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Abstract A transcriptomics and proteomics approach was
employed to study the expression changes associated with
p-hydroxybenzoate production by the engineered Pseudo-
monas putida strain S12palB1. To establish p-hydroxyben-
zoate production, phenylalanine-tyrosine ammonia lyase
(pal/tal) was introduced to connect the tyrosine biosynthetic
and p-coumarate degradation pathways. In agreement with
the efficient p-hydroxybenzoate production, the tyrosine
biosynthetic and p-coumarate catabolic pathways were
upregulated. Also many transporters were differentially
expressed, one of which—a previously uncharacterized
multidrug efflux transporter with locus tags PP1271-
PP1273—was found to be associated with p-hydroxyben-
zoate export. In addition to tyrosine biosynthesis, also
tyrosine degradative pathways were upregulated. Eliminating
the most prominent of these resulted in a 22% p-hydroxy-
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benzoate yield improvement. Remarkably, the upregulation
of genes contributing to p-hydroxybenzoate formation was
much higher in glucose than in glycerol-cultured cells.
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Introduction

The aromatic compound p-hydroxybenzoate is a building
block of liquid crystal polymers, high performance plastics
that are employed in electronic devices such as mobile
phones. At present, such compounds are derived from fossil
resources, but the increasing demand for ‘green’ polymers
and resins requires other approaches to the synthesis of the
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building blocks that constitute these materials. Biological
production from renewable feedstock is a very attractive
option, although the hydrophobic nature of aromatic
compounds makes specific demands on the production
host. Therefore, we have developed a solvent-tolerant
bacterium, Pseudomonas putida S12, as a host for the
biological production of aromatic compounds from renew-
able resources (Verhoef et al. 2007; Nijkamp et al. 2005,
2007; Verhoef et al. 2009; Wierckx et al. 2005). This
organism can tolerate a second phase of aromatic and
aliphatic hydrophobic compounds such as toluene and 1-
octanol, which property makes this organism an excellent
platform host for the production of toxic hydrophobic
compounds.

For the production of the tyrosine-derived aromatics
phenol, p-hydroxystyrene and p-hydroxybenzoate, we have
exploited P. putida S12 427 as a platform strain (Fig. 1;
Verhoef et al. 2007, 2009; Wierckx et al. 2008). Strain
S12 427 was obtained by subjecting wild-type P. putida
S12 to a series of random and targeted optimization steps,
key elements in which were the overexpression of the aroF-
1 encoded class-I DAHP synthase, random mutagenesis
and antimetabolite screening (Fig. 1; Wierckx et al. 2005).
Transcriptomics and metabolic flux analyses on P. putida
S12TPL3, a phenol producing strain based on P. putida
S12 427, indicated that the metabolic flux towards tyrosine
was significantly improved (Wierckx et al. 2008, 2009).

For the production of p-hydroxybenzoate, tyrosine
biosynthesis in P. putida S12 427 was connected to the

P. putida S12
AoprB-1
aroF-1
overexpression
NTG mutagenesis
MFP" / MFT"

P. putida S12_427

tpl overexpression ApobA
pal/tal overexpression

P. putida S12TPL3 P. putida S12palB1
(Wierckx et al. 2005)
l Ahpd

P. putida S12palB2
l APP1271-PP1273

P. putida S12palB3

Fig. 1 Genealogy of aromatics producing mutants of P. putida S12. The
right hand column shows how each successive mutant was obtained.
oprB-1 porin B, aroF-1 class-1 DAHP synthase, pobA p-hydroxybenzoate
hydroxylase, hpd 4-hydroxyphenylpyruvate dioxygenase, PP1271-
PP1273 multidrug efflux MFS transporter, pal/tal phenylalanine/tyrosine
ammonia lyase, #p/ tyrosine-phenol lyase, NTG N-methyl-N’-nitro-N-
nitrosoguanidine, MFP" resistant to 100 mg/l m-fluoro-DL-phenylala-
nine, MFT resistant to 100 mg/l m-fluoro-L-tyrosine
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endogenous p-coumarate catabolic pathway by introducing
the pal/tal gene from Rhodosporidium toruloides (Fig. 1;
Verhoef et al. 2007). This gene encodes phenylalanine/
tyrosine ammonia lyase (Pal/Tal) that converts tyrosine into
p-coumarate. The resulting synthetic pathway could be
employed to accumulate the p-coumarate catabolic inter-
mediate p-hydroxybenzoate, after eliminating the pobA
gene encoding p-hydroxybenzoate hydroxylase. Figure 3
presents an overview of p-hydroxybenzoate biosynthesis in
the resulting p-hydroxybenzoate producing strain, P. putida
S12palB1 (Verhoef et al. 2007).

In the present study, we employed a transcriptomics and
proteomics approach to study the expression changes
associated with p-hydroxybenzoate production by P. putida
S12palB1. Thus, insight could be provided into the effects
brought about by p-hydroxybenzoate accumulation, in
conjunction with the impact from the mostly non-targeted-
strain improvement strategy used to obtain the parent strain,
P, putida S12_427. Based on these insights, new strategies
for further targeted-strain improvement may be designed.
Special attention was focused on the pathways directly
involved in p-hydroxybenzoate production, i.e., aromatic
amino acid metabolism and p-coumarate degradation.
Although previous research suggested no major differences
between p-hydroxybenzoate production on glucose or
glycerol (Verhoef et al. 2007), substrate specific effects at
the transcript and proteome level cannot be excluded.
Especially in view of the artificial connection that was
made between an anabolic and a catabolic pathway to
achieve p-hydroxybenzoate production, carbon source
dependent regulatory effects were anticipated. The opti-
mized p-hydroxybenzoate production strain P. putida
S12palB1 was therefore compared to non-optimized control
strains on glucose as well as on glycerol.

Material and methods
Bacterial strains, plasmids and culture conditions

The strains and plasmids used in this study are listed in
Table 1. The media used were Luria broth (LB; Sambrook
et al. 1982) and a phosphate buffered minimal medium
adapted from a previously described medium (Verhoef et al.
2007) containing 3.88 g 1" K,HPO, and 1.63 g 1!
NaH,PO,. In minimal media, 40 mM of glycerol (MMGly)
or 20 mM of glucose (MMG) were used as the sole carbon
source unless stated otherwise. Antibiotics were added as
required to the media at the following concentrations:
gentamicin, 10 pg ml™' (MMG and MMGly) or 25 pug ml ™
(LB); tetracycline, 10 pug ml™' (Escherichia coli) or
60 pg ml' (P putida S12). The expression of the
introduced copy of aroF-1 as well as the expression of
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Table 1 Strains and plasmids used in this study

Strain or plasmid Characteristics®

Source or reference

Strains

P. putida S12

P, putida S12_427°

P. putida S12_427 pJTTpal
P. putida S12palB1

P. putida S12B2

P. putida S12palB2

P. putida S12pal_mfsB2

P. putida S12B3

P. putida S12palB3

P. putida S12pal_mfsB3
P. putida S12 pJTTpal

P. putida S12 pJNNmcs(t)
Escherichia coli DH5«x
Plasmids

pJTTpal®

pJT’Tmcs
pJT’Tpal
pINNmes(t)
pBNTmces(Gm")
pBNTmfs(Gm")

pJQ200SK
pJQpobA::tetAloxP
pJQhpd::tetAloxP

Wild-type, ATCC 700801

P. putida S12 with an enhanced tyrosine production

P, putida S12 427 containing plasmid pJTTpal

pobA knockout strain derived from P. putida S12 427 containing plasmid pJTTpal
pobA and hpd knockout strain derived from P. putida S12 427

P, putida S12B2 containing plasmid pJT Tpal

P. putida S12B2 containing plasmids pJT Tpal and pBNTmfs

Multidrug efflux MFS transporter (PP1271-PP1273) knockout strain derived from
P, putida S12B2
P, putida S12B3 containing plasmid pJT Tpal

P. putida S12palB3 containing plasmids pJT’Tpal and pBNTmfs

P. putida S12 containing plasmid pJTTpal

P. putida S12 containing plasmid pJNNmcs(t)

supE44 AlacU169 ($80 lacZAMI15) hsdR17 recAl endAl gyrA96 thi-1 reld1

Ap" Gm', expression vector containing the pal gene under control of the fac
promoter (pALter-EX1, U47102) and the tac RBS
Ap" Gm', vector for Ptac and tac RBS controlled expression

Ap" Gm', Pal/Tal expression vector under control of Pfac and tac RBS
Ap" Gm', vector for Pragda and nagda RBS controlled expression
Gm', vector for PnagAa and tac RBS controlled expression

Gm', multidrug efflux MFS transporter (PP1271-PP1273) expression vector under
control of Pnagda and tac RBS
Gm', Suicide vector, PI5A ori sacB RP4 pBluescriptSK MCS

Gm" T¢", pJQ200SK containing the loxP-tetA-loxP interrupted pobA gene
Gm" T¢', pJQ200SK containing the loxP-tetA-loxP interrupted hpd gene

(Hartmans et al. 1990)
(Wierckx et al. 2008)
This study

(Verhoef et al. 2007)
This study

This study

This study

This study

This study

This study

(Nijkamp et al. 2005)
(Wierckx et al. 2005)
(Sambrook et al. 1982)

(Nijkamp et al. 2007)

This study
This study
(Wierckx et al. 2005)
This study
This study

(Quandt and Hynes 1993)
This study
This study

pJQmfs::tetAloxP
transporter (PP1271-PP1273)

Gm" T¢', pJQ200SK containing the loxP-tetA-loxP interrupted multidrug efflux MFS This study

*Ap", Gm" and Tc", ampicillin, gentamicin and tetracycline resistance, respectively

® Previously known as P, putida S12 TPL3c¢

¢ Previously known as pTacpal

the multidrug efflux major facilitator superfamily (MFS)
transporter in the pPBNTmfs vector was induced by addition
of 0.1 mM of sodium salicylate. Shake flask experiments
were performed in 250-ml Erlenmeyer flasks containing
50 ml of MMG or MMGly in a horizontal shaking
incubator at 30°C. Cultures were inoculated to a starting
optical density at 600 nm (ODggg) of 0.2 with cells from a
preculture on MMG or MMGly.

Carbon-limited chemostat cultivations were performed
as described previously (Verhoef et al. 2007) using minimal
medium containing either 10 mM glucose or 20 mM
glycerol, 10 mg I"' gentamicin and 0. mM sodium
salicylate, in 1-1 fermentors with a BioFlo110 controller
(New Brunswick Scientific, Nijmegen, The Netherlands).
Chemostats were inoculated with a 35-ml inoculum of a
late-log phase preculture on MMGly or MMG. The dilution
rate (D) was set at 0.05 h™' for 16 h, after which it was

increased to 0.1 h™'. The cultures were considered to be at
steady state when no significant changes were measured in
cell density, stirring speed and, when applicable, p-
hydroxybenzoate concentration after at least five volume
changes at D=0.1 h™".

Sampling for microarray and 2D-DIGE analysis

Samples were drawn for microarray and two dimensional
difference-in-gel-electrophoresis (2D-DIGE) analysis from
chemostat cultures at steady state conditions. ODggq Was
measured and aromatics and carbon source concentrations
were analyzed in the sample supernatants. For each
condition (Table 3), three separate chemostat cultivations
were performed. For microarray analysis, samples were
quenched in ice-cold methanol and centrifuged. The pellet
was covered by 1 ml RNAlater (Ambion, Foster City, CA,
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USA) and incubated for at least 1 h at 4°C, after which the
RNAlater was removed. The pellet was flash frozen in liquid
nitrogen and stored at—80°C. Samples for proteomics analysis
were centrifuged at 4,000 rpm for 20 min at 2°C. The pellet
was flash frozen in liquid nitrogen and stored at—80°C.

Messenger RNA isolation and cDNA preparation
for microarray analysis

Messenger RNA was isolated from the frozen pellets as
described by Wierckx et al. (Wierckx et al. 2008). Random
priming, cDNA synthesis, purification, fragmentation, and
labeling were performed according to the microarray
manufacturer’s instructions (Affymetrix, Santa Clara, CA,
USA).

Microarray analysis

High-density custom microarrays based on the genome of
P, putida KT2440 with additional probe sets were used for
transcriptomics analysis (Wierckx et al. 2008; Ballerstedt et
al. 2007). The end-labeled cDNA fragments were hybrid-
ized to the microarray according to standard manufacturer’s
protocols. Hybridized microarrays were scanned by Serv-
iceXS (Leiden, The Netherlands) on a high resolution Gene
Chip Scanner 3000 7G system with autoloader (Affymetrix,
Santa Clara, CA, USA) using standard default analysis
settings (filter: 570 nm; pixel size: 2.5 um). The resulting
microarray data (.cel files) were imported into Genespring
GX software package version 7.3.1 (Agilent Technologies,
Santa Clara, CA, USA) using the GC RMA algorithm.
After normalization (signals below 0.01 were taken as 0.01;
per chip: normalize to 50th percentile; per gene: normalize
to specific sample), probesets representing intergenic
regions and control genes were removed, as well as
nonchanging genes (between 0.667- and 1.334-fold
change). On the resulting set of differentially expressed
genes a one-way ANOVA test (parametric test, p value of
0.05) was applied. Genes that were differentially expressed
by at least a factor 2.5 were selected for further analysis.

Protein extraction

Protein extracts were prepared as described by Wijte et al.
(Wijte et al. 2006). In brief, cells were boiled for 10 min in
a Tris-SDS solution (0.2% SDS, 0.028 M Tris-HCI, 0.022
Tris-base, and 0.2 M DTT) and subsequently a DNase/
RNase treatment was given. Proteins were then extracted by
the methanol/chloroform method. The protein pellet was
solubilized in a solution with 8-M urea, 4% CHAPS and
30 mM Tris and sonicated on ice (4%x5 s). Protein
concentrations were determined with the RC/DC assay
(BioRad, Veenendaal, The Netherlands).

@ Springer

2D gel electrophoresis

Proteomics analysis was performed using the 2D-DIGE
method, according to Volkers et al. (Volkers et al. 2006) and
Wijte et al. (Wijte et al. 2006). Protein samples were labeled
according to the manufacturers’ protocol (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden) with CyDyes Cy3 and
Cy5. The standard sample, consisting of a mixture of equal
amounts of all samples in the experiment, was labeled with
Cy2. First dimension electrophoresis was performed
according to the manufacturers’ protocol (GE Healthcare).
In short, the labeled proteins were applied to a 24-cm
Immobiline Dry-Strip pH 4-7 and rehydrated overnight or
applied with cup-loading to a pre-hydrated 18-cm Dry-Strip
pH 6-11. Iso-electric focusing was carried out using an
IPGphor for a total of 60,750 Vh for the pH 4—7 strip and
30,750 Vh for the pH 6-11 strip. Prior to the second
dimension electrophoresis, the strips were refocused for a
total of 2,500 Vh. After that, the strips were incubated in
equilibration buffer containing 1% (w/v) DTT for 15 min,
followed by a 15-min incubation in equilibration buffer
containing 2.5% (w/v) iodoacetamide. After equilibration,
the strips were placed on top of 12.5% polyacrylamide lab-
cast gels (pH 4-7) or 15% polyacrylamide lab-cast gels (pH
6-11) and sealed with a 1% agarose solution containing a
trace of bromophenol blue. Gels were run for 1 h at 1 W per
gel followed by 13 W per gel until the bromophenol blue
had migrated to the bottom of the gel.

Image acquisition and data analysis

The gels were scanned using a Typhoon 9400 Imager at
100 pm resolution, according to the manufacturers’
protocol (GE Healthcare). Data analysis was performed
using DeCyder 2D Software version 6.5 with the DeCyder
Extended Data Analysis module version 1.0 (both GE
Healthcare). After one-way analysis of variance (student’s ¢
test with a p value of 0.05), significantly changed proteins
were selected that had an average fold-change difference of
at least 1.5 between the conditions tested.

In-gel digestion and protein identification

Preparative polyacrylamide gels were prepared following
the protocol for analytical gels described above, with the
following changes: only the Cy2-labeled standard was
applied and after scanning the gels were stained with
ProteomIQ Blue according to the manufacturer’s instruc-
tions (Proteome Systems, Woburn, MA, USA). After
excision, the proteins spots were digested in-gel with
trypsin, using the protocol described by Havlis et al.
(Havlis et al. 2003). Protein identification was performed
by matrix-assisted laser desorption ionization mass spec-
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trometry and microliquid chromatography electrospray
tandem mass spectrometry, as described previously
(Volkers et al. 2006).

Analytical methods

Cell densities were determined at 600 nm with an Ultrospec
10 cell density meter (GE Healthcare). An ODgoy of 1
corresponds to 0.49 g 1! of cell dry weight (CDW). The
aromatic compounds were analyzed by HPLC (Agilent 1100
system) using a Zorbax 3.5 um SB-CI18 column (4.6x
50 mm) and a diode-array detector. As the eluent, a linear
gradient of acetonitrile in KH,POy4-buffer (50 mM, pH 2)
with 1% acetonitrile was used, increasing from 0-25% in
4.9 min at a flow of 1.5 ml min'. Glucose, gluconic acid
and 2-ketogluconic acid were analyzed as described by
Meijnen et al. (Meijnen et al. 2008). Glycerol was analyzed
by ion chromatography (Dionex ICS3000 system), using an
IonPac ICE AS1 column with 100 mM methyl sulphonic

acid as the eluent at a flow of 1.2 ml min~ ",

Targeted gene disruption

The previously employed gene replacement vectors
pJQpobA::tetA (Verhoef et al. 2007) and pJQhpd::tetA
(Wierckx et al. 2008) were modified by replacing the tetA
marker by the same gene flanked by /oxP recombination
sites (Sauer and Henderson 1988; Sternberg and Hamilton
1981) yielding pJQpobA::tetAloxP and pJQhpd::tetAloxP
(Table 1). For construction of the gene replacement vector
pJQmfs::tetAloxP, two parts of the multidrug efflux MFS
transporter genes (locus tag PP1271-PP1273) were ampli-
fied by polymerase chain reaction (PCR) using primers
NW23-NW26 (Table 2). The resulting PCR products mfsl
(5" end) and mfs2 (3" end) were digested with Notl/Xbal
and Xhol/Xbal, respectively. Suicide plasmid pJQ200SK
(Quandt and Hynes 1993) was digested with Notl and
Xhol. The three resulting DNA fragments were ligated to
yield pJQmfs. pJQmfs was linearized with Xbal and treated
with bacterial alkaline phosphatase. The Xbal fragment
from pSKtetlox (unpublished data) containing the loxP
flanked tet4 marker (Sauer and Henderson 1988; Sternberg
and Hamilton 1981) was ligated into Xbal-digested pJQmfs
yielding pJQmfs::tetAloxP.

Targeted gene disruptions were performed as described
by Verhoef et al. (Verhoef et al. 2007). The loxP-flanked
tetA marker was removed by site-specific recombination
after introducing pJNTcre (unpublished data) and induction
of the Cre recombinase with 0.1 mM Na-salicylate.
Colonies that were tetracycline sensitive were selected and
plasmid pJNTcre was removed by overnight culturing in
non-selective Luria broth. Replacement of the native gene
by the disrupted copy was confirmed by a colony PCR.

Construction of expression plasmids

Plasmid pBNTmcs(Gm") was constructed as follows. The
chloramphenicol (Cm) marker from pBBR1mcs (Kovach et
al. 1995) was amplified by PCR using the primers Cm_F-
Aval and Cm_R Mlul (Table 2). The resulting fragment
was ligated into the pJNTmcs (Meijnen et al. 2008) vector
using the restriction sites Mlul and Kpn2I (compatible with
Aval). From this vector, the salicylate-inducible NagR/
pNagAa promoter, tac ribosomal binding site and Cm
marker were amplified using primers RV165 and
Cm_R Mlul (Table 2) and digested with Kpn2I and Xmajl.
The resulting fragment was ligated in a Kpn2I and Xbal
(compatible with Xmajl) digested pBBRImcs vector,
yielding pBNTmcs(Cm"). The Cm marker was replaced
by a gentamicin (Gm) marker. The Gm marker of pJNNmcs
(previously known as pTN-1 (Wierckx et al. 2005)) was
obtained by PCR using primers KN34 and KN30 (Table 2)
and cloned into the Pagl and Ncol restriction sites of
pBNTmcs(Cm"), yielding pBNTmcs(Gm").

For constructing the MFS-transporter expression plasmid
pBNTmfs(Gm"), the multidrug efflux MFS transporter
(PP1271-PP1273) was amplified by PCR on genomic
DNA of P putida S12 using oligonucleotide primers
KN48 and KN49 (Table 2). The resulting fragment was
digested with Kpnl and Notl and ligated into KpnI-NotI-
digested pBNTmcs(Gm").

Plasmid pJT’Tmcs was constructed by digesting
pJTTmes (Meijnen et al. 2008) with HindIIl and BamHI
and the resulting fragment was treated with S1 nuclease,
according to manufacturer’s instructions. The nuclease
treated vector was ligated, yielding pJT’Tmcs. For con-
structing pJT’Tpal, the pal gene was obtained from
pJTTpal as a Kpnl-Notl fragment and purified from agarose
gel. The purified fragment was ligated into Kpnl-Notl-
digested pJT Tmcs, yielding pJT Tpal.

Results

General expression features of p-hydroxybenzoate
producing P. putida S12palB1

P. putida S12palB1 was cultured in carbon limited chemo-
stats with either glycerol or glucose as the carbon source. In
agreement with previous observations (Verhoef et al. 2007),
the carbon source had no major effect on product
formation: on either substrate comparable concentrations
of p-hydroxybenzoate and #-cinnamate were produced, at a
similar product-to-substrate yield (Y,; Table 3). The biomass
density as well as the biomass-to-substrate yield was slightly
higher on glycerol (Table 3; data not shown). As control
cultures, wild-type P. putida S12 variant strains were
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Table 2 Oligonucleotide primers used in this study

Primer Sequence (5'—3") Characteristics

NWw23 CGGATCCTGGCGACACCTCGCACAA Start of PP1271 (multidrug efflux MFS transporter), forward primer, BamHI

Nw24 GCTCTAGATCAAGGGTCCATCCTGCC End of PP1271 (multidrug efflux MFS transporter), reverse primer, Xbal

NW25 GCTCTAGAAAACCGGGATTACGCTTGAG Start of PP1273 (multidrug efflux MFS transporter), forward primer, Xbal

NW26 GCGCGGCCGCGTACAGGCTGCAAAGCATCA  End of PP1273 (multidrug efflux MFS transporter), reverse primer, Not/

CmF-Aval GCCCCGGGGCTCACTGCCCGCTTTCCA Start of Cm marker from pBBR1mcs (Kovach et al. 1995), forward primer,
Aval

Cm R Mlul GCACGGCTCGAGATTTTCAGGAGCTAAGGA  End of Cm marker from pBBRImcs (Kovach et al. 1995), reverse primer,
Miul

RV165 TGACCAGCTGCGAAGTG End of fac ribosomal binding site, reverse primer, Pvull

KN34 TCATGACGGATTCACCCTTGGCGTCC Start of Gm marker from pJNNmcs(t) (Wierckx et al. 2005), forward primer,
Pagl

KN30 CCATGGTGACAATTTACCGAACAACTCC End of Gm marker from pJNNmcs(t) (Wierckx et al. 2005), reverse primer,
Ncol

KN48 GCGGAATTCATGTATTCTCATGACTTCCCTG  Start of PP1271, forward primer, EcoRI

KN49 GCGGCGGCCGCCTAACCGTGAGCATTCGGCG End of PP1273, reverse primer, Not/

Restriction sites are underlined

cultivated in chemostats and harbored either an empty
expression plasmid (pJNNmcs(t); (Wierckx et al. 2008)), or
the Pal/Tal expression plasmid (pJTTpal; Nijkamp et al. 2007;
Table 3). Samples were drawn from the chemostat cultivations
for transcriptomics and proteomics analysis. Comparisons
were made between the optimized p-hydroxybenzoate pro-
ducing strain P. putida S12palB1 and the non-optimized
control strains, on either glucose or glycerol as the carbon
source. Thus, the responses underlying the improved perfor-
mance of the platform strain P, putida S12 427, as well as the
impact of metabolic engineering on strain S12 427 to
generate the p-hydroxybenzoate producing strain P putida
S12palB1 (Fig. 1), could be assessed for either carbon source.

Remarkably, the carbon source employed appeared to
have a major effect on global transcript levels in the
p-hydroxybenzoate producing P. putida S12palBl. With
glucose as the carbon source, 215 genes were differentially
expressed (fold change >2.5) in P putida S12palBl
compared to the control strain, whereas only 88 genes were
differentially expressed on glycerol. Proteome analysis
showed a similar trend with 285 differentially expressed

Table 3 The biomass and product formation in chemostat cultivations

spots (fold change >1.5) in glucose-grown P. putida
S12palB1l compared to the control strain, vs. 110 spots in
the glycerol-grown cultures. From the glucose cultures, 93
out of the 285 spots were analyzed, representing 60
different proteins. Of the 110 differentially expressed spots
of the glycerol cultures, 39 were analyzed representing 26
unique proteins.

The distribution of the differentially expressed genes and
proteins over the different Clusters of Orthologous Groups
(COQG) categories (based on the NCBI-COG database of P,
putida KT2440 (http://www.ncbi.nlm.nih.gov/sutils/coxik.
cgi?gi=266)) was very similar for glucose and glycerol-
grown P. putida S12palB1 (Fig. 2a, b). Nearly all COG
groups were represented. About one quarter of the
differentially expressed genes and proteins were annotated
as having a hypothetical (including unknowns) or general
function only. Another 25% could be assigned to amino
acid transport and metabolism. A similar response had been
observed previously in the phenol-producing P. putida
SI12TPL3. This was proposed to relate to the selection
procedure by which the parent strain P putida S12 427

Strain Carbon source CDW (gI™'y? p-hydroxybenzoate (mM)?* t-cinnamate (mM)?* Yps (Cmol%)*
P. putida S12 pJNNmcs(t) Glucose 0.65 (£0.02) 0 0

P. putida S12 pJTTpal Glycerol 0.69 (£0.03) 0 0.022 (£0.005)

P. putida S12palB1 Glucose 0.63 (20.01) 0.520 (+0.009) 0.050 (£0.004) 6.0 (+0.1)

P. putida S12palB1 Glycerol 0.68 (£0.02) 0.532 (x0.011) 0.052 (£0.009) 6.1 (+0.1)

CDW cell dry weight, Y,; p-hydroxybenzoate to substrate yield in C-mol p-hydroxybenzoate per C-mol substrate (C-mol%)

# Average of three chemostat cultures, errors represent the standard deviation
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was obtained, i.e., resistance to fluoroanalogs of the amino
acids phenylalanine and tyrosine (Wierckx et al. 2005). In
addition, the COG groups of transcription and translation
were well-represented, indicative of a substantial overall
phenotypic difference between the p-hydroxybenzoate
production strain and the control strain. The slight overrep-
resentation of the COG groups ‘energy production and
conversion’ and ‘signal transduction’ were likely to relate to
a solvent stress response, relating to the accumulation of p-
hydroxybenzoate (Fig. 2; Park et al. 1998, 2001)).

Specific expression features of P. putida S12palB1 relating
to p-hydroxybenzoate production

A number of differentially expressed genes and proteins
in P. putida S12palB1 could be clearly linked to improved
p-hydroxybenzoate production. These were classified into
three functional groups: (1) aromatic amino acid biosyn-
thesis and p-coumarate catabolism (i.e., the synthetic
pathway of p-hydroxybenzoate biosynthesis), (2) aromatic
amino acid catabolism, and (3) transport systems (Table 4;
Fig. 3). A complete overview of differentially expressed
genes and proteins is provided in Table 1 of the supple-
mental data.

Aromatic amino acid biosynthesis and p-coumarate
degradation

In P putida S12palB1, five genes of the tyrosine bio-
synthetic pathway were upregulated, among which the
aroF-1 gene that was present in an additional copy in this
strain (Table 4). Moreover, the tryptophan biosynthetic
pathway was found to be upregulated, both at the transcript
level (trpCDGFE) and at the protein level (TrpCDGE as well
as TrpA; Table 4). These findings are in good agreement
with previous results in phenol producing P. putida S12TPL3
(Wierckx et al. 2008) as well as with the improved p-
hydroxybenzoate biosynthesis. The upregulation of the
aromatic amino acid biosynthetic genes in general appeared
to be somewhat lower on glycerol compared to glucose (by a
factor 1.5-3). An exception was the dramatic effect observed
for phhAB, the upregulation of which was lower by a factor
20-30 on glycerol-grown P. putida S12palB1 compared to
glucose-grown cells.

In addition to the aromatic amino acid biosynthetic
genes, all genes involved in the conversion of p-
coumarate into p-hydroxybenzoate (Mitra et al. 1999;
Jimenez et al. 2002; Venturi et al. 1998) were upregulated
compared to the control strains (Table 4). Again, the level
of upregulation of these genes was apparently carbon-
source dependent, being lower by an order of magnitude in
the glycerol-grown cells compared to the glucose-grown
cultures.
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Fig. 2 Global response on transcriptome and proteome level between
the control strain and P. putida S12palB1 on glucose (a) and glycerol
(b). Percentages of differentially expressed genes (fold changes of at
least 2.5) and proteins (fold change of at least 1.5) are given per COG
group

Tyrosine degradation pathways

In addition to the tyrosine biosynthetic genes, genes
involved in the degradation of tyrosine were upregulated
(Table 4, Fig. 3), although exclusively in glucose-grown
cultures. The tyrosine decarboxylase-encoding gene PP2552
was upregulated 48-fold in glucose-grown P. putida
S12palB1. However, no accumulation of tyramine was
observed. Considering that tyramine is a dead-end product,
the contribution of tyrosine decarboxylase to tyrosine
catabolism appeared to be limited. As suggested earlier for
phenol-producing P. putida S12TPL3 (Wierckx et al. 2008),
degradation of tyrosine is more likely to occur via the
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Table 4 Differentially expressed genes and proteins connected to p-hydroxybenzoate production in P. putida S12palB1

Protein description (gene)

KT2440 Transcriptome fold
locus tag changes

Proteome fold changes

Glycerol*  Glucose®  Glycerol*  Glucose”
Aromatic amino acid biosynthesis
Tryptophan synthase, alpha subunit (tpA) PP0082 1.6
Anthranilate synthase, component I (rpE) PP0417 6.5 9.2 2.7+40.1°  13.1+£4.2°
Anthranilate synthase, component II (#7pG) PP0420 4.2 10.3 2.9 2.7
Anthranilate phosphoribosyltransferase (trpD) PP0421 44 7.8
Indole-3-glycerol phosphate synthase (trpC) PP0422 2.6 5.6 4.0
DAHP synthase, class I (aroF1) PP2324 25 2.6
DAHP synthase, class I (aroF?2) PP3080 3.1 9.3
Quinate dehydrogenase (pyrroloquinoline-quinone), putative PP3569 1.49 2.8
Phenylalanine-4-hydroxylase (phhA) PP4490 33 107.0
Pterin-4-alpha-carbinolamine dehydratase (ph/B) PP4491 3.5 76.3
p-Coumarate catabolism
Acyl-CoA dehydrogenase, ferrulic acid biotransformation protein, putative (acd) PP3354 2.5 28.2
B-ketothiolase (aat) PP3355  1.8¢ 11.9
Feruloyl-CoA-synthetase (fcs) PP3356 3.6 72.8
Vanillin dehydrogenase (vdh) PP3357 3.0 37.7
Enoyl-CoA hydratase aldolase (ech) PP3358 2.5 12.2
Hydroxycinnamic acid degradation regulator, putative PP3359 1.9¢ 29
Aromatic catabolism
Tyrosine decarboxylase, putative PP2552  0.92¢ 48.0
4-hydroxyphenylpyruvate dioxygenase (ipd) PP3433 1.5¢ 2.8
Transport systems
Amino acid ABC transporter, periplasmic amino acid-binding protein PP0282 1.6
Aromatic amino acid transporter (aroP2) PP0927 3.0 9.0
Amino acid ABC transporter ATP-binding protein PP1068 2.5
Amino acid ABC transporter, periplasmic amino acid-binding protein PP1071 0.64+0.01°
Branched-chain amino acid ABC transporter, ATP-binding protein (braG) PP1137 2.0
Branched-chain amino acid ABC transporter, periplasmic amino acid-binding PP1141 2.1+0.1°
protein (braC)
Multidrug efflux MFS transporter, putative PP1271 3.8 7.6
Multidrug efflux MFS membrane fusion protein PP1272 13.7 17.4
Multidrug efflux MFS outer membrane protein PP1273 4.8 10.1
General amino acid ABC transporter, periplasmic binding protein (aapJ) PP1297  0.48¢ 34 0.57+0.06° 5.1+£0.6°
General amino acid ABC transporter, permease protein (aapQ) PP1298  0.51¢ 4.6
General amino acid ABC transporter, permease protein (aapM) PP1299  0.70¢ 2.9
General amino acid ABC transporter, ATP-binding protein (aapP) PP1300  0.56¢ 3.0 0.61 2.6
Amino acid transporter, AAT family PP3727 25 42
Aromatic amino acid transporter (aroP1) PP4495 4.0 14.1
Branched-chain amino acid ABC transporter, periplasmic amino acid-binding PP4867 0.65 2.4+0.1°

protein

#Fold change in expression level of P putida S12palB1 compared to P. putida S12 pJTTpal on glycerol as substrate; values below 1 represent down

regulation and values above 1 represent upregulation in P. putida S12palB1

® Fold change in expression level of P. putida S12palB1 compared to P. putida S12 pJNNmcs(t) on glucose as substrate; values below 1 represent down

regulation and values above 1 represent upregulation in P. putida S12palB1

¢ Average of all spots per protein, errors represent the maximum deviation from the mean. See supplemental data for values per spot

dBelow threshold

@ Springer



Appl Microbiol Biotechnol (2010) 87:679-690

687

homogentisate pathway of which the upregulated spd gene
encodes the first enzyme, i.e., 4-hydroxyphenylpyruvate
dioxygenase.

Transport systems

The extracellular accumulation of p-hydroxybenzoate in
cultures of P. putida S12palB1 is likely to involve cellular
transport systems. This is supported by the upregulation of
numerous transport systems in P. putida S12palB1 compared
to the control strains. Among these were a multidrug efflux
MES transporter (PP1271-PP1273) and a wide range of
(aromatic) amino acid transporters (Table 4). The nature of
the carbon source employed apparently also affected the
expression of these transporters. The upregulation of the
MEFS transporter genes PP1271-1273 showed little carbon-

Fig. 3 Schematic overview of

substrate dependency, being slightly lower on glycerol than
on glucose. For the amino acid transporter-encoding genes,
much larger upregulation was observed depending on the
carbon source used. Remarkably at the protein level, even
downregulation of some amino acid transporters was
observed in glycerol-grown P. putida S12palB1 compared
to the control strain, as opposed to the glucose-grown
cultures (Table 4).

Improvement of p-hydroxybenzoate production by targeted
deletion of the hpd gene

We previously demonstrated that the addition of tyrosine
to chemostat-cultivated P. putida S12palB1 resulted in
improved p-hydroxybenzoate titers, indicating that product
formation was limited by the availability of tyrosine.
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Fig. 4 Growth and production
of p-hydroxybenzoate of P.
putida S12palB1 (a), P. putida
S12palB2 (b), P. putida
S12palB3 (¢), P. putida S12B3
(d), P. putida S12pal mfsB3 (e)
and P. putida S12pal mfsB2 (f)
in mineral medium with 20 mM
glucose as carbon source in
shake flask cultures. p-hydroxy-
benzoate (square), p-coumarate

2.5q

aromatics (mM);CDW (g/l)

(triangle) and CDW (cell dry
weight; diamond). The data are
averages of triplicate experi-
ments. The maximum variation
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However, part of the added tyrosine was consumed to
generate biomass indicating that p-hydroxybenzoate
production competed for tyrosine with other pathways
(Verhoef et al. 2007). The upregulation of genes involved
in tyrosine degradation as observed in the present
study is in agreement with these observations. As
argued above, tyrosine is probably mainly degraded via
the homogentisate pathway. Therefore, the hpd gene
was disrupted in P. putida S12palB1 to improve tyrosine
availability.

The resulting strain, P. putida S12palB2, showed a marked
improvement of p-hydroxybenzoate production character-
istics in shake flask cultures with glucose as the carbon
source. Product titers increased from 1.8 to 2.3 mM
compared to strain S12palB1, at a similar final biomass
content (Fig. 4a, b). The Y, improved from 10.5 C-mol%
for strain S12palB1 to 13.4 C-mol% for stain S12palB2, i.c.,
a relative yield improvement of 22%. Also, the productivity
showed considerable improvement: the overall specific

@ Springer

3
2
(¥}
s
E
0n
Q
£ =]
]
£
<
©
1 1
20 20
Time (h)
2.5
)
= 204
[=)
(&)
E 1.5
E
g 1.0
-]
<
£ 051
)
@«
4
| 0.0 ST —
15 20 0 5 10 15 20
Time (h)
C)
2
(8]
=
£
»
2
=]
[}
£
<
©
A 1 00 T T T Ak T & 1
15 20 0 5 10 15 20

Time (h)

production rate g, increased from 1.6 to 2.3 umol p-hydroxy-
benzoate (g CDW min) ', while the maximum specific
production rate (qpmax) increased from 3.8 to 4.4 pmol
p-hydroxybenzoate (g CDW min) '. Maximal q, was
achieved between 10 and 12 h of cultivation, in line with the
observed transient accumulation of p-coumarate (Fig. 4a, b).
The latter is likely to relate to transient glucose repression of
the fcs gene, which immediately affected the p-coumarate
pool (Fig. 3).

Interestingly, when P. putida S12palB2 was cultured on
glycerol, p-hydroxybenzoate production was also im-
proved. The product-to-substrate yield showed a relative
increase of 21%, even though Apd was only slightly
upregulated (below threshold of 2.5-fold) in glycerol-
grown P putida S12palBl. Transient accumulation of
p-coumarate did not occur on glycerol since fcs was
not repressed (unpublished data). Thus, disrupting the
hpd gene clearly had a stimulating effect on p-hydroxy-
benzoate production.
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Export of p-hydroxybenzoate in P. putida S12palB1

Transcriptome and proteome analysis in the present study
showed extensive differential expression of cellular
transport systems in P. putida S12palBl. Among the trans-
porters identified, the multidrug efflux MFS transporter
(P, putida KT2440 locus tags PP1271-PP1273) was upregu-
lated on both glucose and glycerol, with only minor variation
between the two carbon substrates. Since p-hydroxybenzoate
accumulation was comparable in glucose and glycerol-
grown cultures, the MFS transporter was considered as a
putative p-hydroxybenzoate exporter in P. putida S12. To
assess the role of this transporter in p-hydroxybenzoate
transport, all three ORFs were deleted in P. putida S12palB2,
yielding strain P. putida S12palB3. The inactivation of the
MEFS transporter resulted in slightly impaired growth and
significantly lower p-hydroxybenzoate titers, although
production was not completely eliminated (Fig. 4c). When
the Pal/Tal expression plasmid pJTTpal was removed from
P. putida S12palB3, resulting in the non-producing strain
P putida S12B3, normal growth was restored (Fig. 4d).
Thus, the growth impairment observed in P. putida
S12palB3 must be attributed to a combined effect of the
transporter knock-out and intracellular p-hydroxybenzoate
production.

Complementation of the MFS transporter in P. putida
S12palB3 restored normal growth as well as production of
p-hydroxybenzoate (Fig. 4e). These results suggest that
the MFS transporter PP1271-1273 plays an important role
in p-hydroxybenzoate export. Overexpression of the MFS
transporter in P. putida S12palB2 did not result in
improved p-hydroxybenzoate production (Fig. 4f). Since
the complementation experiment indicated (Fig. 4e) that
the MFS transporter was functionally expressed the MFS
transporter clearly is not a limiting factor for p-hydroxy-
benzoate production.

Discussion

In the present study, the changes in transcript and protein
levels underlying and affecting efficient p-hydroxybenzoate
biosynthesis by P. putida S12palB1 have been studied. Many
of the extensive general expression changes were found to
relate to system-wide alterations originating from the
optimization of the original platform strain (Verhoef et al.
2007; Wierckx et al. 2005; Wierckx et al. 2008). In addition,
also p-hydroxybenzoate production appeared to have a
substantial general impact. Part of the responses could be
attributed to p-hydroxybenzoate stress, whereas others may
be related to the ‘short-circuiting’ of an anabolic pathway
(aromatic amino acid biosynthesis) and a catabolic pathway
(p-coumarate degradation).

The pathways directly involved in p-hydroxybenzoate
formation were considerably upregulated in P putida
S12palBl1, in line with the elevated metabolic flux towards
the product. These responses were comparable to those
observed in P putida S12TPL3 (Wierckx et al. 2008). The
upregulation of the p-coumarate pathway is obviously unique
for strain S12palB1 as this pathway requires the presence of
p-coumaroyl-CoA for induction (Calisti et al. 2008). By
contrast, no responses of the protocatechuate pathway were
observed which is explained by the disruption of the first gene
of this pathway, pobA, in P. putida S12palB1. The homo-
gentisate pathway was shown to account for substantial
loss of tyrosine, thus compromising p-hydroxybenzoate
synthesis. Considerable improvement of both yield and
productivity was achieved by targeted inactivation of ipd,
the first gene of the homogentisate pathway.

Remarkably, the nature of the carbon source employed
exerted major effects in P. putida S12palB1. Effects were
observed both at the global expression level and specifically
for genes and proteins that are directly associated with p-
hydroxybenzoate biosynthesis and production. The effect
was most prominent for the genes of the p-coumarate
degradation pathway and the genes encoding phenylalanine
hydroxylase, phhA and phhB. No such differences were
observed between the control cultures on glucose and
glycerol. Therefore, the carbon source-dependency of the
expression of these genes must be considered a characteristic
of P. putida S12palB1. Nonetheless, the transcript levels in
glycerol-grown P. putida S12palB1 apparently sufficed to
accommodate efficient p-hydroxybenzoate biosynthesis,
since similar amounts were produced in glucose-grown and
glycerol-grown cultures. Moreover, none of the upregulated
‘p-hydroxybenzoate biosynthetic’ gene products were
detected in the proteomics analysis, which supported the
notion that different transcript levels do not necessarily affect
actual protein synthesis. It cannot be excluded, however,
that the bottleneck for p-hydroxybenzoate production on
either substrate is located upstream of the tyrosine biosyn-
thetic pathway, e.g., at the level of the key aromatic
precursors phosphoenolpyruvate and erythrose-4-phosphate.

In addition to metabolic genes, various transporter systems
were differentially expressed in P. putida S12palB1. Although
the multidrug efflux MFS transporter PP1271-PP1273
showed no similarity to known p-hydroxybenzoate trans-
porters such as AaeAB of E. coli (Van Dyk et al. 2004), it was
shown to be involved in p-hydroxybenzoate export. Over-
expression did not improve production, however, suggesting
that the innate transport capacity was sufficient to cope with the
amount of p-hydroxybenzoate generated. The MFS transporter
was furthermore not essential, and unlikely to be specific, for
p-hydroxybenzoate export, since it was also upregulated in
response to phenol (unpublished data), toluene (Volkers et al.
2008) and urea (in P. putida KT2440; (Reva et al. 20006)).
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In addition to contributing to the general understanding of
the genetic background underlying the improved p-hydroxy-
benzoate production characteristics of P putida S12palBl,
the transcriptomics and proteomics results provided leads
that resulted in further strain improvement. Moreover, the
fact that the available carbon source directly impacts the
expression of key p-hydroxybenzoate biosynthetic pathways
indicates that the p-hydroxybenzoate production capacity has
not been exploited to its full potential. The precise nature of
this upstream bottleneck preventing further yield improve-
ment is currently under investigation.
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