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Abstract Metalworking fluids (MWFs) are complex mix-
tures of chemicals and are indispensable materials in indus-
try. They are used as cooling and lubricating agents in
different machining process such as grinding, milling, and
cutting. The quality of MWFs is affected by physical, chem-
ical, and microbial contaminates. In particular, MWFs are
highly vulnerable to microbial contamination, which may
act both as potential pathogens and deteriorgens. Microbial
contamination is of major concern due to potential health
hazards such as skin dermatitis and hypersensitivity pneu-
monitis. The contaminated MWFs can exhibit high degrees
of microbial loading, ranging from 104 to 1010 colony-
forming units (CFU)/ml. Wide varieties of microorganisms
are reported to colonize MWFs. Traditional culturing tech-
niques are not only laborious and time consuming but also
underestimate the actual distribution of the microorganisms
present in the contaminated MWFs. Therefore, rapid molec-
ular methods such as real-time PCR and fluorescent in situ
hybridization are implemented to monitor the microbial
load. In industry, biocides are presently used to control
microbial contamination. However, it has its own disadvan-
tages and therefore, in recent years, alternative methods
such as UV irradiation were evaluated to reduce microbial
contamination in MWFs. Microbes inhabiting the MWF are
also capable of forming biofilm which is detrimental to the
MWF system. Biofilm is resistant to common disinfectant
methods, and thus further research and development is

required to effectively control its formation within MWF
systems. This review is intended to discuss the overall
microbiological aspects of MWF.
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Introduction

Metalworking fluids (MWFs) are complex mixtures of
chemicals used in industries for cooling and lubrication of
different types of machining processes such as turning,
grinding, milling, and cutting (Chang et al. 2004; Cheng et
al. 2005; Gilbert et al. 2010a; Selvaraju et al. 2011;
Rossmoore 1995) (Fig. 1). Due to their ability to increase
tool life by improving the finish of a work piece and pre-
venting corrosion, MWFs are vital requisites in industrial
processes (van der Gast et al. 2003; van der Gast and
Thompson 2004). There are mainly four classes of MWFs:
(1) straight oil, (2) soluble oil (emulsifiable oil), (3) semi-
synthetic, and (4) synthetic (Gauthier 2003; NIOSH 2001;
Robertson et al. 1988). Various additives such as biocides
and corrosion inhibitors are often added to enhance the
performance and lifespan of the MWFs (Selvaraju et al.
2005, 2011; Virji et al. 2000) (Table 1).

MWFs are highly susceptible to physical, chemical, and
microbial contamination. The microbes present in MWFs
are of major concern due to their capability to act as poten-
tial pathogens and/or deteriorgens (Rossmoore 1995; van
der Gast et al. 2001). MWF formulations commonly consist
of petroleum oil (1 to 5 %), petroleum sulfonates (0.1 to
0.5 %), and fatty acids (less than 0.1 %, mainly linoleic and
oleic acids) which serve as the primary sources of carbon for
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microbial growth (Foxall-VanAken et al. 1986). High levels
of contamination ranging from 104 to 1010 CFU/ml have
been reported in MWFs (Mattsby-Blatzer et al. 1989; Sloyer
et al. 2002; van der Gast et al. 2003). A wide variety of
microorganisms such as Staphylococcus, Streptococcus,
Pseudomonas, Alcaligenes, sulfate-reducing bacteria
(SRB), and Acinetobacter are known to inhabit MWFs
(Mattsby-Blatzer et al. 1989; Perkins and Angenent 2010;
Sandin et al. 1991; Virji et al. 2000; van der Gast et al. 2003)
(Table 2), including pathogens (opportunistic) such as
Legionella sp., Klebsiella pneumonia, Pseudomonas aeru-
ginosa, and Escherichia coli (Bakalova et al. 2007; Elsmore
2003; Lucchesi et al. 2012). Relatively recently, a new
species of Mycobacterium (Mycobacterium immunogenum)
was isolated from used MWFs that was associated with
hypersensitivity pneumonitis (Moore et al. 2000; Wallace
et al. 2002; Rhodes et al. 2011). Kampfer et al. (2009)
isolated a novel Gram-positive bacterium, Tessaracoccus
lubricantis, from contaminated MWF. Although a wide
variety of microorganisms are found in MWFs, the domi-
nant groups of microorganisms that colonize MWFs belong
to the genera Pseudomonas and Mycobacterium (Baecker et
al. 1989; Khan and Yadav 2004; Narayan Rao et al. 2011;
Selvaraju et al. 2011; Wilson et al. 2001). The commonly
found pseudomonads in MWFs are Pseudomonas oleovor-
ans subsp. oleovorans, Pseudomonas oleovorans subsp.
pseudoalcaligenes, Pseudomonas fluorescens, P. aerugi-
nosa, and the newly described Pseudomonas oleovorans

subsp. lubricantis (Gilbert et al. 2010a; Khan and Yadav
2004; Saha et al. 2010b, 2011a, b; van der Gast et al. 2003).
A recent study by Murat et al. (2012) reported that metal
types and the nature of MWF play a part in the microbial
composition of contaminated MWF. It was found that
Gram-negative rods were predominant in MWFs used in
non-automotive industry, whereas Gram-positive rods were
more prevalent in MWFs used in automotive industry.
Certain metals such as chromium, nickel, and iron used in
the non-automotive industry might be associated with the
growth of Gram-negative rods. Liu et al. (2010) reported
that species of Exiguobacterium, Micrococcus, and
Staphylococcus capitis were the dominant airborne bacteria
in MWF environments. Fungi (yeast and molds) are also
found as contaminates in MWFs. Species of Penicillium,
Aspergillus, Fusarium, Cladosporium, and Cepalosporium
are commonly isolated from contaminated MWFs. Fungi are
associated with hypersensitivity pneumonitis, asthma, and
other allergies. Certain species are also known to produce
toxic metabolites such as mycotoxins (Liu et al. 2010;
NIOSH 2001).

Biodeterioration of MWFs due to microbial contamina-
tion has several detrimental effects. It changes the stability
of the emulsion by altering fluid viscosity, increasing the
rate of corrosion leading to leaks in MWF systems, reducing
tool life (Burge 1996; NIOSH 2001; Rossmoore 1995).
Biofilms and fungal growth cause clogging of the machin-
ing systems (Hill 1978; Kinniment and Wimpenny 1990;
Lucchesi et al. 2012; Mattsby-Blatzer et al. 1989;
Rossmoore 1995). Apart from fluid degradation, microor-
ganism in MWFs poses potential health hazards to workers.
For example, SRB produce hydrogen sulfide (H2S) which
acts as a carcinogen affecting brain, lungs, and heart (Arnold
et al. 1985; Guidotti 1996; Stear 2005). Gram-negative
bacteria produce endotoxins that lead to adverse pulmonary
infections (Brown et al. 2000; Gordon 2004; Laitinen et al.
1999; Passman 2008; Selvaraju et al. 2011). Further, micro-
bial contamination of fluid mists generated during various
machining process causes asthma, hypersensitivity pneumo-
nitis, and lung cancer (Gauthier 2003; Robins et al. 1997;
Gilbert et al. 2010b; Selvaraju et al. 2008a, b).

In view of the facts stated earlier, the goals of this review
article are to discuss (a) microbial contamination, (b) the
rapid methods of detection, (c) the methods of disinfection,
and (d) biofilm in MWF systems. This is the first review
article in the area of MWFs to discuss the microbiological
aspects of MWFs. A number of methodologies have been
employed to study and reduce the microbial load of MWFs
(Saha 2009; Selvaraju et al. 2005; Rudnick 2003).
Historically, traditional culturing techniques were imple-
mented to study the microbial diversity and to determine
the level of contamination in MWF, but only a small pro-
portion (1 %) of culturable bacteria was recovered using

Fig. 1 An example of a machine that uses metalworking fluids
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bacteriological media, thus underestimating the actual mi-
crobial load in samples (Amann et al. 1995; Khan and
Yadav 2004; Saha et al. 2011a; Ward et al. 1995). To
overcome the problems associated with the determination
of bacterial diversity and the related level of contamination
in different environmental and clinical samples, molecular
approaches like quantitative real-time PCR (qPCR) and
fluorescent in situ hybridization (FISH) are presently used
(Amann et al. 1995; Khan and Yadav 2004; Suzuki et al.
2004; Rhodes et al. 2008, 2011). Several workers have also
attempted to perform dry machining and use mist suppres-
sants to control microbial activity (Klocke and Eisenblatter
1997; Marano et al. 1997; Aoyama 2002). However, these
methodologies were not very effective because dry machin-
ing cannot be used in all machining conditions and mist
suppressants are susceptible to shear effects due to rise in
temperature (Rudnick 2003).

Biocides

In order to disinfect and reduce the microbial content of
MWFs, biocides and bioresistant chemicals such alkanol-
amines, formaldehyde, and non-formaldehyde-based bio-
cides are often used. However, limited information is
available on the evaluation of these biocides to determine
their relative efficacy (Falkinham 2009; Selvaraju et al.
2005). This can lead to skin irritation (leading to dermatitis),
corrosion, microbial resistance, and toxicity along with
added handling and disposal cost (Sandin et al. 1990;
Rossmoore 1995; Lin et al. 1999; Selvaraju et al. 2008a,
b; Skerlos et al. 2000). In recent years, multiple studies were
conducted by Selvaraju et al. (2005, 2008, 2011) to evaluate
the potential effectiveness of some of the commonly used
biocides such as formaldehyde releasing, isothiazolone, and
phenoloc biocide in MWFs (synthetic and semi-synthetic)

Table 1 Chemical composition of MWFs (adapted from NIOSH (2001))

Component Function Straight oils Soluble oils Semisynthetics Synthetics

Water Acts as coolant solvent, diluent Dissolved 10–500
ppm/wta

5–40 parts/part
concentrate

10–40 parts/part
concentrate

10–40 parts/part
concentrate

Mineral oil Carries lubrication 60–100 % 30–85 % 5–30 % b

Emulsifier Emulsifies b 5–20 % 5–10 % 5–10 %

Chelating agents Tie-up ions in solution b 0–1 % 0–1 % 0–1 %

Coupling agents Stabilize b 1–3 % 1–3 % 1–3 %

Viscosity index
improvers

Maintain viscosity c b b b

Detergent Prevents deposit formation c c c c

Plasticizer Reduces tackiness b c c c

Antimist agent Reduces misting c c b b

Antiweld agent Prevents welding 0–20 % 0–20 % 0–10 % 0–10 %

Oiliness agent Increases film strength c b b b

Surfactant wetting
agent

Reduces surface tension 0–10 % 5–20 % 10–20 % 10–20 %

Dispersants Prevent fine agglomeration and
deposit formation

c b b b

Passivator Prevents staining c b b b

Anti-foaming agents Prevent foaming 0–500 ppm 0–500 ppm 0–500 ppm 0–500 ppm

Alkaline reserve Acts as buffer control b 2–5 % 2–5 % 2–5 %

Dyes Identify, leak detection b 0–500 ppm 0–500 ppm 0–500 ppm

Odorant Masks odor c c c c

Corrosion inhibitors,
anti-rust

Prevent rust film barrier 0–10 % 3–10 % 10–20 % 10–20 %

Biocides, bioresistant
components

Control bacterial and fungal
contaminants

b 0–2 % 0–2 % 0–2 %

Extreme pressure
additives

Act as reaction lubricant films 0–40 % 0–20 % 0–10 % 0–10 %

a Dissolved water concentrations in mineral oils range from 10 to 100 mol per million carbon atoms, depending on ambient humidity and
temperature
b Not present in this MWF class
c Usually present in this MWF class
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against the predominant bacteria such as M. immunogenum
and P. fluorescens. In one of the studies, a marked increase
in biocidal resistance was observed for both test organisms
when present in MWF matrix (Selvaraju et al. 2005). In
another study with semi-synthetic MWF, it was observed
that higher amounts of formaldehyde-releasing biocides
were required to completely inactivate M. immunogenum
compared to non-formaldehyde-releasing biocides (Selvaraju
et al. 2011). Based on these observations, it was recommended
that, to effectively control microbial contamination using bio-
cides, proper fluid management practices including routine
monitoring of the critical factors in an industrial setting would
be required.

Ultraviolet irradiation

Ultraviolet light (UV) or radiation encompasses light with
wavelength shorter than the violet end of the visible spec-
trum. Light with wavelengths between 200 and 400 nm is
considered to be UV. There are four ranges of UV: (1) UVA
(315–400 nm), (2) UVB (280–315 nm), (3) UVC (200–
280 nm), and (4) VUV (vacuum ultraviolet) in the range
of 100–200 nm. The UVC range is the most critical from the
disinfection perspective as it is known as the germicidal

range and is very effective in inactivating microorganisms
(Asano et al. 2007)

The UVC range is absorbed by the microbial cells caus-
ing photochemical damage to the nucleic acid. Dimerization
of the nucleotides (mainly pyrimidine) takes place in both
the DNA and the RNA molecules present in the cell, which
prevent replication and cell division, leading to cell death.
The extent of cell damage depends on the dosage of the UV
irradiation and resistance of the microbe to UV. UV dose is
the product of intensity of the UV and exposure time. It is
expressed in millijoules per square centimeter (mJ/cm2) or
milliwatt seconds per square centimeter (mWs/cm2) (Asano
et al. 2007).

UV irradiation has successfully been implemented to
reduce microbial load in water (Severein et al. 1983;
Blatchley et al. 1998) and air (Riley and Nardella 1989)
and for surface sterilization (Katara et al. 2008). The main
advantage of UV over biocides is that it does not produce
any undesirable by-products and does not require additional
storage or disposal.

John and Phillips (2002) demonstrated that MWF spiked
with P. fluorescens (107 CFU/ml) and irradiated with a 6-W
submerged non-glass UV lamp resulted in two-log reduction
in 60 mins. Peppiatt and Shama (2000) irradiated micro-
bially contaminated commercial MWF using a thin film

Table 2 Studies of microbial communities in contaminated MWFs

Title Reference

Microbiological contaminants of metalworking fluids in service Baecker et al. (1989)

Bacterial microflora of contaminated metalworking fluids Bakalova et al. (2007)

Microbiology of metalworking fluids: pilot studies of a large-scale exposure assessment experience Burge (1996)

The survival of Legionella pneumophilia in dilute metalworking fluids Elsmore (2003)

Metalworking fluids: oil mist and beyond Gauthier (2003)

Metalworking fluids biodiversity characterization Gilbert et al. (2010a, b)

Investigation into the nature and extent of microbial contamination present in a commercial metalworking fluid Lin et al. (1999)

Occurrence and characterization of culturable bacteria and fungi in metalworking environments Liu et al. (2010)

Evaluation of bacterial contamination and control methods in soluble metalworking fluids Marchand et al. (2010)

Microbial growth and accumulation in industrial metalworking fluids Mattsby-Blatzer et al. (1989)

Mycobacterial contamination of metalworking fluids: involvement of a possible new taxon of rapidly growing
mycobacteria

Moore et al. (2000)

Factors influencing the microbial composition of metalworking fluids and potential implications for machine
operator’s lung

Murat et al. (2012)

Experimental investigation of microbial contamination of nano cutting fluids with Cnt inclusion Narayan Rao et al. (2011)

Metalworking fluid microbes—what we need to know to successfully understand cause and effect relationships Passman (2008)

Potential pathogenic bacteria in metalworking fluids and aerosols from machining facility Perkins and Angenent (2010)

Microbiology of metalworking fluids: deterioration, disease and disposal Rossmoore (1995)

Rapid bacterial counts in metalworking fluids Sloyer et al. (2002)

Identification and characterization of bacterial populations of an in-use metalworking fluid by phenotypic and
genotypic methodology

van der Gast et al. (2001)

Bacterial community structure and function in a metalworking fluid van der Gast et al. (2003)

Identifying the determinants of viable microorganisms in the air and bulk metalworking fluids Virji et al. (2000)
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contractor at a flow rate of 1.8×10−2 m3s−1 at a UV dose of
44.5 mW s/cm3. The MWF was irradiated in the form of
“bells” generated with a specially designed nozzle which
finally led to a decline of 106 to 107 CFU/ml that occurred
within 6–8 h. Similar works carried out for endotoxin inac-
tivation of drinking water by UV irradiation suggested that 1
to 50 endotoxin units (EU/ml) could effectively be inacti-
vated with UV fluences of up to 500 mJ/cm2 (Anderson et
al. 2003).

A recent study was conducted by Saha (2009) to deter-
mine the parameters that could be utilized to design an in-
line UV reactor, which could be used in enclosed machining
operations. Two semi-synthetic unused 5 % diluted MWF
samples were spiked with different concentrations (104–107

colony-forming units, CFU/ml) of three indicator bacteria,
P. fluorescens, P. oleovorans subsp. lubricantis, and M.
chelonae, separately as well as in mixed culture combina-
tions. The spiked MWF samples were irradiated with a high-
intensity (192 μW/cm2, 55 W) UV lamp for different expo-
sure times under both static and mixed conditions. After
exposure, viable counts were determined from the irradiated
experimental samples. Under static conditions, only 56 %
reduction in viable count was observed within 10 min of
exposure for P. fluorescens with a cell concentration of
107 CFU/ml. In contrast, under mixed conditions, 99 %
reduction was achieved within 2 min for both P. fluorescens
and P. oleovorans subsp. lubricantis, whereas only 74 %
reduction was observed for M. chelonae. However, with a
low concentration of cells (104 CFU/ml), 99.99 % reduction
was observed for the Pseudomonas species and 82 % for M.
chelonae under mixed conditions. Similar results were
obtained with a mixed-culture combination of the indicator
bacteria. The experimental results indicated that with a
combination of high-intensity lamp and mixing, UV could
be successfully used as a means of disinfection of MWF
within a short exposure time for enclosed machining
systems.

Rapid and accurate monitoring of microbial contamina-
tions in MWFs requires the implementation of molecular
techniques such as real-time PCR and FISH.

Real-time PCR

Conventional PCR was developed by Kary Mullis in 1980
(Valasek and Repa 2005) to exponentially amplify target
sequences based on end-point detection using thermo-
tolerant DNA polymerase enzyme. In the conventional
PCR technique, it is not possible to quantify the starting
DNA and monitor the progress of the reaction. Real-time
PCR (qPCR) was first performed by Higuchi et al. (1993) at
Roche Molecular Systems using the fluorescent dye ethi-
dium bromide. A video camera was used to detect and

monitor the fluorescence of the dye under UV light with
the progress of the PCR reaction as ethidium bromide fluo-
resce strongly under UV when incorporated in double-
stranded DNA (Higuchi et al. 1993). Presently, qPCR is
employed to detect and quantify specific DNA sequences
using fluorescently labeled probes. The real-time instrument
detects the fluorescent signal generated at each cycle, which
is directly proportional to the concentration of the DNA
present in the reaction, and the cycle at which the signal
detected due to amplification exceeds the background signal
is known as the “threshold cycle” (Ct) (Arya et al. 2005).
The Ct value is inversely proportional to the nucleic acid
concentration in the starting reaction (Suzuki et al. 2005).

qPCR utilizes different fluorescent chemistry for detect-
ing DNA amplification in real-time: (1) hydrolysis probes
(TaqMan®, molecular beacons and scorpions), (2) hybrid-
ization probes, and (3) DNA binding agents (SYBR Green I,
ethidium bromide). One of the most important factors in
designing qPCR assays is the selection of the chemistry for
the reaction that depends on the sensitivity, specificity, and
funds available for the target experiment (Arya et al. 2005;
Epsy et al. 2006). Each qPCR chemistry has its own unique
characteristics.

Recently, qPCR assays using different chemistry have
been successfully used for the detection and enumeration
of bacteria from contaminated MWFs. Khan and Yadav
(2004) developed and optimized SYBR Green qPCR assays
for genus-specific detection and quantification of culturable
and non-culturable mycobacteria and pseudomonads in
MWFs. Saha et al. (2010a) developed a TaqMan assay to
detect mendocina sublineage Pseudomonas species in con-
taminated MWFs. The rapidly growingMycobacterium spe-
cies, mainly M. immunogenum, have been detected and
quantified using TaqMan probe by Rhodes et al. (2008,
2011). Veillette et al. (2008) also developed and evaluated
a qPCR method for the detection and enumeration of M.
immunogenum in MWFs. All of the methods mentioned
earlier demonstrate the advantages of using the PCR-based
method against the classical bacterial culture-based ap-
proach. These rapid molecular methods can be successfully
and routinely used in laboratories to provide early de-
tection of the bacteria and help in the effective manage-
ment of microbial contamination of MWFs. Other
culture-independent molecular techniques such as denaturing
gradient gel electrophoresis were also developed for the de-
tection and enumeration of bacteria present in MWFs (van der
Gast et al. 2001).

Fluorescent in situ hybridization

The concept of in situ hybridization was first developed by
Pardue and Gall (1969), Buongiorno-Nardelli and Amaldi
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(1969) and John et al. (1969) using radioactively labeled
DNA or RNA. With the development of fluorescent dyes,
DeLong et al. in 1989 detected microbial cells using
fluorescent-labeled molecular probes. This technology
involves the hybridization of a fluorescently labeled oligo-
nucleotide probe to its complimentary sequence present
within the cell without altering its morphology and integrity
(Moter and Gobel 2000; Amann and Fuchs 2008). FISH can
be directly applied to samples without cultivation of cells
and could be efficiently used to identify microbes and study
their morphology and spatial distribution in a wide variety
of complex environments (Amann et al. 1995). It can be
used as a powerful tool for molecular diagnostic and phy-
logenetic studies (Ishii et al. 2004; Aminov et al. 2006;
Lenaerts et al. 2007; Amann and Fuchs 2008; Gescher et
al. 2008).

Fluorescent in situ hybridization (Fig. 2) includes the
following steps: (1) sample fixation: fixation can be per-
formed using chemicals like formaldehyde, paraformalde-
hyde, glutaraldehyde, and ethanol (Waar et al. 2005). The
selection of the chemical for fixation depends on the sample
and nature of the experiment. For example, Gram-negative
bacteria can be fixed using 3–4 % (v/v) formaldehyde or
paraformaldehyde (Tang et al. 2005); (2) sample prepara-
tion: samples are smeared on special slides coated with
Teflon, gelatin, or poly-L-lysine (Amann et al. 1990). The
smeared samples are air-dried and dehydrated in an ethanol

series. Gram-positive bacteria are additionally treated with
an enzyme such as lysozyme to make the peptidoglycan
layer permeable to the probe (Meir et al. 1999); (3) hybrid-
ization: hybridization is carried out in hybridization buffer
containing different concentrations of formamide to control
the stringency of the reaction. The specificity of the probe is
controlled by hybridization conditions such as formamide
concentration, salt concentration, pH, hybridization temper-
ature, and the sequence of the probe (Polak and McGee
1990). In general, specificity is altered by altering the strin-
gency of the hybridization reaction (i.e., changing formam-
ide concentration) and temperature. High formamide
concentration and hybridization temperature will allow hy-
bridization of the probe to sequence with similar homology,
thus increasing the specificity of the probe (Easteal et al.
1991; Hugenholtz et al. 2001); (4) washing: post-
hybridization stringency is controlled by altering the salt
concentration of the washing buffer to remove unbound
probes (Lathe 1985); (5) visualization: epifluorescence mi-
croscope with different filter sets is used for documentation
of the hybridization images. Most of the microscopes are
equipped with cameras and image analysis software which
are used for the identification and enumeration of micro-
organisms (Manz et al. 2000). Confocal laser scanning
microscope is used for measuring cells with high back-
ground such as biofilms, sludge, and tissue sections
(Wagner et al. 1994; Manz et al. 1995). Flow cytometry

Fig. 2 Flow chart of fluorescent in situ hybridization (image courtesy: with permission from Dr. Frank Oliver Glockner)
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can also be used to detect signals for quantification gener-
ated by fluorescence probes tagged to their target cells
(Amann et al. 1990; Wallner et al. 1997).

FISH probes

Ribosomal RNA (16 S rRNA) molecules are commonly
targeted in FISH studies for the detection and quantification
of bacteria and archaea from different environments because
they are ubiquitously present in high numbers in viable
cells; large datasets of sequences are available, consisting
of highly conserved and variable regions that are exploited
to design probes (genus or species specific) depending on
the objective of the investigation (Wallner et al. 1993;
Amann et al. 1995). Sequence variation helps to distinguish
microbes on all phylogenetic levels (Woese 1987). A wide
variety of probes, for example, dsDNA, ssDNA, and syn-
thetic oligonucleotide, can be designed and used for FISH
experiments (Feldman et al. 1997). For microbial identifi-
cation and quantification, small oligonucleotide probes (18–
40 base pairs) are designed using an appropriate software
(e.g., ARB) from the ribosomal sequence information as
they are highly specific and could also easily permeabilize
the microbial cell (Mahmoud et al. 2007). The probes are
directly labeled with fluorescent dyes at either the 5′ or the
3′ end of the oligonucleotide. A wide variety of fluorescent
dyes (fluorescin and rhodamine) can be used for labeling
(Cullander 1999). The specificity of the probe depends on
several factors such as sequence of the probe, size of the
probe, permeability of the cells, hybridization conditions,
and also labeling techniques (Rattray and Micheal 1998).

Applications of FISH

Fluorescent in situ hybridization of whole cells with oligo-
nucleotides targeting 16S rRNA molecules has been suc-
cessfully applied in different environmental and clinical
samples. The microbial diversity of a wide variety of natural
environments is ranging from river water system (Kenzaka
et al. 1998), sea water (Tang et al. 2005), sediment (Liobet-
Brossa et al. 1998), corals (Ainsworth et al. 2006), plankton
assemblages (Glockner et al. 1996), snow of a high moun-
tain lake (Weiss et al. 1996), Antarctic coastal waters
(Murray et al. 1998), sulfidic and acidic mines (Kock and
Schippers 2008), and the detection of raw milk spoilage
organisms (Gunasekera et al. 2003). In recent years, the
utilization of FISH has rapidly increased in medical diag-
nostics for the detection and enumeration of pathogens
associated with oral infections like periodontotitis and gin-
givitis (Sunde et al. 2003), respiratory tract infections like
cystic fibrosis (Hogardt et al. 2000), gastrointestinal

disorders (Waar et al. 2005), colonic spirochaetosis (Boye
et al. 1998), and implanted medical devices (Krimmer et al.
1999; Oosterhof et al. 2006).

Similarly, this technology has been implemented in MWFs
for the study of culturable and non-culturable microorgan-
isms. van der Gast et al. (2003) detected Proteobacteria (sub-
classes alpha, beta, gamma), Cytophaga–Flavobacterium,
and high G+C-content gram-positive bacteria from used
MWF samples collected from three different continents.
Recently, Selvaraju et al. (2008a, b) developed a DNA-FISH
assay for the detection of bacteria belonging to the genus
Pseudomonas in MWFs. The levels of pseudomonads
detected in different MWF samples were in the range of
1.80×105 to 1.05×106 cells/ml. Previously, Sloyer et al.
(2002) developed a rapid (10 s) automated FISH method to
estimate viable bacteria in MWFs and was compared against
the dip–slide method presently used in the industry. The
BactiFluor method was performed successfully in all the 107
MWF samples used along with 30 other metal-processing
fluids. Saha et al. (2011b) also developed a FISH method for
the rapid detection of rRNA group I pseudomonads in con-
taminated MWFs and to study the biofilm-forming capabili-
ties of some of the predominant Pseudomonas species. The
unique Pseudo120 probe successfully detected and enumerat-
ed the abundance and distribution ofPseudomonas, indicating
levels between 3.2 (± 1.1)×106 and 5.0 (± 2.3)×106 cells/ml
of used MWFs.

Advantages and limitations of FISH

There are several advantages of using FISH for the study of
microbial communities from diverse environments. It can be
directly applied to samples for the visualization of morphol-
ogy and spatial distribution of both culturable and non-
culturable microbes within their natural habitat (Amann et
al. 1995; Hicks et al. 1992; Wagner et al. 2003). In compar-
ison to traditional culturing techniques and PCR-based
methods, it is less time consuming and more cost effective,
respectively (Moter and Gobel 2000). However, it has cer-
tain limitations such as autofluorescence (Brown and
Lowbury 1996), photobleaching (Moter and Gobel 2000),
insufficient permeability (Krimmer et al. 1999), and low
rRNA content (DeLong et al. 1989) due to the physiological
state of the cells.

Biofilm

A microbial biofilm is a complex community of microor-
ganisms growing in a biotic or abiotic surface in an aqueous
environment (Donlan 2001; Lynch and Robertson 2008). It
is a naturally occurring process in the environment and is a
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strategy used by microorganisms to protect the cells to
survive under extreme nutritional conditions (Lucchesi et
al. 2012). In nature, only 10 % of bacterial cells are found in
planktonic form (Lucchesi et al. 2012). Biofilm can be
composed of multiple species of organisms including
Gram-positive or Gram-negative bacteria along with yeast
and protozoa (Bell 2001). The development of a biofilm
depends on the availability of nutrients and surface for
attachment (Costerton et al. 1999; Stoodley et al. 2002).
Microorganisms constituting biofilm communities are less
susceptible to antimicrobial agents and are thus difficult to
control (Xu et al. 2000; Stewart and Costerton 2001). Some
of the biofilm-related issues in the MWF industry are pipe
blockage, product contamination, deterioration of industrial
equipments, and biocorrosion (Lucchesi et al. 2012).
Although biofilms in MWF systems have not been well
studied, there are a few works documenting the role of
biofilms related to MWF systems (Cook and Gaylarde
1988; Passman et al. 2000), in MWF sumps (Moore et al.
2000), flow-through reactor systems (Mattsby-Blatzer et al.

1989), disinfection treatments (Passman 2008), and biocide
resistance in P. aeruginosa recovered from contaminated
MWF (Sondossi et al. 1984). These studies indicated that
cleaning and use of biocide had less impact on bacterial
consortia present within the biofilms compared to plankton-
ic bacteria present in contaminated MWFs. Due to the
continuous release of microbial biomass from biofilm sour-
ces, there exists a steady concentration of microorganisms
(107 CFU/ml) capable of growth (within 12 h after cleaning;
Veillette et al. 2004), which makes control application
critical in MWF systems with biofilms (Skerlos et al.
2001). A recent study by Saha et al. (2011b) demonstrated
that, under a low concentration of cells, biofilm formation
(Fig. 3) by some of the predominant species of
Pseudomonas could be delayed by 24 h, indicating that
implementation of suitable disinfection methods along with
a proper fluid management system could prolong the life of
in-use MWFs. Also, a study by Lucchesi et al. (2012)
reported that the type of material used in MWF industries
had little influence on biofilm development and on the

Fig. 3 Biofilm formation by
Pseudomonas oleovorans
subsp. lubricantis after 96 h
under static condition. The
biofilm is stained with the probe
Pseudo 120 tagged with Cy3
fluorescent dye
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concentration of biocides required to control biofilm forma-
tion. Based on these investigations, further research and
development are recommended to be conducted to study
the efficacy of different disinfectants on the biofilms formed
in the sump of MWF systems.

Conclusion

The understanding of the diversity, composition, and
biofilm-forming capabilities of the microbial community in
various contaminated MWFs along with the implementation
of molecular approaches will help to develop better MWF
management strategies that will not only prolong the life of
MWFs but will also protect the health of the workers. It will
also help in the development of alternative control methods
and also allow the formulation of new MWFs that are
resistant to microbial colonization.
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