Skip to main content
Log in

Development of a yeast biosensor–biocatalyst for the detection and biodegradation of the organophosphate paraoxon

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Organophosphate (OP) poisoning can occur through unintentional exposure to OP pesticides, or by the deliberate release of OP nerve agents. Consequently, there is considerable interest in the development of systems that can detect and/or biodegrade these agents. The aim of this study was to generate a prototype fluorescent reporter yeast biosensor that could detect and biodegrade the model OP pesticide, paraoxon, and subsequently detect paraoxon hydrolysis. Saccharomyces cerevisiae was engineered to hydrolyze paraoxon through the heterologous expression of the Flavobacterium species opd (organophosphate degrading) gene. Global transcription profiling was subsequently used to identify yeast genes, which were induced in the presence of paraoxon, and genes, which were associated with paraoxon hydrolysis. Paraoxon-inducible genes and genes associated with paraoxon hydrolysis were identified. Candidate paraoxon-inducible promoters were cloned and fused to the yeast-enhanced green fluorescent protein (yEGFP), and candidate promoters associated with paraoxon hydrolysis were fused to the red fluorescent protein (yDsRed). The ability of the yeast biosensor to detect paraoxon and paraoxon hydrolysis was demonstrated by the specific induction of the fluorescent reporter (yEGFP and yDsRed, respectively). Biosensors responded to paraoxon in a dose- and time-dependent manner, and detection was rapid (15 to 30 min). yDsRed induction occurred only in the recombinant opd + strains suggesting that yDsRed induction was strictly associated with paraoxon hydrolysis. Together, these results indicate that the yeast biocatalyst–biosensor can detect and degrade paraoxon and potentially also monitor the decontamination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bianchi L, Zannoli A, Pizzala R, Stivala LA, Chiesara E (1994) Genotoxicity assay of five pesticides and their mixtures in Saccharomyces cerevisiae D7. Mutat Res 321:203–211

    Article  CAS  PubMed  Google Scholar 

  • Billinton N et al (1998) Development of a green fluorescent protein reporter for a yeast genotoxicity biosensor. Biosens Bioelectron 13:831–838

    Article  CAS  PubMed  Google Scholar 

  • Broomfield CA (1993) A purified recombinant organophosphorus acid anhydrase protects mice against soman. Chem Biol Interact 87:279–284

    Article  CAS  PubMed  Google Scholar 

  • Broomfield CA, Kirby SD (2001) Progress on the road to new nerve agent treatments. J Appl Toxicol 21(1):S43–46

    Article  CAS  PubMed  Google Scholar 

  • Cahill PA et al (2004) The GreenScreen genotoxicity assay: a screening validation programme. Mutagenesis 19:105–119

    Article  CAS  PubMed  Google Scholar 

  • Chen-Goodspeed M, Sogorb MA, Wu F, Hong SB, Raushel FM (2001) Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Biochemistry 40:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Wong WH (2003) DNA-chip analyzer. In: Parmigiani G, Garrett ES, Irizarry R, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, Berlin

    Google Scholar 

  • Cho CM, Mulchandani A, Chen W (2002) Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68:2026–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho CM, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dave KI, Lauriano C, Xu B, Wild JR, Kenerley CM (1994) Expression of organophosphate hydrolase in the filamentous fungus Gliocladium virens. Appl Microbiol Biotechnol 41:352–358

    Article  CAS  PubMed  Google Scholar 

  • Di Sioudi BD, Miller CE, Lai K, Grimsley JK, Wild JR (1999) Rational design of organophosphorus hydrolase for altered substrate specificities. Chem Biol Interact 119–120:211–223

    Article  PubMed  Google Scholar 

  • Diniz-Mendes L, Bernardes E, de Araujo PS, Panek AD, Paschoalin VM (1999) Preservation of frozen yeast cells by trehalose. Biotechnol Bioeng 65:572–578

    Article  CAS  PubMed  Google Scholar 

  • Ehrig T, O’Kane DJ, Prendergast FG (1995) Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett 367:163–166

    Article  CAS  PubMed  Google Scholar 

  • Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 9:3447–3456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gentleman RC et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill I, Ballesteros A (2000) Degradation of organophosphorous nerve agents by enzyme-polymer nanocomposites: efficient biocatalytic materials for personal protection and large-scale detoxification. Biotechnol Bioeng 70:400–410

    Article  CAS  PubMed  Google Scholar 

  • Gopal S, Rastogi V, Ashman W, Mulbry W (2000) Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Biochem Biophys Res Commun 279:516–519

    Article  CAS  PubMed  Google Scholar 

  • Halamek J, Pribyl J, Makower A, Skladal P, Scheller FW (2005) Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor. Anal Bioanal Chem 382:1904–1911

    Article  CAS  PubMed  Google Scholar 

  • Hemenway CS, Heitman J (1996) Immunosuppressant target protein FKBP12 is required for P-glycoprotein function in yeast. J Biol Chem 271:18527–18534

    Article  CAS  PubMed  Google Scholar 

  • Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM (2003) Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. J Am Chem Soc 125:8990–8991

    Article  CAS  PubMed  Google Scholar 

  • Hoskin FC, Walker JE, Stote R (1999) Degradation of nerve gases by CLECS and cells: kinetics of heterogenous systems. Chem Biol Interact 119–120:439–444

    Article  PubMed  Google Scholar 

  • Hung SC, Liao JC (1996) Effects of ultraviolet light irradiation in biotreatment of organophosphates. Appl Biochem Biotechnol 56:37–47

    Article  CAS  PubMed  Google Scholar 

  • Irvine RL, Haraburda SS, Galbis-Reig C (2004) Combining SBR systems for chemical and biological treatment: the destruction of the nerve agent VX. Water Sci Technol 50:11–18

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jelinsky SA, Samson LD (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96:1486–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ Sci Technol 39:8853–8857

    Article  CAS  PubMed  Google Scholar 

  • LeJeune KE, Russell AJ (1999) Biocatalytic nerve agent detoxification in fire fighting foams. Biotechnol Bioeng 62:659–665

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Article  CAS  PubMed  Google Scholar 

  • Lodato P, Se govia de Huergo M, Buera MP (1999) Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl Microbiol Biotechnol 52:215–220

    Article  CAS  PubMed  Google Scholar 

  • Looman AC, Kuivenhoven JA (1993) Influence of the three nucleotides upstream of the initiation codon on expression of the Escherichia coli lacZ gene in Saccharomyces cerevisiae. Nucleic Acids Res 21:4268–4271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto-Shinohara Y, Imaizumi T, Sukenobe J, Murakami Y, Kawamura S, Komatsu Y (2000) Survival rate of microbes after freeze-drying and long-term storage. Cryobiology 41:251–255

    Article  CAS  PubMed  Google Scholar 

  • Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol 171:6740–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63:216–223

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani P, Chen W, Mulchandani A, Wang J, Chen L (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens Bioelectron 16:433–437

    Article  CAS  PubMed  Google Scholar 

  • Murray AW, Szostak JW (1983) Pedigree analysis of plasmid segregation in yeast. Cell 34:961–970

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Chen RR (2004) Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol Bioeng 87:804–811

    Article  CAS  PubMed  Google Scholar 

  • Radhika V, Milkevitch M, Audige V, Proikas-Cezanne T, Dhanasekaran N (2005) Engineered Saccharomyces cerevisiae strain BioS-1, for the detection of water-borne toxic metal contaminants. Biotechnol Bioeng 90:29–35

    Article  CAS  PubMed  Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5:288–295

    Article  CAS  PubMed  Google Scholar 

  • Ropp JD et al (1996) Aequorea green fluorescent protein: simultaneous analysis of wild-type and blue-fluorescing mutant by flow cytometry. Cytometry 24:284–288

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual., 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Shetty RS, Deo SK, Liu Y, Daunert S (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88:664–670

    Article  CAS  PubMed  Google Scholar 

  • Vlckova V, Miadokova E, Podstavkova S, Vlcek D (1993) Mutagenic activity of phosmet, the active component of the organophosphorus insecticide Decemtione EK 20 in Salmonella and Saccharomyces assays. Mutat Res 302:153–156

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Liu M, Chi MG, Wang QD, Sun MJ (2004) Production of human liver prolidase by Saccharomyces cerevisiae as host cells. Acta Pharmacol Sin 25:794–800

    CAS  PubMed  Google Scholar 

  • Watkins LM, Mahoney HJ, McCulloch JK, Raushel FM (1997) Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J Biol Chem 272:25596–25601

    Article  CAS  PubMed  Google Scholar 

  • Welihinda AA, Beavis AD, Trumbly RJ (1994) Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochim Biophys Acta 1193:107–117

    Article  CAS  PubMed  Google Scholar 

  • Yang TT, Kain SR, Kitts P, Kondepudi A, Yang MM, Youvan DC (1996) Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene 173:19–23

    Article  CAS  PubMed  Google Scholar 

  • Yang H et al (2003) Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng 16:135–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Defense Advance Research Project Agency (DARPA contract W31P4Q-06-C-0067) awarded to D.A.S. The Medical University of South Carolina Proteogenomics Facility was supported by the MUSC Research Resource Facilities program and grants from NCI (R24CA95841) and NIH (RR-16434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Schofield.

Electronic supplementary material

Below is the linked to the electronic supplementary material

ESM 1

(DOC 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schofield, D.A., Westwater, C., Barth, J.L. et al. Development of a yeast biosensor–biocatalyst for the detection and biodegradation of the organophosphate paraoxon. Appl Microbiol Biotechnol 76, 1383–1394 (2007). https://doi.org/10.1007/s00253-007-1107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1107-5

Keywords

Navigation