case of S. pombe
OBI1 serving as the host, the highest BGL activity was associ-
ated with SPBC359.04c (107 U/10° cells), followed by
SPBC947.04 (45 U/10° cells), SPBC21D10.06¢ (38 U/10°
cells), and SPBC19C7.05 (2.5 U/10° cells). With both strains,
the BGL activity associated with the cell surface was greater
than that in the culture supernatant (under 10 U/mL), demon-
strating that BGL was successfully expressed on the surface of
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Fig. 1 Activity of BGL on the
surface of S. pombe cells (a and
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S. pombe cells and that fusion with an anchor protein did not
affect the enzyme’s function.

Growth of BGL-displaying S. pombe using cellobiose
as the sole carbon source

We also evaluated the ability of BGL-displaying S. pombe
strains FY7132 and OB1 to grow on 2 % cellobiose or glucose
as the sole carbon source (Fig. 2). The initial cell density was
0.1x107cells/mL. From Fig. 2a, after 21 h of cultivation, the
density of FY7132 using SPBC359.04c as the anchor was

approximately 7.5x10” cells/mL and 6.2x10" cells/mL for
FY7132 with SPBC947.04 as the anchor, both of which were
slightly lower than the densities achieved after 24 h of growth
on 2 % glucose (11.7x10”cells/mL for SPBC359.04c and
11.1x10" cells/mL for SPBC947.04, respectively). After
41 h, the cell densities grown on cellobiose reached approx-
imately 9.2x107 cells/mL (SPBC359.04¢) and 7.7x 10’
cells/mL (SPBC947.04).

Strain OB1 using SPBC359.04c as the anchor reached
5.7x10" cells/mL after 17 h of cultivation when cellobiose
was used as carbon source, which was higher than other OB1

@ Springer
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Fig. 2 Growth of BGL- a) FY7132
displaying S. pombe in medium
containing cellobiose (left Cellobiose Glucose
panels) or glucose (right 15 15
panels) as the sole carbon
source. a S. pombe FY7132; b
S. pombe OB1. Symbols shown
in panels a and b are as follows:
SPBC21D10.06¢c-BGL 210 =210
(diamonds), SPBC947.04-BGL __E_ __E_
(squares), SPBC19C7.05-BGL 5 s
(triangles), and SPBC359.04c- E 1;
BGL (circles). All data are % 3
averages from three O 5 O 5
independent experiments, and
error bars represent the
standard deviation
0 0
0 20 40 0 20 40
Time (h) Time (h)
b) 0B1
Cellobiose Glucose
15 15
2410 210
E E
=) S
3 3
O 5 O 5
0 0
0 20 40 0 20 40
Time (h) Time (h)

strains. After 41 h of cultivation, OB1 using SPBC359.04c as
the anchor reached 10.7x 107 cells/mL, which was almost the
same as that from glucose (11.6x 10" cells/mL; Fig. 2b). Cells
carrying only the pDUAL control plasmid did not increase in
number (data not shown), demonstrating that BGL-displaying
S. pombe can directly assimilate cellobiose.

Protein expression in BGL-displaying S. pombe
with cellobiose serving as the sole carbon source

Protein expression by BGL-displaying S. pombe strains
growing on a medium containing cellobiose as the sole
carbon source was evaluated using enhanced green fluores-
cent protein (EGFP) as a model protein. The EGFP expres-
sion multicopy plasmid pDUAL2-FFG1 (Matsuyama et al.

@ Springer

2006) was introduced into BGL-expressing S. pombe OB1
cells using uracil auxotrophy. Bright fluorescence was ob-
served after 24 h of cultivation (Fig. 3a), demonstrating that
protein expression is unaffected in BGL-expressing cells
using cellobiose as the sole carbon source. Figure 3b shows
the fluorescence intensity of each BGL-expressing strains.
BGL-expressing S. pombe strains carrying control vector
showed no fluorescence (Fig. 3b, upper panels); however,
BGL-expressing S. pombe strains carrying EGFP expres-
sion vector showed blight fluorescence and almost as same
levels among these strains (Fig. 3b, lower panels).
Although cell growth was dependent on the anchor protein
(Fig. 2a and b), the EGFP fluorescence intensity from a
single cell was almost same levels among these S. pombe
strains.
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a

) 359.04-BGL 19C7.05-BGL
expressing expressing
EGFP EGFP

b) 359.04-BGL 19C7.05-BGL
expressing expressing
EGFP EGFP
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Fig. 3 Fluorescence analysis of S. pombe carrying the EGFP expres-
sion plasmid and displaying BGL fused with various anchor proteins.
(a) Images of fluorescence microscopy. Upper panels show transmis-
sion images and lower panels show fluorescence images; (b) Flow
cytometer analysis. Upper panels show BGL-expressing S. pombe

Ethanol fermentation from cellobiose using BGL-displaying
S. pombe

To evaluate ethanol productivity of BGL-displaying S.
pombe, ethanol fermentations from cellobiose or glucose
were performed (Fig. 4a, b). After 24 h of fermentation at
30 °C, SPBC359.04¢ and SPBC947.04 consumed cellobi-
ose and produced 13.2 g/L ethanol (Fig. 4a). The ethanol
yield from the initial sugars (including 10 g/L glucose
contained YM medium) reached 70 % of the theoretical
yield. SPBC21D10.06¢c and SPBC19C7.05 consumed only
a little cellobiose (3.6 and 7.5 g/L of consumed cellobiose,
respectively) and the ethanol produced was only 4.0 and
4.3 g/L, respectively, which were produced from glucose

carrying empty vectors as controls, and lower panels show BGL-
expressing S. pombe carrying EGFP-expression vectors. Cells were
examined after 24 h of cultivation in medium containing cellobiose as
the sole carbon source

contained in YM medium. S. pombe FY7132 carrying emp-
ty vector, as a control strain, did not consume cellobiose
(Fig. 4a). In the case of glucose, all strains consumed glu-
cose completely and produced about 11 g/L of ethanol with
72 % of the theoretical yield in 24 h (Fig. 4b).

Discussion

The aim of this study was to develop a cell surface display
system using S. pombe as a host. Using BGL as a model
protein, we identified several suitable novel anchor proteins
and demonstrated that S. pombe cells displaying BGL on the
surface are capable of growth on media containing

@ Springer
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30 30

Cellobiose (g/L)
Ethanol (g/L)

0 10 20 30
Time (h)

Fig. 4 Time course of ethanol production from a cellobiose and b
glucose using BGL-displaying S. pombe strains. Open symbols and
solid lines show sugar concentration and closed symbols and dotted
lines show ethanol concentration. Symbols shown in panels a and b are
as follows: SPBC21D10.06¢c-BGL (diamonds), SPBC947.04-BGL

cellobiose as the sole carbon source. Finally, ethanol fer-
mentation from cellobiose was successfully demonstrated
using these BGL-displaying S. pombe strains.

The entire S. pombe genome has been sequenced and all
of the proteins encoded have been annotated. We tested 31
proteins as candidates to anchor BGL for display on the
surface of S. pombe cells. These proteins seems to be
membrane-localized, because their function (including pre-
dicted function) contain “cellular protein” and/or “mem-
brane”, and/or “surface” in the S. pombe genome database
(http://old.genedb.org/genedb/pombe/). A total of four pro-
teins were selected as suitable anchor candidates:
SPBC21D10.06¢c, SPBC947.04, SPBC19C7.05, and
SPBC359.04c, because other candidates showed no BGL ac-
tivities when they were used as an anchor protein. Cells
expressing BGL fused with SPBC359.04¢ showed high BGL
activity on the cell surface (Fig. la, ¢) and grew on media
containing cellobiose as the sole carbon source (Fig. 2a, b).

The SPBC21D10.06¢ anchor protein was the largest, at
949 a.a., followed by SPBC947.04 (973 a.a.), SPBC359.04c
(358 a.a.), and SPBC19C7.05 (150 a.a.). With the exception
of SPBC19C7.05, all of these anchor proteins are larger than
S. cerevisiae Agal (320 a.a.). The four anchor proteins we
evaluated have a predicted signal sequence at the N-
terminus but do not have a GPI anchor motif. The sequence
of the most suitable anchor protein we identified,
SPB(C359.04c¢, is similar to that of both SPBC947.04 and
SPAC186.01; however, no cell surface BGL activity was
observed when SPAC186.01 was used as the anchor protein
(data not shown). Sharifmoghadam and Valdivieso (2008)
designated SPBC21D10.06c as MAP4. The N-terminal
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(squares), SPBC19C7.05-BGL (triangles), SPBC359.04c-BGL
(circles), and FY7132 carrying empty vector (crosses) as a control.
All data are averages from three independent experiments, and error
bars represent the standard deviation

serine- and threonine-rich domain of MAP4 is required for
cell wall localization (Sharifmoghadam and Valdivieso
2008). Several similar proteins were identified by a
BLAST search, primarily from Schizosaccharomyces japo-
nicus (Sipiczki et al. 1998). Although we also tried to use all
of the membrane proteins on the surface from S. japonicus
as anchors, we found that none were suitable as anchors for
BGL (data not shown).

The highest cell surface-associated BGL activity (85
U/10° cells of S. pombe FY7132 and 107U/10° cells of S.
pombe OB1) was achieved using SPBC359.04c as the an-
chor. The slight difference in BGL activities when using a
same anchor protein in different host strains might be might
be due to the specific character of each S. pombe strain. This
activity was somewhat lower than that reported for BGL-
displaying S. cerevisiae (Yamada et al. 2010). However,
there are several ways in which the BGL activity of our cell
surface display system can be improved, such as through
optimization of the linker between BGL and the anchor
protein (Washida et al. 2001), and optimization of the pro-
moter and expression system (Kuroda et al. 2009; Idiris et
al. 2010). Development of a more suitable anchor protein
might also improve the activity of the displayed protein
(Tanaka et al. 2011). As shown in Figs. 1 and 2, BGL
activities were not necessary correlated the cell growth rate
on cellobiose, which corresponds to the previous report
(Tanaka et al. 2011). One possible explanation is that the
difference of the substrate, pNPG (BGL activity evaluation)
and cellobiose (cell growth), might cause some effects such
as accessibility to the cell surface. However, these results
suggest that the evaluation of growth on cellobiose as well
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as the evaluation of BGL activity is important for enhancing
direct cellobiose assimilation.

Using EGFP as a model protein, we also demonstrated
protein expression in BGL-displaying S. pombe cells grown
on medium containing cellobiose as the sole carbon source.
Although growth of S. pombe displaying BGL on the cell
surface depends on BGL activity, the amount of EGFP
expressed did not depend upon the anchor protein used
(Fig. 3). These results suggest that protein expression is
not affected by cellobiose serving as the sole source of
carbon, and that our S. pombe BGL display system is
suitable for protein production from cellulosic materials
used as a carbon source.

There are numerous reports of cell surface display sys-
tems using the yeast S. cerevisiae as a host. Amylase-
displaying S. cerevisiae is capable of direct fermentation of
starch (Yamakawa et al. 2010), and direct fermentation of
cellulose has been demonstrated in cellulase-displaying
yeast (Lilly et al. 2009). In addition, lipase-displaying yeast
cells have been used as whole-cell biocatalysts. Other
yeasts, such as Pichia pastoris, Yarrowia lipolytica, and
Kluyveromyces lactis can be used as hosts for cell surface
display. In this study, we identified several novel S. pombe
proteins suitable for use as anchors to display BGL on the
cell surface. It is possible that these anchor proteins would
be suitable for use with other yeast species as well.

For several decades, S. pombe has been used as a model
organism to study biological ethanol fermentation and pro-
tein production (Choi et al. 2010). Although additional
research is needed to improve the protein and ethanol pro-
duction capabilities of S. pombe, this organism has a number
of characteristics that make it attractive for environmentally
friendly ethanol fermentation and protein production. For
example, the genetic and physiological background of S.
pombe has been well-characterized, and the organism is
capable of faster fermentation rates and can grow under both
aerobic and anaerobic conditions. In addition, S. pombe has
an exceptional flocculation capability, high ethanol and
osmotic tolerance, is easy to manipulate, and can be safely
used in food products (Flores et al. 2000; Ge et al. 2005; Hu
et al. 2003; Humberto de Queiroz et al. 1993). In this study,
ethanol fermentation from cellobiose was successfully dem-
onstrated using BGL-displaying S. pombe (Fig. 4). The cell
surface display system described here will facilitate the use
of S. pombe in biomass assimilation such as cellobiose and
whole-cell biocatalysis, thereby expanding the potential
uses for this organism. Our results suggest the possibility
to produce useful compounds from cellobiose as well as
glucose.

In summary, we developed a S. pombe cell surface dis-
play system involving expression of BGL anchored to one
of four different cell surface proteins: SPBC21D10.06c,
SPBC947.04, SPBC19C7.05, or SPBC359.04c. We also

demonstrated that BGL-displaying S. pombe is capable of
direct growth on cellobiose and that protein expression is
unaffected when cellobiose serves as the sole carbon source.
Finally, ethanol fermentation from cellobiose was success-
fully demonstrated using BGL-displaying S. pombe. The
system we describe can be used for cell surface display of
other functional proteins, such as cellulases and lipases. We
are currently developing a whole-cell biocatalyst system
using S. pombe as a host.
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