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Abstract Endoplasmic reticulum associated degradation
(ERAD) is a conserved mechanism to remove misfolded
proteins from the ER by targeting them to the proteasome
for degradation. To assess the role of ERAD in filamentous
fungi, we have examined the consequences of disrupting
putative ERAD components in the filamentous fungus
Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or
mnsA in A. niger yields viable strains, and with the
exception of doaA, no significant growth phenotype is
observed when compared to the parental strain. The gene
deletion mutants were also made in A. niger strains
containing single- or multicopies of a glucoamylase–
glucuronidase (GlaGus) gene fusion. The induction of the
unfolded protein response (UPR) target genes (bipA and
pdiA) was dependent on the copy number of the heterol-
ogous gene and the ERAD gene deleted. The highest
induction of UPR target genes was observed in ERAD
mutants containing multiple copies of the GlaGus gene.
Western blot analysis revealed that deletion of the derA
gene in the multicopy GlaGus overexpressing strain
resulted in a 6-fold increase in the intracellular amount of

GlaGus protein detected. Our results suggest that impairing
some components of the ERAD pathway in combination
with high expression levels of the heterologous protein
results in higher intracellular protein levels, indicating a
delay in protein degradation.
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Introduction

The use of filamentous fungi with the natural property of
secreting high amounts of extracellular proteins as cell
factories for the production of homologous and heterologous
proteins has been extensively exploited for many years.
Aspergillus niger, Aspergillus oryzae, and Trichoderma
reesei are most often used in industry for the production of
proteins. In the search for further improving the properties as
protein producer, many attempts and strategies have been
employed and optimized such as the knockout of certain
genes, the use of strong promoters, mutagenesis, among
others (Jeenes et al. 1991; Archer et al. 1994; Punt et al.
1994 Gouka et al. 1997; Nemoto et al. 2009; Nakari-Setälä
et al. 2009; Meyer et al. 2010). The recent sequencing of the
genomes of these industrially important fungi (Machida et al.
2005; Pel et al. 2007; Martinez et al. 2008; Wortman et al.
2009) provides another starting point to understand and
manipulate the outstanding secretion capacities of these
fungi (Maeda et al. 2004; Arvas et al. 2006; Guillemette
et al. 2007; Gasser et al. 2007; Pel et al. 2007; Jacobs et al.
2009). Several steps occurring during the secretion pathway
in filamentous fungi have been pointed out as potential
bottlenecks for heterologous protein production (Gouka et al.
1997; Sims et al. 2005). Proteins that enter the secretory
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pathway begin their journey in the ER, where they are
assembled and subjected to a strict quality control (Ellgaard
et al. 1999; Lederkremer 2009). The proteins that fail proper
folding usually accumulate in the ER leading to the
induction of the unfolded protein response (UPR) (Cox
et al. 1993), and if UPR is not sufficient to relieve stress,
they are eventually targeted to destruction by the ER-
associated degradation (ERAD) (Nishikawa et al. 2005).
Both the UPR and the ERAD pathways are conserved from
yeasts to mammalians (reviewed in Kincaid and Cooper
2007; Anelli and Sitia 2008; Mori 2009); however, apart
from a recent publication that studies the effect of deleting
A. niger doaA gene (Jacobs et al. 2009), the functional
analysis of other putative ERAD-related genes in filamen-
tous fungi has not been reported.

Accumulation of unfolded proteins in the ER lumen
results in the dissociation of BiP from Ire1p leading to
Ire1p dimerization and thereby the activation of its kinase
and endoribonuclease functions (Shamu and Walter 1996;
Sidrauski and Walter 1997; Oikawa et al. 2009). In
Saccharomyces cerevisiae, Ire1p is responsible for excising
a 252-nt intron in Hac1 messenger RNA (mRNA), enabling
its translation into an active protein and migration into the
nucleus where it binds to UPRE (CANCNTG, Mori et al.
1998) in target genes coding for chaperones and foldases as
well as other components of the secretory pathway
(Sidrauski et al. 1998; Travers et al. 2000). By homology
with the S. cerevisiae model, it is assumed that in A. niger,
IreAp is also responsible for the removal of a 20-nt intron
in the hacA mRNA. Splicing of the intron leads to the
activation of the HacA transcription factor, which in turn
controls the expression of genes involved in UPR (Mulder
et al. 2004, 2006).

The ER degradation pathway in S. cerevisiae consists of
a number of highly conserved proteins. The UPR-induced
BiP and disulfide isomerase play important roles in ERAD
by preventing misfolded proteins aggregation (Nishikawa
et al. 2001) and delivering ERAD substrates to the
retrotranslocation machinery (Plemper and Wolf 1999a).
Moreover, glycosylation is an important factor in protein
folding, and the processing of glycans is indicative of the
folding state of the protein (reviewed in Kleizen and
Braakman 2004; Lederkremer 2009). If the protein fails to
achieve correct conformation, the removal of 1,2 α-
mannose units by a specific 1,2 α-mannosidase (mns1)
targets the substrate to degradation by ERAD (Gonzalez et
al. 1999; Tremblay and Herscovics 1999). When marked
for degradation, proteins are retrotranslocated through the
Sec61p translocon (Schäfer and Wolf 2009) and/or through
Der1p retrotranslocation channel (Goder et al. 2008; Ye et
al. 2001a), although the later one only seems to be required
for some substrates (Lilley and Ploegh 2004). The Hrd1
complex is involved in the ubiquitination of substrates that

contain misfolded luminal domains (Bordallo et al. 1998;
Deak and Wolf 2001). In S. cerevisiae, Hrd3p regulates the
activity and stability of Hrd1p (Plemper et al. 1999b;
Gardner et al. 2000). Together with Sec61p, Hrd1–Hrd3
complex mediates the transfer to the cytosol of proteins
targeted for degradation (Plemper and Wolf 1999a). Doa1p
forms a complex with Cdc48p allowing the extraction of
ubiquitinated substrates via AAA–ATP Cdc48 complex (Ye
et al. 2001b; Jarosch et al. 2002; Ogiso et al. 2004; Mullally
et al. 2006). Ubiquitinated proteins are degraded by the 26S
proteasome in an ATP-dependent manner (Fischer et al.
1994). The translocation of the 26S proteasome from the
cytoplasm to the ER membrane seems to be mediated by
Mif1p (van Laar et al. 2001). In mammalian systems, the
response to ER stress involves four major steps: (1)
attenuation of protein synthesis; (2) transcriptional induc-
tion of UPR target genes, including chaperones and
foldases; (3) transcriptional induction of ERAD compo-
nents, and in case these three steps are not sufficient, (4)
induction of apoptosis (reviewed in Yoshida 2007). For a
detailed description of the ERAD pathway, we refer to a
recent review by Vembar and Brodsky (2008).

From yeasts to mammals, several elements involved in
the recognition and targeting of misfolded proteins for
destruction are conserved, allowing the cells to cope with
the presence/accumulation of aberrant proteins and their
harmful effects. However, not all the processes described in
yeast and mammalian system have been established in
filamentous fungi (reviewed in van Anken and Braakman
2005a,b).

In this study, we have examined the role of the ERAD
pathway in A. niger by disrupting genes that encode
proteins suggested to be involved in different parts of
ERAD pathway. We have assessed its role both during
normal growth conditions, under ER stress-inducing con-
ditions by treatment with dithiothreitol (DTT) or tunicamycin
and under conditions when a UPR-inducing heterologous
protein is produced. Our results indicate that a functional
ERAD pathway is not required for normal growth but
that a defective ERAD pathway increases intracellular
levels of the UPR-inducing glucoamylase–glucuronidase
(GlaGus) protein, indicating that the ERAD pathway is,
at least partially, responsible for the degradation of
heterologous proteins in A. niger.

Materials and methods

Strains, culture conditions, and molecular techniques

A. niger strains used throughout this study are all
derivatives of N402 (Bos et al. 1988) (see Table 1 for
details). Strains were cultivated in minimal medium (MM)
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Table 1 Strains used in this study

Strain Genotype Description Reference

N402 cspA1 derivative of ATCC9029 – Bos et al. 1988

MA70.15 ΔkusA::amdS+ in AB4.1 pyrG- – Meyer et al. 2007

MA78.6 ΔkusA::amdS+ in N402 – Carvalho et al. 2010

NC5 FAA-resistant derivative from MA78.6ΔkusA, amdS-) – Carvalho et al. 2010

MA97.2 ΔderA::amdS in NC5 – This study

MA98.1 ΔdoaA::amdS in NC5 – This study

MA94.3 ΔhrdC::amdS in NC5 – This study

MA95.9 ΔmifA::amdS in NC5 – This study

MA96.6 ΔmnsA::amdS in NC5 – This study

MV3.2 pBB19-3pyrG* in MA70.15 (ΔkusA::amdS+) pGpdA-Gla514-Gus-pyrG* This study

MA99.3 FAA-resistant derivative from MV3.2 pGpdA-Gla514-Gus-pyrG* This study

MA110.1 ΔderA::amdS in MA99.3 pGpdA-Gla514-Gus-pyrG* This study

MA111.3 ΔdoaA::amdS in MA99.3 pGpdA-Gla514-Gus-pyrG* This study

MA112.10 ΔhrdC::amdS in MA99.3 pGpdA-Gla514-Gus-pyrG* This study

MA113.2 ΔmifA::amdS in MA99.3 pGpdA-Gla514-Gus-pyrG* This study

MA114.7 ΔmnsA::amdS in MA99.3 pGpdA-Gla514-Gus-pyrG* This study

MA115.1 ΔderA FAA-resistant derivative from MA97.2 – This study

MA116.2 ΔhrdC FAA-resistant derivative from MA94.3 – This study

MA117.1 ΔmifA FAA-resistant derivative from MA95.9 – This study

MA118.2 ΔmnsA FAA-resistant derivative from MA96.6 – This study

MA119.1 ΔhrdC, ΔderA::amdS (ΔderA::amdS in MA116.2 – This study

MA120.1 ΔhrdC, ΔdoaA::amdS (ΔdoaA::amdS in MA116.2 – This study

MA122.4 ΔhrdC, ΔmnsA::amdS (ΔmnsA::amdS in MA116.2 – This study

MA123.7 ΔmifA, ΔderA::amdS (ΔderA::amdS in MA117.1 – This study

MA124.2 ΔmifA, ΔdoaA::amdS (ΔdoaA::amdS in MA117.1 – This study

MA125.1 ΔmifA, ΔhrdC::amdS (ΔhrdC::amdS in MA117.1 – This study

MA127.3 ΔmnsA, ΔderA::amdS (ΔderA::amdS in MA118.2 – This study

MA128.1 ΔmnsA, ΔdoaA::amdS (ΔderA::amdS in MA118.2 – This study

MA130.3 ΔmnsA, ΔmifA::amdS (ΔmifA::amdS in MA118.2 – This study

MA131.1 ΔderA, ΔdoaA::amdS (ΔdoaA::amdS in MA115.1 – This study

AB4-1dglaA36#3 [pBB19-3]#3 multicopy transformant Multicopy pGpdA-Gla514-Gus Punt et al. 1994, 1998

MA134.64 ΔkusA::amdS+ in AB4-1dglaA36#3 (Δku70, amdS-) Multicopy pGpdA-Gla514-Gus This study

MA135.3 FAA-resistant derivative from MA134.64 Multicopy pGpdA-Gla514-Gus This study

MA136.18 ΔderA::amdS in MA135.3 Multicopy pGpdA-Gla514-Gus This study

MA137.2 ΔdoaA::amdS in MA135.3 Multicopy pGpdA-Gla514-Gus This study

MA139.6 ΔmifA::amdS in MA135.3 Multicopy pGpdA-Gla514-Gus This study

MA140.8 ΔmnsA::amdS in MA135.3 Multicopy pGpdA-Gla514-Gus This study

AB1.13#72 [phIL6-3A]#72pAN7-1 IL6 (PgpdA) Broekhuijsen et al. 1993

AB1.13#54 [pAN56-3hIL6]#54pAN7-1 GLA::IL6 (PgpdA) Punt et al. 1998

AB1.13#38 [pAN56-4hIL6]#38pAN7-1 GLA::kex::IL6 (PgpdA) Punt et al. 1998

D15 [pGpdA-GlaA::tPA]#25 GLA::kex::tPA (PgpdA) Wiebe et al. 2001

MGG029#25 [pGlaA-MNP1.i]#25 MnP1 from Phanerochaete chrysosporium Conesa et al. 2000

MGG029#13 [pGlaA-GlaA::MNP1]#13 Mnp1 from P. chrysosporium expressed
as GlaA fusion protein

Conesa et al. 2000

B36 [pAB6-10]#36 Contain over 80 copies of the Glucoamylase gene Verdoes et al. 1993

AR1.1 [pPgla-Gla514::GFP] Glucoamylase-GFP Gordon et al. 2000

XW2.2.1 [pPgla-Gla514::GFP-HDEL] Glucoamylase-GFP fusion with ER targeting sequence Gordon et al. 2000

MA23.1.1 [pPgpd-CPY31::GFP] CpyA- GFP fusion expressed from gpdA promoter Weenink and Ram,
unpublished

NW5.1 [pPgpd-CwpA::GFP] CwpA-GFP from A. niger Damveld and Ram,
unpublished

XW5.2 [pPgla-Gla514::POX2] Laccase from Pleurotus ostreatus Weenink et al. 2006

XW6.1 [pPgla-Gla514] – Weenink et al. 2006

IL6 interleukin 6, tPA tissue plasminogen activator, MnP1 manganese peroxide, Cwp cell wall protein, Cpy carboxypeptidase Y
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(Bennett and Lasure 1991) containing 1% (w/v) of glucose
as a carbon source, 7 mM KCl, 11 mM KH2PO4, 70 mM
NaNO3, 2 mM MgSO4, 76 nM ZnSO4, 178 nM H3BO3,
25 nM MnCl2, 18 nM FeSO4, 7.1 nM CoCl2, 6.4 nM
CuSO4, 6.2 nM Na2MoO4, and 174 nM EDTA or in
complete medium (CM) containing, in addition to MM,
0.1% (w/v) casamino acids and 0.5% (w/v) yeast extract.
When using the amdS gene as selection marker, strains
were grown in MM in which the 70 mM NaNO3 was
replaced with 10 mM acetamide and 15 mM cesium
chloride (Meyer et al. 2010). All basic molecular techniques
were performed according to standard procedures (Sambrook
and Russel 2001). Transformation of A. niger, genomic
DNA extraction, screening procedures, Northern analysis,
and Southern analysis were conducted as recently described
in utmost detail (Meyer et al. 2010).

Phenotypic assays

For plate growth assays, MM or CM was used (as described
above) and solidified by the addition of 2% agar. Radial
extension rates of the ERAD mutants were determined by
inoculating 1×104 spores in the centre of a CM and MM
plate and growth at 25, 30, 37, and 42°C was followed for
3–4 days. To determine the sensitivity of the ERAD
mutants towards ER- and osmotic stress, a 10-fold dilution
series of spores (from 1×105 until 1×101) were spotted on
CM and MM plates containing tunicamycin (0.1, 0.5, 1, 5,
or 10 mM), DTT (1, 5, 10, or 20 μg/ml) to induce ER stress
and containing 0.6 M sorbitol to induce osmotic stress.
Sensitivity assays were performed at 25, 30, or 42°C and
growth was monitored for 3–5 days. Growth on starch was
determined by spotting 10-fold dilution series of spores on
CM plates containing 2% starch as the sole carbon source.

Construction of a strain expressing a secreted
form of β-glucuronidase

Plasmid pBB19-3 was previously described (Punt et al.
1994). To generate A. niger strains carrying a single copy of
this plasmid at a defined position, the pyrG* gene was used
(van Gorcom and van den Hondel 1988). The pyrG* was
amplified from pAF3 (Damveld et al. 2005) using primers
pNC43 and pNC44, where AscI restriction sites were
added (Table 2) to facilitate the cloning into pBB19-3. The
amplified PCR fragment of 2.2 kb was ligated into
pJET1.2 (pJET1.2/blunt cloning vector, Fermentas) to
give pJetPyrG*AscI. Finally, the pyrG* fragment was
isolated with AscI and cloned into the unique AscI site in
pBB19-3 to give pBB19-3pyrG*. This construct was
transformed into MA70.15 (ΔkusA, pyrG−, and amdS+),
and transformants were purified by repeated streaking of
conidia on media without uridine. Transformants were

subjected to Southern blot analysis, and MV3.2 was
selected as this transformant contains a single copy of
the pBB19-3 plasmid at the pyrG locus. The AmdS marker
in this strain, which was used to delete the kusA gene, was
looped out by selecting fluoroacetamide-resistant colonies
by inoculating 2×107 spores on MM plates containing 1%
(w/v) of glucose as a carbon source, without NaNO3 and
supplemented with 0.2% 5′-fluoroacetamide (FAA) and
10 mM urea as additional nitrogen source (for details, see
Meyer et al. 2010). Plates were incubated for 1–2 weeks at
30°C, and FAA-resistant mutants were transferred onto
fresh FAA-containing plates for purification. Mutants
unable to grow on media containing acetamide as sole
nitrogen source were subjected to Southern blot analysis,
and strain MA99.3, in which the amdS gene was properly
looped, out was chosen for further studies.

Construction of ERAD deletion strains

The deletion constructs for the five selected genes involved
in the ERAD pathway (derA (An15g00640), doaA
(An03g04600), hrdC (An01g12720), mifA (An01g14100),
and mnsA (An18g06220) were made using primers listed in
Table 2. Briefly, the cloning strategy was as follows: for
each individual gene, respective 5′ and 3′ flanking regions
and an additional 5′ or 3′ repeat (construct dependent, see
Table 2 for details) were amplified using primers where
specific restriction enzymes were added and cloned into
pGBPEP23 (Jacobs et al. 2009). This vector uses the amdS
gene behind the PgpdA promoter as a dominant selection
marker. Only in the presence of the amdS gene Aspergillus
is able to grow on medium containing acetamide as sole
nitrogen source. In general, approximately 1 kb of the 5′
and 3′ sequences flanking the coding regions has been used,
and about 500–700 bp repeat of one of the flanks was
included to facilitate removal of the amdS marker by
homologous recombination forced by growth on FAA. The
A. niger doaA deletion strain has been previously described
(Jacobs et al. 2009). Deletion constructs were linearized by
digestion with NotI and AscI before transformation. To
obtain high homologous recombination frequencies to
construct ERAD deletion mutants in the multicopy GlaGus
strain (AB4-1dglaA36[pBB19-3]#3), the ku70 gene was
also deleted in this background using a kusA::amdS
deletion construct as previously described (Meyer et al.
2007). Southern blot analysis identified strain MA134.64 as
a strain in which the kusA gene was deleted (data not
shown). Subsequently, the amdS gene was removed
through the FAA loop-out technique and yielded
MA135.3 in which the kusA deletion and amdS looped
out were confirmed by Southern blot analysis (data not
shown). Each ERAD deletion construct was transformed
into strains NC5, MA99.3, and MA135.3. Strains MA99.3
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and MA135.3 will be referred to as single-copy scGlaGus
and multicopy mcGlaGus strains, respectively, in the
following sections. All ERAD deletion mutants in the three
strain backgrounds were confirmed by Southern analysis
(data not shown). All mutants were obtained except for the
hrdC deletion strain in the mcGlaGus strain.

Western blot analysis

To analyze the extracellular and intracellular levels of Gus
protein, deletion strains and control strains were grown in
duplicate for 24 h in 50 ml CM containing 1% glucose as
carbon source. All cultures were inoculated with 1×106

spores/ml. Mycelium was collected through a myracloth
filter, and the supernatant was stored at −20°C before

further analysis. Total protein content was extracted by
grinding approximately 200 mg frozen mycelium using
mortar and pestle in liquid nitrogen. Proteins were extracted
using 1 ml extraction buffer [10 mM sodium phosphate
buffer, pH 6.0, 2% sodium dodecyl sulfate (SDS). 10 mM
EDTA and 1 mM phenylmethylsulfonyl fluoride] and
centrifuged twice, collecting the supernatant each time.
Protein concentrations of the samples were determined with
Bradford assay using bovine serum albumin as standard.
For each sample, 10 μg of total protein was mixed with 2×
loading buffer (0.5 M HCl, 25% glycerol, 10% SDS, 0.5%
bromophenol blue, and 5% β-mercaptoethanol) and boiled
for 5 min at 95 °C. Protein samples were loaded on a pre-
cast SDS polyacrylamide gel electrophoresis gel (BioRad)
and blotted to a nitrocellulose membrane through semi-dry

Table 2 Primers used throughout this study: restriction enzymes added are underlined

Primer name Sequence (5′ to 3′) Amplification of Restriction enzyme

pDER9Eco gcgaattctgcaccccactggggcatttactgc derA 3′ flank EcoRI

pDER10Hin gcaagctttaatcccgcacaagaagatacc derA 3′ flank HindIII

pFDERMB gcaacgcgttgcaaaggatcctccgcgtaatcgctc derA 3″ flank BamHI

pRDERKpn tcggtacctcggatgaggtcagagcatgctttaatc derA 3″ flank KpnI

pDER3Not tggcggccgcggtacgcacgctgaacgtcg derA 5′ flank NotI

pDER4Bam ggggatccttgatgggtagtagagttgcga derA 5′ flank BamHI

pdoaHinb ctgatcgctaagcttttgcaagagctgaaccaacacgtc doaA 3′ flank HindIII

pdoaAsc gcaaggcgcgcctacgtagagaatgaaggtcaaagtg doaA 3′ flank AscI

pdoaEco cgtagaagattgttgaattcctgaacaatggc doaA 5′ flank EcoRI

pdoaHina agaagcttagatcttgaactcaggcatacatagaccag doaA 5′ flank HindIII

pdoaNot cgatagtagcggccgcaatgtgaagtgacgataaaggtg doa 5″ flank NotI

pdoaMlu catacgcgtggccctccaaagaagcggagatcttgaactc doaA 5″ flank MluI

pHRD7Not ttgcggccgcagcctgcaggtcgatccccttc hrdC 5′ flank NotI

pHRD8Mlu tacgcgtcggaaggcttcttgggcgtaatg hrdC 5′ flank MluI

phrdhin caagctttgctgcggaatgcagcgctggctcttatc hrdC 3′ flank HindIII

phrdasc gggcgcgcccttgatatgcaatgggaatggattgtg hrdC 3′ flank AscI

phrdMlu gacgcgttttgctgcggaatgcagcgctggctcttatc hrdC 3″ flank MluI

phrdKpn catggtacccgtcttcgcggtggtcgtcaaggcg hrdC 3″ flank KpnI

pmifNot cacgcggccgctgatcacggaatcggatcaaccgaggaagc mifA 5′ flank NotI

pmifXmaa ggcccggggttacctgaagctccccgcggcattggagcag mifA 5′ flank XmaI

pmifEco ccgaattccgcaccagggcaggctcctctgtaccttctc mifA 3′ flank EcoRI

pmifAsc aaggcgcgccgcagtagatatatgttgcgctaatagactaag mifA 3′ flank AscI

pmifXmab cacccgggcaggctcctctgtaccttctctcgtcaccaaac mifA 3″ flank XmaI

pmifKpn aaggtacccttgcccagttgactgcgtgccaggtggtgc mifA 3″ flank KpnI

pmnsNot tagcggccgcccacccccaatctacttatgctcatataatg mnsA 5′ flank NotI

pmnsXmaa gcggtccccggggaggggattgttcagggagttggag mnsA 5′ flank XmaI

pmnsEco caccgaattcaatgtcgacgaccctcgcgtcatggaaacagac mnsA 3′ flank EcoRI

pmnsAsc gcggcgcgccacgacgtgtatatataacgaggaaacg mnsA 3′ flank AscI

pmnsXmab cacccgggatcacctacttcaatgtcgacgaccctcgcg mnsA 3″ flank XmaI

pmnsKpn gcggtaccgcctccgtattgaatacatggtcttcg mnsA 3″ flank KpnI

pNC43 ggcgcgcctcggtcgctcactgttcct pyrG* AscI

pNC44 ggcgcgccgacggagtagccgagagcaa pyrG* AscI
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electrotransfer. The membrane was blocked for 1 h with 5%
low-fat milk in TTBS (Tris-buffered saline, 0.05% Tween-
20), and Gus protein was detected using a Gus-specific
antibody (1/5,000) overnight, followed by a goat anti-rabbit
horseradish peroxidase secondary antibody (1/20,000) for
1 h. Detection was performed using a chemiluminescence
kit (Bio-Rad), according to manufacturer’s instructions. The
Gus antibody was kindly provided by Prof. P. Punt (TNO,
The Netherlands). Analysis and quantification of band
intensities were performed using QuantityOne 1-D Analysis
Software (BioRad) and 18S rRNA as loading control.

Results

The level of induction of the unfolded protein response
pathway by heterologous protein expression is protein
specific

In order to study the effects of deleting ERAD components
on heterologous protein production in A. niger, we started
our research by choosing a suitable heterologous protein
reporter through an inventory of A. niger strains expressing/
overexpressing different heterologous proteins (Table 1).
Each strain was cultured under identical conditions and
UPR and ERAD responses were determined by examining
the expression of UPR and ERAD marker genes in these
strains. As markers for UPR induction, we have chosen
bipA and pdiA, as an increase in the expression levels of
these genes has been observed in strains expressing
heterologous proteins (Punt et al. 1998; Kauffman et al.
2002; Guillemette et al. 2007). The ERAD markers (derA
and hrdC) were chosen based on S. cerevisiae studies in
which induction of these genes was observed after protein
folding stress (Knop et al. 1996; Travers et al. 2000). To
confirm that derA and hrdC in A. niger were also induced
under ER stress conditions, we grew N402 in the presence
of increasing concentrations of DTT and tunicamycin to
induce ER stress (Fig. 1). Northern analysis and blot
quantification revealed a high induction of both genes in
the presence of DTT. In the case of growing in the presence
of tunicamycin, an increase in derA and hrdC was observed
at the higher concentrations tested (5 and 10 μg/ml).
Having established good marker genes for UPR and ERAD
responses, we then studied the induction of these pathways
in strains expressing different heterologous proteins
(Fig. 2). Results in Fig. 2 visibly show different gene
expression levels depending on the heterologous protein
expressed. Although we see an increase in expression of
UPR target genes in most of the strains bearing heterolo-
gous proteins in relation to N402, both UPR and ERAD
responses were more boosted when A. niger strains
expressed tPA (D15) and GlaGus (AB4-1dglaA36#3)

heterologous proteins. In S. cerevisiae, a link between
UPR and ERAD pathways has been established (Travers et
al. 2000; Friedlander et al. 2000), and the co-induction of
both UPR genes (bipA and pdiA) and ERAD genes (derA
and hrdC) in A. niger in response to the expression of the
heterologous GlaGus protein as observed in Fig. 2 suggests
a similar link between these two pathways in A. niger. For
reasons of availability of activity assays and antibodies
against β-glucuronidase, the heterologous fusion protein
GlaGus was then chosen as a reporter to study the fate of
heterologous proteins under ERAD-deficient conditions.

The level of GlaGus expression affects UPR induction

To express a secreted form of the bacterial β-glucuronidase
in A. niger, plasmid pBB19-3 was used (Punt et al. 1994).
This plasmid contains the bacterial uidA gene (encoding β-
glucuronidase), which is fused to the glucoamylase gene.
Plasmid (pBB19-3pyrG*) was constructed to generate
strain MV3.2, which contains a single-copy integration of
the GlaGus construct at the pyrG locus (data not shown).
We will refer to this strain as the single-copy GlaGus
(scGlaGus) strain in the remaining of the paper. Strain
AB4.1Δgla#A36#3 has been reported to contain multiple
copies of the pBB19-3 plasmid (Punt et al. 1994; 1998).

To determine the number of copies of GlaGus gene
present in the AB4.1Δgla36#3 strain, to which we will
refer to as the multicopy GlaGus (mcGlaGus) strain, we
performed Southern blot analysis (Fig. 3a). After correcting
for loading differences, we determined about eight copies
of the glaA gene in the mcGlaGus strain. Additionally,
Western blot analysis using a Gus-specific antibody was
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Fig. 1 Induction of two genes involved in the ERAD pathway (derA
and hrdC) by the presence of increasing concentrations of DTT or
tunicamycin stress agents. Samples for Northern analysis were collect
after 16 h growth on liquid CM (1% glucose) at 30°C. On the y-axis is
the relative expression of derA and hrdC in arbitrary units, normalized
for loading differences by comparison with 18S ribosomal RNA probe
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performed on a total protein extract on these two strains and
N402, where we observe that the difference in the number
of copies between them relates to the amounts of Gus
protein detected (or absence in the case of N402), as band
intensity in mcGlaGus is higher than in scGlaGus (Fig. 3b).
Western analysis of medium samples from both the
scGlaGus or mcGlaGus strains failed to detect the GlaGus
protein in the medium, using Gus antiserum. To determine
UPR induction in these strains, we examined the mRNA
expression levels of bipA, pdiA, and hacA (Fig. 4a). By
comparison with N402, quantification of the mRNA levels
shows an induction of bipA and pdiA in the mcGlaGus

strain but not in the scGlaGus strain (Fig. 4b), demonstrat-
ing that the copy number of this heterologous protein
affects the UPR response.

Construction and analysis of ERAD deletion strains

Misfolded proteins that become destined to be degraded are
taken by the ERAD pathway, which involves many
components that recognize aberrant proteins and activate
their retrotranslocation to the cytosol for proteasome-
mediated degradation. Among these many components,
we have selected five genes indicated to be involved in
different parts of the ERAD system to assess the effects of
having a compromised ERAD in different A. niger back-
grounds. We have deleted derA, doaA, hrdC, mifA, and
mnsA in the control strain (NC5; ΔkusA, amdS−), the
scGlaGus strain (MA99.3; ΔkusA, amdS−, and scpBB19-
3pyrG*) and the mcGlaGus strain (MA135.3 (ΔkusA,
amdS−, mcpBB19-3). Transformants for each strain were
purified on media containing acetamide and further exam-
ined by Southern blot analysis (data not shown). All five
ERAD genes were successfully deleted in both NC5 and
scGlaGus (MA99.3) backgrounds. In the mcGlaGus back-
ground, four ERAD genes were successfully disrupted, but
obtaining a deletion mutant of the hrdC gene was
unsuccessful, although over 140 putative transformants
were screened. It should be noted that the inability to
obtain this disruptant was not caused because the disruption
was lethal as also no heterokaryons were obtained on
primary transformation plates. For unknown reasons the
frequency of getting a homologous recombination in the
hrdC locus is very low, even in the ku70 mutant
background. During the process of making deletion mutants
in hrdC in the other two strain backgrounds, we also
noticed a low homologous recombination frequency to
obtain the knockout strains. Thus, in total, 14 disruptions
strains have been generated (Table 1). To further confirm
the deletions and to examine whether the deletion of any of
the ERAD-related genes has an effect on the expression of
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Fig. 3 a Southern blot analysis of the GlaGus copy number in
mcGlaGus strain. Genomic DNA was digested with NcoI and probed
with a probe annealing within the glucoamylase ORF. Expected band
size for endogenous glucoamylase is 4.8 kb; for the scGlaGus strain,
7.1 and 4.8 kb bands are expected. Ectopic integration of pBB19-3 in
the mcGlaGus strain does not allow band size predictions; however,
the band(s) observed at 9.4 kb indicate that the plasmids have been
tandemly integrated. Loading differences were corrected using a gel
stained with ethidium bromide. b Western analysis of GlaGus amounts
on total protein of mycelium samples of scGlaGus and mcGlaGus
strains; N402 was used as a control for Gus antibody specificity.
Samples were grown in CM for 24 h at 30°C. The protein content was
extracted; 10 μg of total protein were separated by gel electrophoresis
and immunodetected with an anti-Gus antibody. Detection was carried
out through a chemiluminescence reaction for 5 min
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ERAD itself, Northern blot analysis was performed.
Figure 5 depicts an example of one of the Northern analysis
and shows the effect of deleting ERAD-related genes on
the expression of the other ERAD genes in the scGlaGus
strain background. First, the Northern blot analysis
confirmed the Southern blot data, and no mRNA was
detected when using probes corresponding to the respec-
tive gene deletion mutant. In addition, the hybridization
(Fig. 5) and subsequent blot quantifications (data not
shown) revealed no apparent increase or decrease in
expression of any of the ERAD genes tested among the
different strains, suggesting that deletion of a single
component of the ERAD pathway does not affect the
expression of other components of this pathway. Furthermore,
probes against glaA and gus were used as an indication of the

transcription of the fusion gene in the scGlaGus and
mcGlaGus background, or its absence in the case of N402
(Fig. 5).

The morphological and growth effects of the disruption
of these ERAD genes in the 14 A. niger strains were
analyzed on CM and MM agar plates and compared to the
growth phenotype of its corresponding wild type. We
performed a drop dilution test on solid MM and monitored
growth at 25, 30, and 42°C (Fig. 6). At 25 and 30°C, strains
are able to grow, and only ΔdoaA revealed a different
phenotype. This mutant strain showed irregular colony
morphology, slower growth, and reduced sporulation. At
42°C and at the lower spore concentrations, the mcGlaGus
and respective ERAD deletions are no longer able to form
colonies, unlike N402 and the other strains tested. As the
sensitivity toward high temperature is already observed in
the mcGlaGus parental strain, we can conclude that is the
expression of a high copy number of this heterologous
protein that confers this growth defect and not a defective
ERAD. Furthermore, at this temperature, ΔderA shows a
more apparent growth defect than the other deletions.

Subsequently, the sensitivity of the ΔERAD strains
towards a chemical that disturbs the ER homeostasis was
tested by spotting 104 spores per 10 μl on solid MM
containing increasing concentrations of DTT and incubating
at 25, 30, and 42°C for 3 days (Fig. 7). In general, at the
temperatures 25 and 30°C and either absence or in the
presence of increasing concentrations of the DTT, deletions
strains grew like their parental strain. The growth of the
ΔdoaA mutant was affected in the absence of DTT, but the
ΔdoaA did not seem to be more sensitive toward DTT in
this spot assay in comparison to the other ERAD deletions.
As the growth phenotype of the doaA deletion strain was
observed in all the different backgrounds, we attribute this
growth phenotype to the absence of the doaA gene and not
to the expression of the heterologous protein. On the other
hand, at 42°C, the mcGlaGus strain not only shows a
reduction in colony size compared to NC5 and scGlaGus
but also reveals an increased sensitivity toward 5 mM DTT
(Fig. 7). At the concentration of 10 mM DTT, the growth of

derA

doaA

hrdC

mifA

mnsA

Gus

Gla

18S

P
ro

be

Strain

Fig. 5 Expression analysis of different genes in the five ERAD
deletion strains on the scGlaGus background, scGlaGus parental
strain, mcGlaGus and N402. Total RNA was extracted from mycelia
grown for 24 h at 30°C in CM. RNA (5 μg) was separated by agarose
gel electrophoresis, blotted and hybridized with 32P-labeled probes
specific for the genes indicated. 18S rRNA was used as loading
control
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both scGlaGus and mcGlaGus strains is almost completely
abolished, whereas the NC5 wild-type and ERAD deletion
mutants are able to grow. A 20-mM concentration of DTT
abolishes growth of all the strains and indicated that none
of the ERAD Δstrains become more resistant toward DTT.
As also observed in Fig. 6, the mcGlaGusΔderA strain
displays a reduced growth and sporulation phenotype at
42°C (Fig. 7). Thus, the strains expressing the GlaGus
protein are more sensitive to DTT compared to the
respective parental strain that does not express the GlaGus
protein, and high levels of GlaGus expression is correlated
with a higher sensitivity to DTT. We further conclude that
the disruption of ERAD component had no further effect on
the growth and/or the sensitivity toward DTT. Additional
growth tests such as on simple/complex carbon sources
(glucose vs starch) or under osmotic stress conditions (1 M
NaCl, 0.6 M sorbitol) with those deletion mutants (besides
ΔdoaA) resulted in no significant differences (data not

shown). As none of the ERAD genes described revealed to
be essential to A. niger, we decided to test for synthetic
lethality by the combination of deleting any two of the five
genes in study. The double ERAD knockout mutants were
made by deleting an additional gene in the existing single
knockouts strains in the NC5 background (data not shown)
after looping out the amdS marker used to disrupt the first
ERAD gene. Then, the ERAD deletion constructs were
transformed into these new five ERAD deletions (amdS−)
strains obtained in order to get the ten possible double
deletion combinations. All the double knockout (KO)
transformants were purified on acetamide media and
confirmed by Southern blot (data not shown; see Table 1).
All the double KO mutants were subjected to the
phenotypic tests as described above, but no additional
differences or effects on morphology and growth were
found by having any of the double ERAD deletions
compared to the single mutants. The combination of doaA
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Fig. 6 Growth assay at different temperatures of parental strains NC5, scGlaGus and mcGlaGus, and respective ERAD deletions. Spore serial
dilutions were spotted onto solid MM and incubated under the given conditions. Growth was monitored for 3 days
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deletion with any of the other deletions did not give
extra phenotypic features than the ones observed for
the single doaA KO in any of the background strains (data
not shown).

Activation of the UPR by strains expressing/overexpressing
the GlaGus protein in combination with a defective ERAD
pathway

To investigate whether deletion of ERAD components in
combination with expression or overexpression of GlaGus
has an effect on the UPR, the ERAD mutants were
analyzed for the expression of UPR target genes (hacA,
bipA, and pdiA), and their expression was compared to their
corresponding parental strain. Figure 8 shows the Northern
blot results and quantified mRNA levels of UPR target
genes in the ΔERAD strains not expressing the GlaGus
protein (NC5 background; Fig. 8a, b), the ΔERAD strains
in the scGlaGus background (Fig. 8c, d), and the ΔERAD
strains in the mcGlaGus background (Fig. 8e, f). In the case
of having a deficient ERAD pathway but no expression of
heterologous protein (NC5 background), the UPR pathway
is not induced (Fig. 8a, b). In the ΔdoaA, ΔmifA, and
ΔmnsA strains in the scGlaGus background, no increase in
the expression levels of the UPR target genes is observed
(Fig. 8c, d). However, the bipA expression level in derA
and hrdC deletion strains are 1.8- and 2-fold higher,
respectively, in comparison to the scGlaGus parental strain.
Hence, there seems to be specific induction of bipA
expression upon deletion of derA or hrdC. As depicted in
Fig. 8e and f, the combination of overexpression of GlaGus
with the deletion of any of ERAD components tested

further induces the transcription of the UPR reporter genes.
As shown in Figs. 2 and 5, the multicopy expression of the
GlaGus protein induces the expression of UPR and ERAD
target genes. This induction of the UPR target genes is
further enhanced by deleting ERAD components as
deletion of derA, mifA, and mnsA genes lead to an induction
of pdiA and bipA mRNAs of more than 2-fold higher
compared to the mcGlaGus parental strain (Fig. 8e, f). In
the case of ΔdoaA, the values of pdiA and bipA are induced
1.6- and 1.8-fold, respectively. The values of hacA mRNA
levels do not show a noteworthy change. In summary, we
have shown that in the mcGlaGus, the UPR and ERAD-
related genes are induced and deletion of ERAD genes in
the mcGlaGus background further induces UPR. This
hyperactivation of UPR might be explained by an increas-
ing accumulation of GlaGus protein in the ER in the
absence of a functional ERAD system.

Effects of the deletion of ERAD genes on protein
production

To examine the effects of an impaired ERAD pathway on
the GlaGus protein production or accumulation, we
performed Western blot analysis on medium samples and
intracellular protein samples collected from scGlaGus and
mcGlaGus strains. In the medium samples, no Gus activity
was detected, and no GlaGus protein could be detected
using a Gus-specific antibody (data not shown), indicating
that secretion levels are low. At this stage, we cannot
exclude the possibility that some secreted GlaGus protein is
degraded by extracellular proteases. To examine the effect
of the ERAD deletion mutant on the intracellular pool of
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Fig. 7 Comparison of colony morphology of parental strains and
respective ERAD deletion mutants incubated at different temperatures
(indicated on the right) and in the presence of increasing concen-

trations of the stress agent DTT (indicated at the bottom). 104 spores
per 10 μl of each strain were spotted on solid MM and growth was
monitored for 3 days. NA not available
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GlaGus protein, total protein content was extracted from
fungal biomass as described in “Materials and methods.”
For each set of experiments, two gels were run in parallel;
one of them was immunoblotted and probed with an
antibody against Gus (Fig. 9a, d), and the other gel was
stained with Coomassie blue to be used as loading control
(Fig. 9b, e). The relative amount of protein present in each
deletion strain was determined in relation to the amount of
protein detected in the parental strain (Fig. 9c, f). Using the
Gus antibody, we were able to detect a band corresponding
to the GlaGus fusion protein (around 140 kDa), as well as
smaller bands (Fig. 9a, d), which might represent truncated

versions of the protein most likely caused by proteolytic
activity. The amount of fusion protein detected in the
scGlaGus background strains (Fig. 9c) is the highest in the
ΔderA and ΔhrdC strains. Subsequently, we determined
the amounts of fusion protein present in ERAD deletion
strains in the mcGlaGus background by Western blot
analysis (Fig. 9f). Both the Western blot and the quantified
data clearly indicate higher amounts of fusion protein for all
the deletions when compared to mcGlaGus parental strain.
The deletion of derA had the most significant effect as a
6-fold increase in GlaGus protein levels was detected. The
results indicate that a defective ERAD leads to the
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accumulation of intracellular GlaGus, but this does not
result in detectable GlaGus production in the culture
medium.

Discussion

Different heterologous proteins, distinctive bottlenecks?

In filamentous fungi, the levels of heterologous protein
production are often low (Gouka et al. 1997). Possible
processes and mechanisms involved in protein degradation,
especially those related to the ERAD pathway, are poorly
described or understood in these fungi. As A. niger has
such an outstanding capacity as a cell factory, the
understanding of these mechanisms becomes crucial to
improve heterologous protein production. We started out
our study by comparing the effect of expressing different
heterologous proteins in A. niger. In our analysis, we have
included proteins from bacterial origin, β-glucuronidase,
which has successfully used as a reporter in gene
expression in innumerable cell systems (Punt et al. 1994,
1998; Gilissen et al. 1998; Ayra-Pardo et al. 1999); the

metazoan green fluorescent protein, widely used as a
fluorescent marker; the human proteins tPA and IL6
with valuable medical applicability (Upshall et al. 1987;
Broekhuijsen et al. 1993; Punt et al. 1998; Wiebe et al.
2001); and basidiomycetes enzymes with wide biotechno-
logical applications manganese peroxidase and laccase
(Conesa et al. 2000; Weenink et al. 2006; Elisashvili and
Kachlishvili 2009). Expression of all the heterologous
proteins result in relative low production levels compared
to the production of glucoamylase expressed form the same
promoters (Archer et al. 1994; Gouka et al. 1997). Several
potential bottlenecks for the production of proteins have
been evaluated and discussed over the last decade, and a
potential bottleneck for efficient secretion in folding of the
heterologous proteins in the ER has been considered as a
major issue. BipA and PdiA, encoding a chaperone and a
foldase, respectively, have been identified as reliable
reporter genes as indicated for ER stress in filamentous
fungi (Punt et al. 1998; Kauffman et al. 2002; Guillemette
et al. 2007). Comparison of the different bipA and pdiA
mRNA levels in the strains expressing the different
heterologous proteins revealed that not all heterologous
proteins induce a strong UPR response (Fig. 2) despite the

KDa

130-

95-

72-

170-

0

1

2

3

ΔderA ΔdoaA ΔhrdC ΔmifA ΔmnsA scGlaGus

R
el

at
iv

e 
am

ou
nt

a

b

130-

95-

72-

170-

KDa

0

2

4

6

8

10

ΔderA ΔdoaA ΔmifA ΔmnsA mcGlaGus
R

el
at

iv
e 

am
ou

nt
 

c

d

e

f

Fig. 9 Effect of deletion of ERAD components on the amount of
GlaGus fusion protein in total protein extracts. Western analysis of
GlaGus amounts in total protein of mycelium samples of scGlaGus (a)
and mcGlaGus (d) ERAD deletion strains. Samples were grown in
CM for 24 h at 30°C. Ten micrograms of total protein was separated
by gel electrophoresis and immunodetected with an anti-Gus antibody.
Detection was carried out through a chemiluminescence reaction for
5 min. As a positive and negative control, 50 ng of purified Gus and a

total protein extract from N402 were loaded. The arrow indicates the
band corresponding to the GlaGus fusion protein (≈140 kDa). The
relative amounts of protein were normalized for loading differences by
comparison with a “twin” gel stained with Coomassie blue (b, e). c, f
Relative amount of GlaGus fusion protein detected in total protein
extracts of strains with impaired ERAD and respective parental strain.
Bars indicate standard deviations from two independent experiments
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fact that the production levels of, for example, the Human
IL6 protein, are low. Clearly, the lack of a strong UPR
response in some strains producing low levels of heterol-
ogous proteins strongly suggests that also non-UPR
mediated bottlenecks exist in A. niger that hamper efficient
secretion. Two heterologous proteins, human tissue plas-
minogen activator (t-PA) and the bacterial glucuronidase
(Gus) displayed a strong induction of the bipA and pdiA
reporters, indicating that these two proteins induce a strong
UPR response (Fig. 2). Interestingly, the expression of two
genes involved in ER associated degradation pathway
(derA and hrdC) was also induced, suggesting that t-PA
and Gus might be targeted for proteolytic degradation via
the ERAD system. Besides the protein specific issues, we
also show that the induction of the UPR pathway is
dependent on the level of expression (Fig. 4). The UPR-
inducing property of the glucuronidase is only observed
when the protein is highly expressed. Apparently, under
relative low-expressing conditions, A. niger is capable of
dealing with the protein in such a way that the protein does
not induce the UPR. Our results suggest that in the case of
having a single-copy of GlaGus, the basal protein folding
and quality control machinery are able to cope with the
heterologous protein, and only high levels of GlaGus
protein in the ER induces ER stress.

Expression of the bacterial glucuronidase results
in increased thermo and DTT sensitivity

The growth of transformants containing single- or multi-
copy insertions of the GlaGus construct at different
temperatures was compared to the parental strains
(Fig. 6). Growth of the mcGlaGus strain was severely
impaired at 42°C, suggesting that the temperature stress
(42°C is above the optimal growth temperature of A. niger)
in combination with the presence of misfolded GlaGus
protein in the ER also affects the processing of endogenous
cargo resulting in a growth retardation. Environmental
factors have an influence on cells productivity, and it has
been recently shown in Pichia pastoris that cultivating this
fungus below its optimal growth temperature results in a
more efficient secretion of heterologous proteins due to a
general decrease of folding stress at lower temperatures
(Dragosits et al. 2009). Furthermore, we reasoned that an
additional ER stress-inducing condition might further
aggravate this phenotype, and therefore, the strains were
also growth impaired in the presence of increasing concen-
trations of DTT (Fig. 7). The results clearly indicate that
high temperature, the presence of DTT, and the expression
of the GlaGus protein act additionally and interfere with
growth. In the case of expressing high levels of GlaGus, a
concentration of 5 mM DTT was enough to prevent growth
at 42°C, whereas growth of the single-copy GlaGus strain

was inhibited at 10 mM DTT, a condition that still allowed
growth of the strain lacking this heterologous protein.

ERADication of misfolded proteins in A. niger

The function of the ERAD pathway during normal
vegetative growth and its possible involvement in the
degradation of misfolded proteins in the ER were analyzed
by disrupting putative ERAD components in a wild-type
background and in backgrounds expressing the
glucoamylase-β-glucuronidase (GlaGus) fusion protein as
a reporter. Five genes (derA, doaA, hrdC, mifA, and mnsA)
involved in different aspects in the ERAD pathway were
selected and identified in the A. niger genome to establish
whether this pathway has an important role during the
degradation of the GlaGus protein. The systematic analysis
of these five genes either as single deletions or as double
mutants clearly showed that the effect of the gene deletion
on growth as well as on the faith of the heterologous
protein was limited. Phenotypic assays performed on the
ERAD deletion strains showed that, except for ΔdoaA, the
deletion of ERAD components does not result in an
apparent phenotype (Fig. 6). Moreover, deletion of the
ERAD genes did not increase the sensitivity of the ERAD
mutants in comparison to the respective parental strains
toward tunicamycin (data not shown) or DTT (Fig. 7). It
has been reported that the deletion of DER1 and HRD3 in
the yeast S. cerevisiae does not lead to a detectable growth
phenotype although the ERAD pathway is strongly affected
(Knop et al. 1996; Travers et al. 2000). However, this lack
of phenotype has been explained as a result of compensa-
tory effects of the UPR induction (Travers et al. 2000), as
deletion of DER1 only becomes lethal when combined with
the deletion of IRE1 and at the restrictive temperature of
37°C (Mori et al. 1993; Travers et al. 2000). The deletion of
the DER1 and HDR3 homologues in A. niger does not
result in a phenotype different from the wild-type strain, but
contrary to Travers et al. (2000), under normal growth
conditions, there is no evidence for activation of UPR in the
A. niger strains lacking derA or hrdC (Fig. 8a, b). The doaA
deletion was the only mutant showing a growth defect in all
the strains tested, translated into an irregular morphology
and reduced sporulation (Figs. 6 and 7). In S. cerevisiae,
Doa1p is known to play an important role in the ubiquitin-
dependent protein degradation by a direct interaction with
Cdc48p (a member of the AAA-ATPase family of molec-
ular chaperones; Ye et al. 2001b; Ogiso et al. 2004;
Mullally et al. 2006). In fission yeast, the deletion of the
doa1 homologue (lub1) results in a defective ubiquitin/
proteasome-dependent proteolysis, causing increased cell
sensitivity to several stress conditions (Ogiso et al. 2004).
Although there is no evidence for protein accumulation
either in scGlaGus or mcGlaGus ΔdoaA background
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strains (Fig. 9), we might hypothesize that in A. niger, the
lack of ubiquitination fails to target proteins to ERAD-
mediated destruction, inducing another degradation path-
way that could impair the fungal growth.

Induced BipA levels correlate with increased levels
of intracellular GlaGus

To examine possible UPR induction in the strains with an
impaired ERAD pathway in combination with the GlaGus
protein expressed, we analyzed mRNA expression levels of
hacA, bipA, and pdiA. Results in Fig. 8a and b clearly show
that under normal growth conditions, in the wild-type
background, the absence of any of the ERAD genes in
study does not lead to induction of the UPR pathway.
Overall, in the scGlaGus background (Fig. 8c, d), the
deletion of ERAD components does not seem to trigger the
UPR as values of hacA, bipA, and pdiA are maintained
relatively constant. Only in the derA and hrdC deletion
strains, an increase of about 2-fold of bipA mRNA is
observed. In parallel, we observe in scGlaGus derA and
hrdC deletions the highest accumulation of GlaGus intra-
cellularly, indicating that high levels of bipA mRNA are
correlated with higher levels of GlaGus protein (Fig. 9c).
Our results suggest that in the absence of ERAD proteins
DerA and HrdC, GlaGus might be retained in the ER
longer, which might be responsible for triggering the
induction of bipA levels. In the mcGlaGus background, an
increase in the levels bipA and pdiA mRNA levels was
observed for all the ERAD gene disruptions (Fig. 8f).
Hence, not only the high levels of GlaGus produced
triggers a UPR (Fig. 4a), but also the combination with
the deletion of any of the ERAD genes and consequent
accumulation of intracellular GlaGus might stimulate it
even further (Fig. 8f). Again, the highest level of induction
of bipA mRNA is correlated with the highest levels of
GlaGus protein. In the mcGlaGus background, the deletion
of derA had the most significant effect on the amount of
intracellular protein detected and resulted in a 6-fold
increase in GlaGus levels.

A general observation concerning the UPR induction
throughout our study is the constant values of hacA mRNA
itself. Mulder et al. (2004) have shown that upon UPR
induction, hacA is able to up-regulate its own transcription
via HacA binding sites in the HacA promoter region
(Mulder et al. 2004, 2009). Examining the hacA expression
levels in our studies showed that the levels of hacA mRNA
were not induced in response to the expression of the
GlaGus protein (Figs. 8 and 9). In the studies of Mulder et
al., in which the induced expression levels of HacA are
reported, the cells were suddenly exposed to ER-stress
inducing chemicals, whereas in our case, the strains
might have been adapted to the conditions of expressing/

overexpressing the heterologous protein and therefore the
hacA induction is not evident.

Alternative mechanisms of degradation

Our research revealed a surprisingly modest effect on the
deletion of ERAD functions in A. niger, even under ER
stress conditions. It was anticipated that the inability to
remove misfolded proteins from the ER by deleting ERAD
components would result in severe ER stress situation and,
by analogy to metazoans, might induce apoptosis-like
phenotypes (see for review Rasheva and Domingos 2009).
Therefore, other mechanisms besides ERAD might be of
importance in the clearance of misfolded proteins and help
the cells cope with the stress. The lack of proteins in the
medium together with the observed degradation in our
Western analysis (Fig. 9) suggests alternative pathways to
remove misfolded proteins, such as the presence of
proteases directly in the ER, as it has been shown for
mammalian systems (Evnouchidou et al. 2009), Sec61p-
DerA/HrdC-independent transport to the cytosol, or mech-
anisms of direct targeting of misfolded proteins to the
vacuole. The GlaGus reporter strains used in this study
allow non-biased genetic screens to identify mutants
involved in these alternative protein degradation pathways.
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