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Abstract We investigated the diversity, spatial distribu-
tion, and abundances of ammonia-oxidizing archaea
(AOA) and ammonia-oxidizing bacteria (AOB) in sedi-
ment samples of different depths collected from a transect
with different distances to mangrove forest in the
territories of Hong Kong. Both the archaeal and bacterial
amoA genes (encoding ammonia monooxygenase subunit
A) from all samples supported distinct phylogenetic
groups, indicating the presences of niche-specific AOA
and AOB in mangrove sediments. The higher AOB
abundances than AOA in mangrove sediments, especially
in the vicinity of the mangrove trees, might indicate the
more important role of AOB on nitrification. The spatial
distribution showed that AOA had higher diversity and
abundance in the surface layer sediments near the
mangrove trees (0 and 10 m) but lower away from the
mangrove trees (1,000 m), and communities of AOA

could be clustered into surface and bottom sediment layer
groups. In contrast, AOB showed a reverse distributed
pattern, and its communities were grouped by the
distances between sites and mangrove trees, indicating
mangrove trees might have different influences on AOA
and AOB community structures. Furthermore, the strong
correlations among archaeal and bacterial amoA gene
abundances and their ratio with NH4

+, salinity, and pH of
sediments indicated that these environmental factors have
strong influences on AOA and AOB distributions in
mangrove sediments. In addition, AOA diversity and
abundances were significantly correlated with hzo gene
abundances, which encodes the key enzyme for transfor-
mation of hydrazine into N2 in anaerobic ammonium-
oxidizing (anammox) bacteria, indicating AOA and
anammox bacteria may interact with each other or they
are influenced by the same controlling factors, such as
NH4

+. The results provide a better understanding on using
mangrove wetlands as biological treatment systems for
removal of nutrients.
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Introduction

Mangrove ecosystems, the important natural wetlands
distributed along estuaries in tropical and subtropical
region, provide breeding, growing, refuge, and feeding
zone for many marine organisms (Holguin et al. 2001). In
mangrove ecosystem, microbial activities are the key
processes contributing to the high productivity of this
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ecosystem (Holguin et al. 2001). Microbial-mediated
nutrient transformation and subsequent export to other
marine ecosystems, such as nitrogen and phosphate, are
important to mangrove and other coastal ecosystems
(Sjoling et al. 2005). For the nitrogen (N) cycle within
mangrove ecosystem, microbial processes include dinitro-
gen (N2)-fixation, nitrification, denitrification, ammonifica-
tion, anaerobic ammonium oxidizing (anammox), and
dissimilatory nitrate reduction to ammonium (Purvaja et
al. 2008). The alternating aerobic and anaerobic conditions
caused by tidal flushing in mangrove wetlands provide a
suitable environment for the nitrification (Kristensen et al.
1998) and denitrification (Rivera-Monroy and Twilley
1996) or anammox (Meyer et al. 2005), which affects the
rate of N turnover. On the other hand, the mangrove trees
could also enhance microbial N transformation by trans-
porting O2 to the otherwise anoxic subsurface sediment
through their aerial roots to support nitrification (Holguin et
al. 2001) or providing the carbon source to fuel heterotro-
phic denitrification in the rhizosphere (Zhu and Sikora
1995); at the same time, mangrove trees may inhibit
microbial N transformation due to the competition for
available N in mangrove ecosystem. These information
show that a complex microbial N transformation exists in a
mangrove ecosystem which requires more research efforts
to understand the dynamics of theses microorganisms and
their contributions to the N cycle in mangrove ecosystem.

Nitrification, a two-step process that includes the
oxidation of ammonium via hydroxylamine to nitrite and
then nitrate, is a key process in marine N cycling. The first
and rate-limiting step, ammonia oxidation, is executed by
limited number of microbial groups, including aerobic
chemoautotrophic bacteria and archaea. Bacterial members
include the β-proteobacteria Nitrosomonas and Nitrosopi-
ras, and the γ-proteobacteria Nitrosococcus (Purkhold et al.
2000). Both, the amoA genes which encode the catalytic
α-subunit of the ammonia monooxygenase enzyme and
16S rRNA genes have been used in molecular studies for
analyzing ammonia-oxidizing bacteria (AOB) in the envi-
ronment, specifically to determine the effects on diversity,
abundance and community structures by physicochemical
parameters, e.g., pH, temperature, oxygen, light, soil
management regimes, etc. (Kowalchuk and Stephen 2001;
Prosser and Embley 2002). The first ammonia-oxidizing
archaeon (AOA) Nitrosopumilus maritimus has been
isolated from a marine aquarium tank recently (Konneke
et al. 2005). N. maritimus is a representative of the
ubiquitous marine “group 1” archaeota and grows chemo-
lithoautotrophically by oxidizing ammonia to nitrite under
mesophilic conditions (Konneke et al. 2005). In addition,
N. maritimus contains putative genes for all three subunits
(amoA, amoB, and amoC) of the ammonia monooxygenase
(Konneke et al. 2005). The discovery of ammonia oxidizers

in the archaea has inspired many researchers to investigate
this new group. Francis et al. (2005) provided the first
molecular evidence demonstrating the archaeal amoA gene
to be pervasive in the ocean, including the euphotic zone,
suboxic water columns and coastal/estuarine sediments. Up
to now, the diversity, distribution and physiology of AOA
have been widely investigated in soils (Adair and Schwartz
2008; Hansel et al. 2008), seawater column (Francis et al.
2005; Lam et al. 2007; Mincer et al. 2007; Beman et al.
2008), marine sediments (Beman and Francis 2006; Santoro
et al. 2008), aquaria filters (Urakawa et al. 2008),
rhizosphere (Chen et al. 2008; Herrmann et al. 2008,
2009), municipal sewage plants (Park et al. 2006), hot
spring (de la Torre et al. 2008; Hatzenpichler et al. 2008;
Zhang et al. 2008), hydrothermal vents, and even marine
invertebrates (Steger et al. 2008). Erguder et al. (2009)
summarized the current knowledge on the environmental
conditions related to the presence of AOA and identified
site-related properties and environmental factors which
included ammonium, organic carbon, temperature, salinity,
oxygen, pH, sulfide, phosphate, and some metal contents.
Furthermore, the interactions between nitrifiers (AOA and
AOB) and anammox bacteria were also recorded in the
Black Sea (Lam et al. 2007) and in the Peruvian oxygen
minimum zone (Lam et al. 2009), where nitrifiers were
proposed to supply the nitrite to anammox to form a
nitrification-anammox coupling.

It is apparent that previous studies have demonstrated
convincingly that AOA and AOB are widely distributed
and regulated by the physiochemical characteristics of
environments, but no study has examined AOA and AOB
in mangrove ecosystems. Nitrification rates in mangrove
sediments measured by chemical methods indicated that
nitrification occurred predominantly close to the sediment
surface in micro-oxic zones, which were created by the
oxygen-pumping activity of mangrove roots and in the
oxidized lining of animal burrows (Holguin et al. 2001;
Purvaja et al. 2008). The studies suggested nitrification
rates increased generally with depth at the vegetated site,
where nitrifiers were subjected to more oxic conditions
compared with non-vegetated sediments, indicating the
distribution of mangrove plants might have strong influen-
ces on nitrification in mangrove ecosystems (Holguin et al.
2001; Purvaja et al. 2008). Constructed and natural
mangrove wetlands have been employed as alternative
low cost biological systems for treatment of municipal
sewage with high inorganic nitrogen, which might be
transformed by AOA and AOB (Wong et al. 1997).
However, the community structures and distribution of
AOA and AOB, and their relationship with mangrove trees
are still largely unknown. In the present study, we report the
phylogenetic diversity, distribution and abundance of AOA
and AOB based on archaeal and bacterial amoA genes
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analyses in surface and lower layer sediments collected
from different sites located at different distances to
mangrove trees in the New Territories of Hong Kong. In
addition, the relationships of the diversity, distribution and
abundance of AOA and AOB with environmental factors,
mangrove trees and occurrence of copies of the hzo gene
which in anammox bacteria encodes the key enzyme for
transformation of hydrazine to N2 and is used as an
indicator of anammox activity and potential (Strous et al.
2006; Shimamura et al. 2007; Schmid et al. 2008), were
also analyzed using statistical analysis. The results will help
us to improve our understanding of the usage of mangrove
wetlands as wastewater treatment systems for removal of
nutrients.

Materials and methods

Sample collection and physicochemical analyses

Mai Po Marshes Nature Reserve, located at the northwest-
ern corner of the New Territories of Hong Kong (22°30′N,
114°02′E), is the largest remaining coastal wetland in Hong
Kong. Mai Po Marshes Nature Reserve comprises of
subtropical mangroves, inter-tidal mudflats, as well as
man-made fishponds and drainage channels. In the man-
grove wetland, the dominated mangrove trees are Kandelia
obovata (formerly Kandelia candel). The area is quite
homogenous and three sampling sites (S0, S1, and S2) were
selected in a transect: site S0 was immediately to the
mangrove trees in the forest; site S1 with a distance of 10 m
to the mangrove forest edge, and site S2 on the inter-tidal
mudflats without any mangrove tree or vegetation about
1,000 m from S0 (Electronic supplementary Fig. 1). The
surface layer (1–2 cm) and lower layer (20–21 cm)
sediment samples were collected in triplicate at each of
the three sampling sites and homogenized the triplicate
sediment samples into one to represent each site, and all
samples were immediately transferred into a 4°C cooler for
transport to the laboratory for analyses (within 2 h).
Samples were labeled by the sampling sites (S0-S2) with
surface layer (s) or lower layer (l), and obtained sequences
in each site were labeled by their site name with clone
number.

Temperature, redox potential and pH of the sediment
samples were measured in situ using IQ180G Bluetooth
Multi-Parameter System (Hach Company, Loveland, CO)
and concentrations of NH4

+-N, NO3
−-N, and NO2

−-N in
pore water of sediment samples were measured, after
centrifugation, with an autoanalyzer (QuickChem, Milwau-
kee, WI) according to standard methods given by the
American Public Health Association (American Public
Health Association 1995). Salinity of pore water was

measured using a YSI 556 Multiprobe System (YSI, Yellow
Springs, OH). The results are summarized in the Electronic
supplemenatry Table S-1.

DNA extraction, PCR amplification, and cloning

Total genomic DNA of each sediment samples were
extracted using the SoilMaster DNA Extraction kit
(Epicentre Biotechnologies, Madison, WI), respectively.
Archaeal amoA genes were amplified using primers
Arch-amoAF (5′-STAATGGTCTGGCTTAGACG-3′) and
Arch-amoAR (5′-GCGGCCATCCATCTGTATGT-3′)
(Francis et al. 2005), while bacterial amoA genes were
amplified by amoA-1F (5′-GGGGTTTCTACTGGTGGT-3′)
and amoA-2R (5′-CCCCTCKGSAAAGCCTTCTTC-3′)
(Rotthauwe et al. 1997). Polymerase chain reaction (PCR)
reaction mixtures contained 1 μl DNA (30–50 ng μl−1),
1 μl bovine serum albumin (100 mg ml−1, Roche), 5 μl
10×GoTaq Flexi buffer (Promega, Hong Kong), and 4 μl
MgCl2 (25 mM, Promega), 1 μl of dNTPs (5 mM,
Invitrogen, Hong Kong), 1 μl of each forward and reverse
primer (20 μM), and 0.25 μl of GoTaq Flexi polymerase
(5 U μl−1, Promega, Hong Kong), and the final volume for
each reaction was 50 μl. PCR reactions were performed as
follows: 95°C for 3 min; 35 cycles of 95°C for 45 s, 53°C
(for AOA) or 55°C (for AOB) for 1 min, followed by 72°C
for 1 min; and finally 72°C for 7 min. Triplicate PCR
reaction products for each site were pooled; gel purified
using Gel Advance-Gel Extraction System (VIOGEME,
Taipei) and cloned using the pMD18 T-vector (Takara,
Japan), and replicated clone libraries were constructed for
each sampling sites for the two layers. The insertion of an
appropriate-sized DNA fragment was determined by PCR
amplification with the primer set M13F and M13R
(Invitrogen, Hong Kong).

Sequencing and phylogenetic analysis

Sequencing was performed with the Big Dye Terminate kit
(Applied Sciences, Foster City, CA) and an ABI Prism
3730 DNA analyzer (Applied Biosystems, Foster City,
CA). DNA sequences were examined and edited by MEGA
4.0 software (Tamura et al. 2007). In order to obtain reliable
phylogenetic results, we carried out the alignment by using
identical number of bp for each of the obtained sequences
(465 bp for archaeal amoA and 640 bp for bacterial amoA),
which were almost the full fragments amplified by the
selected primer sets used in our study. Nucleic acid
sequences of archaeal and bacterial amoA genes were
aligned using the MEGA 4.0 software package, and
phylogenetic trees were constructed with the neighbor-
joining and maximum parsimony methods, and bootstrap
re-sampling analysis for 1,000 replicates was performed to
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estimate the confidence of the tree topologies (Tamura et al.
2007).

Quantitative PCR assay

The copy numbers of amoA gene of AOA and AOB in all
sediment samples were determined in triplicate using an
ABI 7000 Sequence detection system (Applied Biosystems,
Foster City, CA). The quantification was based on the
fluorescent dye SYBR-Green I. Each reaction was per-
formed in a 25 μl volume containing 1 μl of DNA
template, 1 μl BSA (100 mg ml−1, Roche), 1 μl of each
primer (20 μM) and 12.5 μl of Power SYBR-Green PCR
Master Mix (Applied Biosystems, Foster City, CA). The
PCR protocols were identical as those described above
except that the final extension step was omitted and that 50
cycles were performed followed by melting analyses. The
hzo gene abundances of anammox bacteria in the same
sediment samples were also analyzed by quantitative PCR,
and details for the PCR amplification experiments are
available elsewhere (Li et al. 2010). We used the con-
structed plasmids carrying the targeted gene sequences
(amoA or hzo) as the standards, which were generated by
amplifying genes from extracted DNA of site S1-s sedi-
ments and cloning them into pMD18 T-vector (Takara,
Japan). The abundances of targeted genes in each sample
were calculated by the parallel quantitative PCR of different
dilutions of the standard plasmids, where copy number of
standard plasmids in each dilution could be calculated by
their concentrations. The quantitative PCR amplification
efficiencies ranged from 0.92–0.96 (AOA amoA), 0.91–
0.95 (AOB amoA) and 0.85–0.92 (hzo), and correlation
coefficients (R2) were greater than 0.99 for the three
targeted genes. Comparison for amoA gene abundances of
AOA and AOB was done by analysis of variance
(ANOVA) for definition of any significant differences
among these sediment sample sites with their different
layers.

Statistical analysis

To obtain views on the richness and diversity of archaeal
and bacterial amoA genes, operational taxonomic units
(OTUs) for community analysis were defined by 5%
differences in nucleotide sequences, as determined by using
the furthest neighbor algorithm in DOTUR (Schloss and
Handelsman 2005). Shannon and Simpson indices for each
sampling site were also generated by DOTUR. The
community structures of archaeal and bacterial amoA genes
between any two clone libraries were compared with
LIBSHUFF software version 0.96 (http://libshuff.mib.uga.
edu/) to get a quantitative documentation according to the
Singleton method (Singleton et al. 2001). To further

rigorously examine the geographic distribution of phyloge-
netic structures of AOA and AOB in mangrove sediments,
the phylogenetic trees derived from the alignment used in
Figs. 2 and 3 but restricted to archaeal and bacterial
amoA sequences recovered in this study were analyzed by
using the principal coordinates analysis (PCoA) and
Jackknife Environment Clusters analysis in UniFrac
(Lozupone et al. 2006). Finally, correlation analysis of
AOA and AOB community structures with environmental
factors, mangrove trees and anammox bacteria was
conducted using Microsoft Excel program with Pearson’s
moment correlation.

Nucleotide sequence accession numbers

The GenBank accession numbers for the archaeal and
bacterial amoA genes sequences reported here are
GQ331390-GQ331635 and GQ331636-GQ331908, respec-
tively. The hzo gene accession numbers are GQ331363 to
GQ331389.

Results

Richness and phylogenetic diversity of AOA and AOB

In this study, 246 archaeal and 273 bacterial amoA clones
were sequenced from 12 AOA and AOB clone libraries
(Table 1). Within each individual sampling site, two to
eight AOA and two to eight AOB OTUs were found. In
some cases, such as AOA in S1-s and AOB in S2-s, the
OTU numbers would be higher if more clones were
sequenced, based on non-asymptotic rarefaction curves
(Electronic supplementary Fig. S-2). The highest AOA
richness occurred at S1-s, and the lowest occurred in S0-l,
while the highest AOB richness occurred at S2-l, and the
lowest was S0-s, consisting with the values of Shannon and
Simpson indices. In addition, AOA showed a higher
richness at the surface layer in the vicinity of the mangrove
tree (S0 and S1); while AOB had higher OTUs at site S2
than S0 or S1 for both surface and lower layers sediments
(Table 1).

Phylogenetic diversity analysis showed that archaeal
amoA sequences were divided into five clusters (Fig. 1).
Cluster 1 fell into a phylogenetic group comprising a large
proportion of archaeal amoA sequences (150 out of 246)
and some published sequences recovered from deep sea,
bay, or estuary sediments (Dang et al. 2008, 2009).
Sequences in clusters 2 and 3 recovered from the surface
layer of the research sites were more closely related to those
from wastewater treatment plants (Park et al. 2006; Zhang
et al. 2009). It was interesting that the sequences in cluster 4
formed a distinct phylogenetic cluster where DNA se-
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quence identity with available amoA sequences was <88%,
indicating new site specific AOA species in mangrove
sediments. Approximately 10% of archaeal amoA clones
fell into cluster 5 which related to amoA sequences from
Northern California coastal/estuarine sediment (Mosier and
Francis 2008) and N. maritimus (Konneke et al. 2005).
Comparing with AOA, the phylogeny of AOB was much
simpler and all amoA sequences related to Nitrosomonas-
like sequences were grouped in three different clusters
(Fig. 2). About 41.8% of sequences in cluster 1 were
closely related to the clones recovered from Bahía del
Tóbari estuaries, Chesapeake Bay and Jiaozhou Bay
(Francis et al. 2003; Beman and Francis 2006). Similar to
AOA, a large proportion (148 out of 273) of bacterial amoA
sequences also formed a site specific group (cluster 3), and
the DNA identity with available sequences was less than
89%. Furthermore, three sub-clusters could be identified
within cluster 3, where sequences in two of the three sub-
clusters were recovered only from site S2 and the third
group was retrieved from all sampling sites.

amoA and hzo gene abundances in mangrove sediments

AOA amoA gene copy numbers ranged from 6.04×106 to
9.45×106 copies per dry gram of sediment at surface layers,
and the S0 and S1 located near mangrove trees had higher
archaeal amoA gene abundances than S2 located far away
from mangrove trees. In contrast, AOA amoA gene
abundances in lower layer sediments were increasing from
S0 to S2 along with the distances of sampling sites to
mangrove trees (Fig. 3a). However, AOB amoA gene
abundances were decreasing from S0 to S2 at both surface
and lower layer sediments, ranging from 0.95×107 to
4.17×107 copies per dry gram of sediment (Fig. 3b). In
addition, AOA amoA gene abundances were higher at
surface layer sediments for sites S0 and S1 but lower at
lower layer sediments for the site S2, while AOB amoA

gene abundances showed the opposite (p<0.05, n=3,
ANOVA). The ratios of bacterial to archaeal amoA genes
(0.87±0.27 to 11.93±0.25) indicated that AOB amoA copy
numbers were greater than those of AOA in mangrove
sediments except in the lower layer of S2, where was far
away from mangrove trees (Fig. 3c). Furthermore, the
significant different (p<0.05, n=3, ANOVA) ratios of
AOB/AOA amoA abundance decreased from 5.01±0.55
to 2.22±0.69 at surface layers and 11.93±0.25 to 0.86±
0.27 at lower layers from sites S0 to S2, respectively, which
indicates a striking spatial shift of AOB/AOA amoA
abundances in mangrove sediments, especially in the lower
layer sediments. Except no hzo genes were detected at site
S0-l, the obtained anammox hzo gene abundances ranged
from 7.5×104 to 36.5×104 copies per gram of sediments
(dry weight) (Fig. 3d). The hzo gene determined at sites S1
and S0 showed a significant higher copy number in surface
layer samples than in lower layer samples (p<0.05, n=3).
However, in site S2, the surface layer sample had a lower
hzo gene copy number than the lower layer sample (p<
0.05, n=3).

Community distribution of AOA and AOB in mangrove
sediments

Based on the p values calculated by LIBSHUFF software,
AOA showed similar community structure compositions
only in samples collected at sites S0-s with S1-s or in
samples collected at sites S0-s with S2-s (95% confidence),
while they were significantly different for any other two
clone libraries as judged from pairwise comparison,
indicating an obvious shift of AOA community structure
in mangrove sediments (Table 2). However, for AOB
community structures, there was a significant compositional
overlap among the six bacterial amoA clone libraries (95%
confidence). Sites S0 and S1 for both surface and lower
layers also showed similar bacterial amoA compositions

amoA gene Sampling site Number of screened clones OTUs Shannon index Simpson index

AOA S0-s 42 6 1.51 0.25

S0-l 44 2 0.53 0.64

S1-s 36 8 1.60 0.24

S1-l 47 4 0.90 0.45

S2-s 36 3 0.55 0.74

S2-l 41 6 1.37 0.29

AOB S0-s 47 2 0.66 0.52

S0-l 45 2 0.69 0.49

S1-s 44 2 0.67 0.51

S1-l 44 5 0.96 0.43

S2-s 47 6 1.34 0.33

S2-l 46 8 1.70 0.20

Table 1 Diversity characteris-
tics of each clone library of
archaeal and bacterial amoA
genes in different sample sites
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Estuary sediments EU651174
S0-l-4 (10) GQ331476

S2-l-18 (1) GQ331563 

S2-l-11 (2) GQ331561 
Nitrosopumilus maritimus SCM1 EU239959 

Estuary enrichment culture EU650806

Estuary sediments EU651171

S1-s-26 (1) GQ331445 

Estuary sediments DQ148642

Cluster 5

S2-l-10 (9) GQ331559 

S1-s-5 (5) GQ331441
S2-s-24 (2) GQ331601 

S1-l-6 (17) GQ331393 

S2-s-1 (1) GQ331600

S1-l-41 (1) GQ331394
S1-s-4 (1) GQ331397 

S2-l-23 (1) GQ331560 

S0-s-17 (8) GQ331522 

Cluster 4

S1-s-7 (14) GQ331446 

Wastewater plant DQ278528

Lake Hampen freshwater sediment EU309884
Agricultural soil EF450796

Cluster 3

S0-s-3 (7) GQ331518 

 S1-s-10 (3) GQ331443 

S2-s-7 (2) GQ331602 

HK wastewater treatment plant EU860282

Cluster 2

S2-s-2 (31) GQ331603 

S0-s-13 (18) GQ331520 

Mid Bay sediment FJ227760

S1-l-10 (10) GQ331391 

S1-s-1 (10) GQ331437 

S1-l-1 (17) GQ331390 

S1-l-46 (2) GQ331392 

S0-l-1 (34) GQ331473 

S1-s-3 (1) GQ331439 

West Pacific deep-sea sediment EU885682

Changjiang Estuary sediment EU025147

Estuary sediments DQ278581

West Pacific deep-sea sediment EU885675
 S0-s-14 (1) GQ331521

Cluster 1

 Nitrosomonas europaea L08050

99/99

52/54

98/98

99/98

100/99

66/71

99/98

99/86

96/90

100/99

100/99

96/70

75/94

89/82

97/97

79/94

97/94

100/99

97/95

78/73

96/82

86/61

76/61

90/-

53/-

100/99

59/54

88/79

73/-

84/58

58/56

59/-

0.05

S0-s-1 (3) GQ331517

S2-l-19 (1) GQ331562 

S2-l-9 (9) GQ331564 

S1-s-22 (1) GQ331413 

S0-s-2 (5) GQ331519 

S2-l-1 (18) GQ331565

Fig. 1 Phylogenetic tree of archaeal amoA genes from surface (solid)
and lower layers (open) mangrove sediments collected from the
locations at immediately to the mangrove trees (S0), 10 m (S1), and
1,000 m (S2) away from mangrove trees. Bootstrap values (>50%) are

indicated at branch points, with distance bootstrap values at front and
parsimony values at back. Branch lengths correspond to sequence
differences as indicated by the scale bar
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which further supported a uniform AOB community
structure at this research area (Table 2). However, PCoA
(data not shown) and Jackknife Environment Clusters
separated the AOA communities into slightly distinct
surface and lower layer groups while AOB communities
were separated into groups by distances of being near and
far away from mangrove trees groups (Fig. 4).

Correlations of ammonia-oxidizer community structures
with environmental factors and anammox bacteria
communities

Pearson’s moment correlation analysis was used to find out
whether there were some environmental factors affecting
the distributions of AOA and AOB in mangrove sediments

S2-l-1 (28) GQ331816

S1-s-1 (27) GQ331680

S1-l-4 (23) GQ331639

 S0-s-6 (18) GQ331774

 S0-l-6 (23) GQ331729

 S2-s-2 (16) GQ331863

S2-s-3 (3) GQ331864

S2-s-30 (2) GQ331891

 S2-s-29 (5) GQ331890

 S2-l-11 (3) GQ331817

Cluster 3

Marine aquaculture AM295554

Marine aquaculture AM295564

Marine aquaculture AM295559

S2-l-23 (4) GQ331818

S2-s-7 (6) GQ331868

Cluster 2

Nitrosomonas marina AF272405 

Nitrosomonas marina AJ388586

 S1-l-2 (19) GQ331637

 S0-l-1 (22) GQ331724

S1-s-3 (17) GQ331682

S0-s-1 (29) GQ331769

S2-l-2 (11) GQ331819

 S2-s-1 (12) GQ331862

Jiaozhou Bay sediments EU244491

Estuarine sediments DQ501183

S2-s-4 (1) GQ331865

S2-s-23 (1) GQ331884

S1-l-22 (1) GQ331657

 S1-l-44 (1) GQ331679

 Chesapeake Bay sediment AY352904

Cluster 1

Nitrosomonas sp. Nm143 AY123816

Chesapeake Bay sediment AY352932

Chesapeake Bay sediment AY352969

Estuary system AY702586

Nitrosomonas cryotolerans AF272402 

Nitrosospira multiformis AY177933 

Nitrosospira sp. Nsp62 AY123837 100/99

100/99

97/9

9

100/99

99/98

79/-
100/99

97/87

100/99

100/99

91/50

99/83

72/-

59/-

56/-

75/-

71/-

100/99
85/72

74/50

51/-

92/53

52/-

64-

0.05

Estuarine sediments DQ501217 

Fig. 2 Phylogenetic tree of
bacterial amoA genes from
surface (solid) and lower layers
(open) mangrove sediments
collected from the locations at
immediately to the mangrove
trees (S0), 10 m (S1), and
1,000 m (S2) away from
mangrove trees. Bootstrap
values (>50%) are indicated at
branch points, with distance
bootstrap values at front and
parsimony values at back.
Branch lengths correspond
to sequence differences as
indicated by the scale bar
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(Table 3). Results showed that the diversity and abun-
dance of archaeal amoA sequences were significantly
correlated with the NH4

+ while presence of bacterial
amoA was strongly correlated with the distances between
sampling sites to mangrove trees and salinity. In addition,
abundances of archaeal and bacterial amoA genes and
their ratios were also significantly correlated with sedi-
ment pH. Furthermore, it was found that AOA diversity
and abundance were strongly and positively correlated
with the copy number of anammox bacteria hzo genes
(Table 3).

Discussion

In the present study, we draw a comprehensive picture
about the diversity, distribution and abundances of AOA
and AOB in mangrove sediments. Diversity estimations
indicated that both archaeal and bacterial richness
(0.53–1.60 and 0.66–1.70 predicted by Shannon index,
and 0.24–0.74 and 0.20–0.52 predicted by Simpson
index) were within the ranges reported at other estuaries
(0.44–2.12 and 0.33–2.02 for Shannon index; 0.10–0.84
and 0.11–0.84 for Simpson index) (Beman and Francis
2006; Mosier and Francis 2008; Santoro et al. 2008)
(Table 1). However, phylogenetic analysis showed that
both the distributions of archaeal and of bacterial amoA
sequences supported that distinct phylogenetic groups in
mangrove sediment and sequences in the distinct groups
are less than 88% and 89% identified to other available
sequences, which provides new information about AOA
diversity and distribution in natural ecosystem (Figs. 1 and
2). However, the presence of the AOA sequences related
to sequences found previously in samples taken from
wastewater treatment plants of Hong Kong and the
presence of AOB amoA sequences related to sequences
found in Hong Kong marine aquaculture indicated that
AOA and AOB in mangrove sediments of Mai Po Nature
Reserve might also originate from the export of municipal
wastes of the nearby area since large quantities of
wastewater from domestic and industrial origins (includ-
ing aquaculture) are discharged each year into Mai Po
Nature Reserve without proper treatment (Wang et al.
2006).

From the abundances of AOA and AOB in mangrove
sediments (Fig. 3), we found that AOA abundances in Mai
Po Nature Reserve were similar to those in the San
Francisco Bay estuary (Mosier and Francis 2008), while
AOB abundances were slightly higher than those in salt0 m         10 m        1000 m

Distance between the sampling sites and mangrove trees

Fig. 3 Abundances of amoA gene copies of AOA (a), AOB (b), AOB
amoA/AOA amoA abundance ratio (c), and hzo gene copies (d) of
anammox bacteria in sediments

R
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marsh and coastal aquifer sediments (104∼106 copies per
gram sediment) (Dollhopf et al. 2005; Santoro et al. 2008).
However, in contrast to numerous recent studies sug-
gesting that AOA were more abundant than AOB in
marine and terrestrial ecosystems (Leininger et al. 2006;
Wuchter et al. 2006; Lam et al. 2007; Mincer et al. 2007;
Beman et al. 2008), AOB amoA copy numbers were
greater than that of AOA amoA in mangrove sediments
except in the lower layer of S2 (p<0.05, ANOVA).
Furthermore, AOB abundances were more abundant in
the vicinity of the mangrove trees, where AOB abundan-

ces decreased from S0 to S2, while AOA abundances
increased at the same transect (except S2-s, p<0.05,
ANOVA). These results might have two indications. One
is that AOB might play a more important role in the
nitrification in mangrove sediments than AOA and the
other is that mangrove trees might have strong interactions
with AOA and AOB, which strongly affected their
distributions in mangrove sediments.

It has been reported that ammonia oxidizers often
exhibit strong spatial structure distribution in estuaries.
Studies in the Bahía del Tóbari and San Francisco Bay
estuaries have shown that AOA communities differ
between the interior and the mouth of the bays (Beman
and Francis 2006; Mosier and Francis 2008). AOB
communities shifted along salinity gradients in the
Chesapeake Bay, Plum Island Sound and Ythan estuaries
(Francis et al. 2003; Bernhard et al. 2005; Freitag et al.
2006). In the present study, AOA communities had little
compositional overlap in surface layer sediments (S0-s vs
S1-s and S0-s vs S2-s) but were significantly different in
lower layers and their compositions could be divided into
slightly distinct groups based on sediments collected from
surface or lower layers (Fig. 4a). However, communities
of AOB overlapped significantly at both surface and lower
layer sediment samples, and were clearly separated into
two groups according the distances of sites location from
mangrove trees (Fig. 4b). Together the abundance varia-
tions of AOA and AOB in mangrove sediments and the
distinct spatial patterns for AOA and AOB communities in

0.05

S1-s
S0-s
S0-l
S1-l
S2-l
S2-s

0.05

S0-s
S2-s
S1-s
S1-l
S2-l
S0-l

Surface layer

Lower layer

Near mangrove trees

Far away from mangrove trees

a

b

Fig. 4 Trees based on the UniFrac metric of archaeal (a) and bacterial
(b) amoA genes diversity, including sequence abundance data. Solid
circles >90%; open circles >50%

Table 2 Comparisons of the archaeal and bacterial amoA genes clone libraries in mangrove ecosystem

Groups Homologous library X site p value for heterologous library Y site

S0-s S0-l S1-s S1-l S2-s S2-l

AOA S0-s 0.001 0.007 0.001 0.002 0.001

S0-l 0.001 0.006 0.001 0.001 0.001

S1-s 0.060 0.001 0.001 0.001 0.001

S1-l 0.007 0.001 0.610 0.001 0.001

S2-s 0.659 0.001 0.150 0.116 0.003

S2-l 0.001 0.001 0.030 0.001 0.001

AOB S0-s 0.002 0.008 0.009 0.007 0.104

S0-l 0.012 0.009 0.016 0.005 0.103

S1-s 0.005 0.001 0.002 0.006 0.058

S1-l 0.121 0.001 0.014 0.023 0.087

S2-s 0.001 0.001 0.001 0.001 0.012

S2-l 0.002 0.005 0.002 0.002 0.005

When comparing multiple libraries, the LIBSHUFF p values were compared with the critical value to insure whether the libraries are different or
not. The critical value is calculated from the relationship: p=1−(1−a)k(k−1) , where p is the experimentwise p value of 0.05, a is the critical p value, and
k is the number of libraries. Thus, the critical p value is a=0.0017 for the six clone libraries analyzed in the present study. For each pairwise comparison, if
both two p values calculated by LIBSHUFF are higher than a (0.0017), the result indicates that there is no significant difference in the composition of the
communities for the two compared clone libraries (95% confidence). p values set in italics indicate the two clone libraries with pairwise comparison that
were not significantly different
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mangrove sediments further confirm that the existence of
mangrove trees might have strong influences on the
distribution of AOA and AOB in both diversity and
abundances. In previous researches, it has been shown that
the presence of some plants, such as the freshwater
macrophyte Littorella uniflora (Herrmann et al. 2008),
rice (Chen et al. 2008), Spartina alterniflora, or Spartina
patens (Moin et al. 2009) has strong influences on the
diversity and abundance of AOA and AOB. Furthermore,
the plants-nutrient-microorganisms interaction model in
mangrove ecosystems has been presented in a previous
study (Holguin et al. 2001); here, the strong influences of
mangrove trees on AOA and AOB community structures
and the significant correlations of the AOA diversity and
abundance with the distance of sampling sites to
mangrove trees might also give strong evidence on this
model (Table 3).

Interactions between nitrifiers (AOA and AOB) and
anammox bacteria had been recorded in the Black Sea (Lam
et al. 2007) and in the Peruvian oxygen minimum zone (Lam
et al. 2009), where nitrifiers were proposed to supply the
nitrite to anammox to form a nitrification-anammox cou-
pling. The significantly and positively correlations between
AOA diversity and abundance with the anammox bacteria
hzo gene abundances might also indicate that the complex
interactions not only exist among microorganisms and
mangrove forest but also within different N-transforming
microorganisms. However, no similar relationships were
found in between AOB and anammox bacteria, which

indicated that AOB communities might be also affected by
other environmental factors, such as salinity. Indeed, AOB
diversity and abundances were found to be significantly
correlated with salinity. Since salinity is a particularly
important parameter for ammonia oxidation in coastal and
estuary sediments, in part because of its influence on NH4

+

adsorption in sediments (Boatman and Murray 1982;
Boynton and Kemp 1985), it is thus reasonable that salinity
has a strong influence on AOB which might be more
important on nitrification in mangrove sediments. In addi-
tion, a positive correlation between AOA abundance and pH,
and negative correlations between AOB abundance and
AOB amoA/AOA amoA ratios with pH were found in the
present study, indicating that sediment pH is also an
important factor affecting the abundances of AOA and
AOB in mangrove sediments (Table 3).

In conclusion, unique phylogenetic groups of archaeal
and bacterial amoA genes were revealed in mangrove
sediments, indicating site specific AOA and AOB occur
in Mai Po mangrove sediments. The spatial distribution of
AOA and AOB communities and abundances were strongly
influenced by the presence of mangrove trees, nitrogen
substrates, and anammox bacteria. Furthermore, the higher
abundance of AOB than AOA indicated that AOB may
play a more important role on nitrification in the mangrove
sediment. The results provide more specific information on
more effective use of mangrove wetlands as alternative
biological systems for treatment of wastewater or surface
run-off containing high inorganic nitrogen.

Table 3 Statistical analysis of AOA and AOB community structures with physicochemical parameters and anammox bacteria communities

Parameter Pearson’s moment correlation

OTUs Shannon index Simpson index Abundance amoA genes abundance ratio

AOA AOB AOA AOB AOA AOB AOA AOB AOB/AOA Log (AOB/AOA)

Depth −0.41 0.36 −0.33 0.29 0.13 −0.35 −0.20 0.17 0.43 0.18

Distance −0.11 0.86* −0.19 0.93* 0.29 −0.91* 0.43 −0.86* −0.62 −0.76
Temperature 0.64 0.03 0.60 0.13 −0.41 −0.08 0.64 −0.52 −0.76 −0.62
Redox 0.03 −0.55 0.01 −0.56 0.12 0.62 −0.32 0.26 0.01 0.32

pH 0.75 0.42 0.66 0.51 −0.52 −0.50 0.96* −0.84* −0.92* −0.95*
NH4

+ 0.93* 0.19 0.88* 0.26 −0.81* −0.27 0.97* −0.58 −0.76 −0.78
NO3

− 0.07 −0.10 −0.07 −0.03 0.28 0.09 0.04 −0.34 −0.42 −0.22
NO2

− −0.34 0.48 −0.53 0.45 0.65 −0.39 −0.12 −0.55 −0.38 −0.28
NO3

−+ NO2
− −0.22 0.31 −0.40 0.31 0.57 −0.25 −0.07 −0.52 −0.43 −0.29

Salinity 0.02 0.90* −0.13 0.91* 0.21 −0.88* 0.47 −0.93* −0.72 −0.81*
hzo abundance 0.81* 0.08 0.88* 0.15 −0.82* −0.14 0.81* −0.36 −0.65 −0.59

*p<0.05, which is typically regarded as significant, as determined by Excel function TDIST from the t value given by the following

equation: t ¼ �
ffiffiffiffiffiffiffiffiffiffi

n�2
1�r2ð Þ

q

. The number of samples is given by n
a Pearson’s moment correlation (r) was determined by using the following equation: r ¼ n

P

XYð Þ� P

Xð Þ P

Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P
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