Skip to main content
Log in

Biosynthesis and metabolic pathways of pivalic acid

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Occurrence, biosynthesis, and biodegradation of pivalic acid and other compounds, having a quaternary carbon atom by different bacteria, are described. We have summarized the relevant data that have so far been published, presenting them in a graphical form, i.e., as biodegradation pathways including B12-dependent isomerization and desaturation that lead to the degradation of pivalic acid and similar compounds to products with other than quaternary carbon atoms, i.e., compounds whose catabolism is well known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bisel P, Al-Momani L, Müller M (2008) The tert-butyl group in chemistry and biology. Org Biomol Chem 6:2655–2665

    Article  CAS  Google Scholar 

  • Brass EP (2002) Pivalate-generating prodrugs and carnitine homeostasis in man. Pharm Rev 54:589–598

    Article  CAS  Google Scholar 

  • Cracan V, Banerjee R (2012) Novel coenzyme B12-dependent interconversion of isovaleryl-CoA and pivalyl-CoA. J Biol Chem 287:3723–3732

    Article  CAS  Google Scholar 

  • Czerkawski JW (1976) The use of pivalic acid as a reference substance in measurements of production of volatile fatty acids by rumen microorganisms in vitro. Br J Nutr 36:311–315

    Article  CAS  Google Scholar 

  • Dembitsky VM (2006) Natural neo acids and neo alkanes: their analogs and derivatives. Lipids 41:309–340

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJCT, Van Alen T, Luesken F, Wu ML, Van De Pas-Schoonen KT, Op Den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Giner JL (1993) Biosynthesis of marine sterol side chains. Chem Rev 93:1735–1752

    Article  CAS  Google Scholar 

  • Gouda H, Kobayashi Y, Yamada T, Ideguchi T, Sugawara A, Hirose T, Omura S, Sunazuka T, Hirono S (2012) Three-dimensional solution structure of bottromycin A2: a potent antibiotic active against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Chem Pharm Bull 60:169–171

    Article  CAS  Google Scholar 

  • Irie K, Kajiyama IS, Funaki A, Koshimizu K, Hayashi H, Araia M (1990) Biosynthesis of indole alkaloid tumor promoters teleocidins (I) possible biosynthetic pathway of the monoterpenoid moieties of teleocidins. Tetrahedron 46:2773–2788

    Article  CAS  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    CAS  Google Scholar 

  • Kenig F, Simons DJ, Crich D, Cowen JP, Ventura GT, Rehbein-Khalily T, Brown TC, Anderson KB (2003) Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proc Natl Acad Sci U S A 100:12554–12558

    Article  CAS  Google Scholar 

  • Kniemeyer O, Probian C, Rossello-Mora R, Harder J (1999) Anaerobic mineralization of quaternary carbons atoms: isolation of denitrifying bacteria on dimethylmalonate. Appl Environ Microbiol 65:3319–3324

    CAS  Google Scholar 

  • Moore BS, Eisenberg R, Weber C, Bridges A, Nanz D, Robinson JA (1995) On the stereospecificity of the coenzyme B12-dependent isobutyryl-CoA mutase reaction. J Am Chem Soc 117:11285–11291

    Article  CAS  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421

    Article  Google Scholar 

  • Probian C, Wulfing A, Harder J (2003) Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid (2,2-dimethylpropionic acid). Appl Environ Microbiol 69:1866–1870

    Article  CAS  Google Scholar 

  • Ratnatilleke A, Vrijbloed JW, Robinson JA (1999) Cloning and sequencing of the coenzyme B12-binding domain of isobutyryl-CoA mutase from Streptomyces cinnamonensis, reconstitution of mutase activity, and characterization of the recombinant enzyme produced in Escherichia coli. J Biol Chem 274:31679–31685

    Article  CAS  Google Scholar 

  • Reaxys (2012) Reaxys. https://www.reaxys.com. Accessed 5 May 2012

  • Rétey J, Smith EH, Zagalak B (1978) Investigation of the mechanism of the methylmalonyl-CoA mutase reaction with substrate analogue: ethylmalonyl-CoA. Eur J Biochem 83:437–451

    Article  Google Scholar 

  • Rezanka T, Siristova L, Schreiberova O, Rezanka M, Masak J, Melzoch K, Sigler K (2011) Pivalic acid acts as a starter unit in a fatty acid and antibiotic biosynthetic pathway in Alicyclobacillus, Rhodococcus and Streptomyces. Environ Microbiol 13:1577–1589

    Article  CAS  Google Scholar 

  • Schäfer F, Muzica L, Schuster J, Treuter N, Rosell M, Harms H, Müller RH, Rohwerder T (2011) Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. Appl Environ Microbiol 77:5981–5987

    Article  Google Scholar 

  • Shinichi T, Padmakumar R, Lai M, Liu H, Banerjee R (1994) Inhibition of the human methylmalonyl-CoA mutase by various CoA-esters. J Biol Chem 269:31630–31634

    Google Scholar 

  • Sin SN, Chua H (2000) Degradation pathway of persistent branched fatty acids in natural anaerobic ecosystem. Chemosphere 41:149–153

    Article  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Casarégola S, Vasnier C, Lebeault JM, Vandecasteele JP (2000) A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons. Appl Environ Microbiol 66:2392–2399

    Article  CAS  Google Scholar 

  • Solano-Serena F, Marchal R, Heiss S, Vandecasteele JP (2004) Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J Appl Microbiol 97:629–639

    Article  CAS  Google Scholar 

  • Strømgaard K, Nakanishi K (2004) Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew Chem Int Ed 43:1640–1658

    Article  Google Scholar 

  • Willecke K, Pardee AB (1971) Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem 246:5264–5272

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the projects GACR P503/11/0215 and MSM6046137305 and by the Institutional Internal Project RVO61388971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Řezanka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řezanka, T., Kolouchová, I., Čejková, A. et al. Biosynthesis and metabolic pathways of pivalic acid. Appl Microbiol Biotechnol 95, 1371–1376 (2012). https://doi.org/10.1007/s00253-012-4267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4267-x

Keywords

Navigation