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Abstract With the completion of several genome sequences
for parasitic protozoa, research in molecular parasitology
entered the “post-genomic” era. Accompanied by global
transcriptome and proteome analysis, huge datasets have
been generated that have added many novel candidates to the
list of drug and vaccine targets. The challenge is now to
validate these factors and to bring science back to the bench
to perform a detailed characterization. In some parasites, like
Trypanosoma brucei, high-throughput genetic screens have
been established using RNA interference [for a detailed
review, see Motyka and Englund (2004)]. In most proto-
zoan parasites, however, more time-consuming approaches
have to be employed to identify and characterize the
function of promising candidates in detail. This review
aims to summarize the status of molecular genetic tools
available for a variety of protozoan pathogens and discuss
how they can be implemented to advance our understanding
of parasite biology.
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Introduction

Diseases caused by parasitic protozoa pose a significant
burden on public and veterinary health worldwide, mainly
affecting developing countries and deprived communities.
Only a few drugs for diseases like malaria, sleeping
sickness, leishmaniasis, and Chagas disease are available
and, typically, suffer shortcomings of toxicity and ineffec-
tiveness due to the development of resistance. Therefore,
novel drug and vaccine candidates are urgently needed that
are safer, more effective, and affordable. To fulfill this task,
it is important to unravel the complex and fascinating
biology of this organisms that led to many surprising and
novel findings like RNA editing in kinetoplastida (Simpson
et al. 2003) or the apicoplast, a newly identified organelle
in apicomplexan parasites that is a promising drug target
(Waller and McFadden 2005).

Ongoing efforts to complete microbial genome sequenc-
ing projects, along with transcriptome and proteome
characterization, have generated an impressive amount of
data waiting to be analyzed in more detail. Consequently, a
significant challenge in the field now is to decide which of
the identified candidate proteins are indeed promising
targets for vaccine and drug development.

The general aim in the post-genomic era is to convert
our knowledge of the genome, transcriptome, and pro-
teome into knowledge of the “phenome” (the physical
totality of all traits of an organism; Mahner and Kary
1997). One possible way to reach this goal is to generate a
list of promising candidates and characterize them one by
one using reverse genetic tools. However, many hypothet-
ical proteins with unknown function that could be of great
significance might be omitted from this analysis. Therefore,
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forward genetic screens for certain phenotypes will help
identify and characterize novel factors involved in different
processes pertinent to the life cycles of the various parasitic
pathogens. This review aims to give an overview of the
different approaches currently employed to perform gene/
function analysis in select protozoan parasites. It is
important to keep in mind that “protozoan parasites” do
not necessarily define a group of related organisms. In
fact, these parasites represent many highly diverged phyla
and, thus, have evolved numerous different survival
strategies. This typically implies that new parasite tools
must be developed, tailored to fit the unique biology and
genomic constitution of each pathogenic group. In this
paper, we will focus on molecular tools employed in some
representative model organisms, including Giardia lam-
blia, Entamoeba histolytica, Trypanosoma brucei, Toxo-
plasma gondii, and Plasmodium spec. An overview of
established tools discussed in this review is given in
Table 1.

Parasite genomes: an explosion of data

Research into parasite biology has changed dramatically
with the publication of numerous genomes including the
three main pathogenic species of trypanosomatida (Try-
panosoma brucei, Trypanosoma cruzi, and Leishmania
major (Gardner et al. 2002; El-Sayed et al. 2005a, b; Ivens
et al. 2005), the archamoeba E. histolytica (Loftus et al.
2005), the apicomplexan parasites P. falciparum, P. yoelii
yoelii, and other Plasmodium species (Carlton et al. 2002),
Cryptosporidium parvum (Abrahamsen et al. 2004), C.
hominis (Xu et al. 2004), Theileria parva (Gardner et al.
2005), T. annulata (Pain et al. 2005), and Toxoplasma
gondii (http://www.ToxoDB.org). In addition, the genome
sequencing effort of the amitochondriate G. lamblia is
nearing completion. These immense datasets not only allow
the identification of virtually any parasite gene but also
permit comparative genomic analysis. Comparative
genomics is providing substantial insight into the evolution
of parasites and species-specific phenomena related to the

Table 1 Overview on different
tools used in protozoan
parasites

Technique Organisms Remark

Transfection Apicomplexa
Plasmodium spec
Toxoplasma gondii
Cryptosporidium parvum
Eimeria tenella
Kinetoplastida
Trypanosoma brucei
Trypanosoma cruzi
Leishmania major
Leishmania donovani

Site-specific recombination Plasmodium bergei Flp/FRT
Toxoplasma gondii Cre/lox
Trypanosoma brucei Bxb1/attB
Plasmodium falciparum

Transcriptional regulation Entamoeba histolytica Gene silencing
Trypanosoma brucei Tet repressor
Entamoeba histolytica
Giardia lamblia
Leishmania donovani
Leishmania tarantula
Toxoplasma gondii
Toxoplasma gondii Tet transactivator
Plasmodium falciparum

Post-transcriptional regulation Trypanosoma brucei RNAi
Entamoeba histolytica
Giardia lamblia
Giardia intestinalis
Toxoplasma gondii
Toxoplasma gondii Antisense
Entamoeba histolytica
Giardia lamblia
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unique requirements of a particular microbe (El-Sayed et al.
2005a, b; Kooij et al. 2005).

The combined efforts of multiple groups have provided
the community with invaluable insight into the basic
composition and biology of diverse parasites. Until recent-
ly, research has focused on a relatively limited number of
candidate factors that have been identified before the
genomic era. Although characterised in great detail, these
candidates often failed to live up to expectations. Now, the
community is faced with a huge (and still expanding) list of
new predicted gene products, and the daunting task of
deciding which one(s) warrant priority analysis. While the
combination of data available from comparative genomics,
transcriptomics, and proteomics provides clues to the
putative functions of some predicted gene products, the
validation of these as pharmacological or vaccine targets
mandates the establishment of high-throughput assays;
these goals may be reached through a combination of
reverse and forward genetics tools (Fig. 1).

Transfection of protozoan parasites opens the way
to molecular biology

A key breakthrough facilitating the use of any given
organism as a molecular model system is the development
of efficient transfection techniques. Whereas successful
transfection of yeast was described in 1978 using chemical
transformation protocols (Hinnen et al. 1978), effective
transfection of protozoan parasites was not achieved until

nearly a decade later, the first being described for
Trypanosoma brucei in 1987 (Eid and Sollner-Webb
1987). Shortly after this milestone, similar transfection
systems have been established for other kinetoplastida
(Clayton 1999), E. histolytica (Nickel and Tannich 1994;
Purdy et al. 1994), G. lamblia (Yee and Nash 1995), and
apicomplexan parasites, including many Plasmodium spe-
cies (Soldati and Boothroyd 1993; van Dijk et al. 1995; Wu
et al. 1995).

With the establishment of diverse selectable markers,
protozoan parasites became accessible to genetic manipu-
lation, thereby allowing the generation of transgenic para-
sites. In addition, the successful expression of fluorescent
markers has allowed a detailed look at protein trafficking
mechanisms, dynamic protein localisation (Gubbels and
Striepen 2004), and in vivo imaging of parasites (Amino et
al. 2005).

Transient and stable transfection technology clearly
opened the way for an in-depth analysis of fundamental
parasite biology. However, additional tools had to be
developed to allow the characterization of essential genes.
Disruption of nonessential genes is relatively straightfor-
ward in organisms with culturable haploid stages during
which homologous recombination can take place, e.g.,
asexual stages of Toxoplasma gondii (Kim et al. 1993), P.
falciparum (Crabb et al. 1997), or P. berghei (van Dijk et
al. 1995; Wu et al. 1996). This approach is quite time-
consuming in parasites with a diploid genome, like
trypanosomatids (Hariharan et al. 1993), and nearly
impossible in G. lamblia or E. histolytica, which have

Fig. 1 Schematic overview
of different approaches used in
the identification of novel can-
didates for drug and vaccine
development against parasitic
protozoans. Once candidates
have been defined, their valida-
tion is necessary by delineating
the function of each respective
factor
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two diploid nuclei. In this cases, overexpression of dominant
negative proteins can lead to a phenotype of a null mutant as,
for example, in the case of overexpression of light
meromyosin that led to a myosin II null phenotype (Arhets
et al. 1998).

Among the most interesting factors in the genome of
parasites are genes with essential functions that are
expressed during the entire life cycle of the parasite;
however, such genes cannot be disrupted easily using
conventional approaches. Alternative strategies that permit-
ted controlled or conditional reduction of the expression
level of the gene of interest had to be devised. A number of
independent groups have succeeded in establishing the
techniques aimed at controlled genomic rearrangements,
transcriptional regulation, or post-transcriptional regulation.

Genome manipulation using site-specific recombination

One of the attractive possibilities to generate mutants for an
essential gene is to employ site-specific recombination

systems, such as the Cre/lox, Flp/FRT, or related systems.
The basic principle of these systems is to flank a gene of
interest by specific recognition elements for the respective
recombinase. After activation of the recombinase, the target
locus is modified, resulting either in the excision or
inversion of the respective region (Fig. 2a).

The difficulty of these strategies lies in triggering, either
temporally or locally, the recombination event. In mice, for
example, this can be achieved by controlling the expression
of the recombinase using tissue-specific or inducible
promoters that results in a location or time-dependent
disruption of the locus [for a recent review, see Branda
and Dymecki (2004)]. Alternatively, the usage of ligand-
controlled recombinases has been reported to add temporal
control in such systems (Metzger et al. 1995).

Different groups have attempted to adapt this strategy for
use in protozoan parasites. Among the first reports are
applications of the Cre-lox system for Toxoplasma gondii
(Brecht et al. 1999) and trypanosomatids (Barrett et al.
2004). In both cases, however, the problem of tight
regulation of Cre expression appears to compromise the

Fig. 2 Different strategies to manipulate the genome and gene
expression in protozoan parasites. a A site-specific recombination
system allows removal or inversion of a target DNA sequence flanked
by recognition sites for the recombinase (Flp or Cre). b Employing
regulatory elements derived from the Tet operon (tetO) of E. coli, two
different systems have been successfully established in protozoan
parasites. The repression system (upper panel) works mainly by
interference with initiation of transcription by placing upstream TetO
sequences proximal to the transcription start. In the absence of the
inducer (tetracycline derivatives), TetR binds tightly to TetO and

blocks transcription. In the transactivator system (lower panel), a
transactivation domain is fused to TetR so that it can interact with the
basic transcription machinery. Upon binding to TetO sequences placed
upstream of a silent minimal promoter, this chimeric protein is capable
of recruiting the transcription machinery to the promoter, thereby
activating transcription. In the presence of the inducer, the TetR–TA
fusion is not binding to TetO, thereby turning the promoter off. c Two
different strategies employing the Tet transactivator system are
currently being used for the generation of conditional mutants in
apicomplexan parasites (see text for detailed explanation)

966 Appl Microbiol Biotechnol (2007) 75:963–975



fidelity of the system. In Toxoplasma gondii, for example,
the expression of Cre under a stage-specific (and silent)
promoter still resulted in recombination events, indicating
that even basal expression of Cre is sufficient to produce
recombination (Brecht et al. 1999). We have recently tried
to establish a tetracycline-inducible Cre-lox system, but
even this did not appear to circumvent the problems
associated with “leaky” Cre expression under supposedly
silenced conditions (Kessler and Meissner, unpublished
results).

A very promising approach employing the Flp/FRT-
system in P. berghei (Carvalho et al. 2004) has been
described. In this case, the regulation of the recombination
event was achieved by creating two independent parasite
strains: one with the locus of interest flanked with the
recombinase recognition sites (FRT) and one expressing the
Flp-recombinase itself. Upon cross-fertilization of each
strain in the mosquito (where the sexual cycle takes place),
offspring are generated according to Mendelian laws, and
the parasites with the deleted locus can be selected. This
approach might have some limitations considering the
range of applications at its current stage. Although
candidate genes can be efficiently removed upon cross-
fertilization, the resulting phenotype needs to be analyzed
in the respective stage where the gene normally functions.
For example, if the candidate gene is essential in asexual
blood stages, no viable parasites will be easily isolated,
thus, hampering a detailed phenotypic characterization.

Recently, a novel approach for stable transfection of P.
falciparum has been established using the integrase Bxb1
of mycobacteriophage, which allows efficient and rapid
site-specific integration of a plasmid containing the recog-
nition site attB into a locus containing the attP site (which
needs to be engineered using standard technologies;
Nkrumah et al. 2006). Indeed, this approach will ease the
task of generating transgenic parasite strains in the near
future.

Regulation of parasite gene expression

A greater understanding of how protozoan parasites
regulate gene expression will facilitate the development of
transgenic lines aimed to interrogate the function of genes
of interest. Most eukaryotes regulate gene expression
primarily at the transcriptional level. However, comparative
genomic analysis of protozoan parasites reveals an unex-
pected paucity of conventional transcription factors (Meissner
and Soldati 2005). In contrast, virtually all epigenetic and
chromatin-remodeling machineries are conserved in these
parasites (Sullivan et al. 2006). These observations suggest
that transcriptional regulation may contain some fundamental

differences in these early-branching eukaryotic cells. An
extreme example of this is exemplified by the kinetoplastida.
As in all eukaryotes, these parasites have three different
RNA polymerases. However, whereas in all other eukar-
yotes, RNA polymerase I transcribes, almost exclusively,
ribosomal DNA and polymerase II protein-coding genes; this
clear functional distinction has been overcome in kinetoplas-
tida. Interestingly, most genes are transcribed as polycistronic
pre-messenger RNA (mRNA) and are subsequently pro-
cessed by trans-splicing (which adds a capped 5′end to the
mRNA) and poly-adenylation. This uncoupling of 5′
capping and transcription of protein-coding genes allows
efficient transcription by RNA polymerase I. Due to
polycistronic transcription, the main level of regulation of
gene expression has shifted to post-transcriptional regulation
via control of RNA stability [for a review, see Clayton
(2002) and Teixeira and daRocha (2003)].

Despite the apparent lack of transcription factors in
protozoan parasites in general, tight transcriptional regula-
tion has been demonstrated for many different genes in
apicomplexans, E. histolytica and G. lamblia (Vanacova et
al. 2003; Mirelman et al. 2006). The analysis of apicom-
plexan transcriptomes by serial analysis of gene expression
(SAGE) further support that transcriptional mechanisms
play a key role in governing parasite development
(Patankar et al. 2001; Radke et al. 2005). The identification
and characterization of cis-acting elements also argue that
these parasites have evolved a complex gene regulation
network, further supported by whole genome transcriptome
analysis for P. falciparum (Bozdech et al. 2003; Le Roch et
al. 2003) and by analysis of transcriptional changes during
Toxoplasma gondii differentiation using microarrays
(Cleary et al. 2002). Elucidating the factors that are likely
to be binding to these cis-acting elements in apicomplexan
promoters is an area of intense investigation.

As alluded to above, epigenetic modes of transcription
regulation also appear to make substantial contributions to
parasite gene expression. Histone modifications have been
demonstrated to play an important role in the transcriptional
regulation involved in antigenic variation in P. falciparum,
Trypanosoma brucei, and G. lamblia [for a recent review,
see Sullivan et al. (2006)]. Histone modifications have also
been correlated with stage-specific transcription during
differentiation in Toxoplasma gondii (Saksouk et al. 2005).

It has been speculated that the lack of transcriptional
regulatory proteins dictate that the few present are used in a
more combinatorial manner to achieve gene regulation (van
Noort and Huynen 2006). Alternatively, it is plausible that
protozoan parasites employ noncoding RNAs (ncRNAs)
for both transcriptional and post-transcriptional regulation.
An increasing number of functions have been assigned to
ncRNAs in other organisms including direct regulation of
transcription in trans by targeting transcriptional activators
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and repressors, general transcription factors, and RNA
polymerase II [for a recent review, see Goodrich and Kugel
(2006)]. Given the large amount of ncRNAs and antisense
transcripts identified so far in protozoan parasites, e.g.,
Plasmodium (Gunasekera et al. 2004) and G. lamblia
(Elmendorf et al. 2001), it is possible that similar
mechanisms of transcriptional regulation may exist. Re-
cently, it has been demonstrated in E. histolytica that
transcriptional gene silencing can be induced artificially by
the expression of a small heterochromatic RNA containing
the 5′ end of a short interspersed nuclear element (SINE1;
Bracha et al. 2006). It will be interesting to assess if similar
mechanisms of transcriptional silencing also occur in other
protozoan parasites.

While gene expression most certainly is controlled at the
transcriptional level, there are important lines of evidence
showing that translational regulation may also come into
play. For example, translational control mediates the
developmental regulation of the Trypanosoma brucei Nrk
protein kinase (Gale et al. 1994). Puf proteins, which
regulate translation and RNA stability, have been docu-
mented in P. falciparum (Cui et al. 2002). A translational
repressor complex involved in the regulation of gameto-
cyte-specific expression in P. berghei has also been
described (Mair et al. 2006). In Toxoplasma gondii, eIF2α
becomes phosphorylated in response to stress, which is
another well-known event that regulates translation in other
species (Sullivan et al. 2004).

Inducible transcriptional regulation

Although little is known about the detailed mechanisms of
transcriptional regulation, numerous groups have succeeded
in establishing inducible transcription systems in protozoan
parasites. In general, an inducible system needs to be
efficient and highly specific for the gene of interest and
should not cause any pleiotropic effects on endogenous
genes. The usage of regulatory elements from unrelated
organisms, such as bacteria, has proved to be a promising
strategy in other eukaryotes. The first attempts to modulate
transcription in mammalian cell lines made use of a
prokaryotic repressor/operator system based on the lac
operon of Escherichia coli (Deuschle et al. 1986; Brown et
al. 1987; Hu and Davidson 1987). The integration of lac
operator sequences within the context of a strong constitu-
tive promoter leads to IPTG-dependent control of transcrip-
tion initiation in a line expressing the lac repressor (lacI).
An analogous system making use of the tetracycline (tet)
operon of E. coli has been established in various organisms,
including plants (Gatz and Quail 1988; Gatz et al. 1992)
and protozoan parasites. Shortly after the first report
describing tight control of gene expression using the

Tet-repressor/operator system in Trypanosoma brucei
(Wirtz and Clayton 1995) appeared, various groups
established similar systems in other protozoan parasites,
including E. histolytica (Hamann et al. 1997; Ramakrishnan
et al. 1997), G. lamblia (Sun and Tai 2000), L. donovani
(Yan et al. 2001), and Toxoplasma gondii (Meissner et al.
2001). The system established in Trypanosoma brucei
proved very powerful, especially with some refinements
such as the inclusion of T7 RNA polymerases for
transcription, which can be blocked efficiently by TetR
(Wirtz et al. 1998), and the combination with RNA
interference that allows inducible down-regulation of
protein expression (Wang et al. 2000). Similarly, in
G. lamblia and E. histolytica, effective reduction of protein
expression has been achieved by inducible expression of
antisense transcripts (Sahoo et al. 2003; Touz et al. 2005;
Vats et al. 2005). To date, the feasibility of using the
repressor system in Toxoplasma gondii for similar
approaches remains to be tested. Our results indicate that
the current system displays a relatively high tendency of
losing efficient gene regulation, especially when toxic or
essential genes are put under control of this system (our
own unpublished results). Recently, a slightly modified
version of the repressor system employing a YFP-TetR
fusion has been reported for Toxoplasma gondii (van
Poppel et al. 2006), but it remains to be shown if this
modification results in a more robust inducible system
without reversion effects.

In higher eukaryotes, a transactivator-based system is
used more broadly than repressor-based systems. In this
case, a fusion between a TetR and the viral protein 16
(VP16) of the Herpes simplex virus converts the former
into an efficient tetracycline-dependent transactivator (tTA),
thereby allowing strong activation of an otherwise silent
(minimal) promoter placed downstream of tandemly re-
peated TetO sequences (Gossen and Bujard 1992). This
system has since been optimized in many different ways
and is used commonly in cultured cells as well as in
transgenic mice [for a review, see Corbel and Rossi
(2002)]. The two essential components of this system (the
transactivator and the inducible minimal promoter) are
broadly functional in eukaryotes. However, early attempts
to employ the original tTA system in Toxoplasma gondii
failed because the transactivation domain (TD) of VP16
and the minimal promoter derived from cytomegalovirus
(pCMV) both appeared to be non-functional when intro-
duced in the parasite (Meissner et al. 2001). Hence,
components functional in apicomplexan parasites needed
to be identified to generate a working Tet-transactivator
system in apicomplexan parasites. Previous characterization
of the promoter region for the major surface antigen SAG1
in Toxoplasma gondii led to the identification of a heptamer
repeat acting in cis. Upon deletion of this element, the
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minimal SAG1 promoter is rendered virtually silent
(Soldati and Boothroyd 1995). Therefore, it was reasoned
that substitution of the heptamer repeats of pSAG1 with
TetO sequences should result in a Tet-responsive promoter
that can be activated upon binding of a TetR–TD fusion. To
isolate a TD functional in Toxoplasma gondii, a screen
based on random insertional mutagenesis was performed,
leading to the identification of two artificial TDs (termed
TATi-1 and TATi-2) that allowed efficient regulation of
transcription in the parasite (Meissner et al. 2002).
Subsequently, it was shown that the identified TDs are also
capable of activating transcription in P. falciparum (Meissner
et al. 2005).

While the transactivator system established in P. falci-
parum might need further optimization for the character-
ization of essential genes, this system has been successfully
employed numerous times to facilitate the characterization
of essential genes in Toxoplasma gondii (Meissner et al.
2002; Mital et al. 2005; Huynh and Carruthers 2006;
Mazumdar et al. 2006). Two strategies for the establishment
of conditional mutants are currently employed (Fig. 2). The
first approach requires the stable transfection of a second,
inducible copy of the gene of interest into the TATi-
expressing strain. After selection of a clonal parasite strain
harboring expression levels of the transgenic copy match-
ing that of the endogenous gene (assessed by RT-PCR or
immunoblot), the endogenous copy of the target gene is
disrupted by homologous recombination. This results in a
conditional, inducible mutant for this gene. While this
approach is more time consuming, it has a higher
probability of success.

The second, more straightforward approach has been
successfully used in our laboratory for low abundance genes
(Agop-Nersesian and Meissner, unpublished results). The
employment of a vector that allows direct exchange of the
endogenous promoter with the Tet-inducible promoter via
homologous recombination directly puts the endogenous
gene under control of the Tet system. The advantage of this
approach is that the conditional mutant can be established in
a single transfection within a few weeks (versus months, in
case of the first strategy). However, this strategy might be
problematic in the case of strongly expressed genes that may
be essential. In this event, the direct exchange of a strong
endogenous promoter for the relatively weak Tet-inducible
promoter might not be possible.

Although increasing the number of TetO sequences
placed upstream of the minimal promoter does not
significantly increase expression levels (our own unpub-
lished results), the usage of different minimal promoters
might facilitate a higher range of regulation obtained.
Alternatively, optimization of the current TD or identifica-
tion of novel, more efficient TDs may lead to a more
efficient regulatory system. A modified screen aimed at the

identification of novel TDs has yielded several independent
candidates showing the activation of the inducible promoter
(Klaus and Meissner, unpublished results). The identifica-
tion of further TDs is not only worthwhile in terms of tool
development, but will also give further insight into the
mechanisms of gene regulation in apicomplexan parasites.

Post-transcriptional regulation

Whereas regulation of gene expression at the transcriptional
level has been successful in a variety of organisms, the
most favored technology in eukaryotes today is based on
RNA interference (RNAi). First described in Caenorhabdi-
tis elegans (Fire et al. 1998), this technology has now
revolutionized the field of molecular biology. However, the
only protozoan parasite in which this tool has been
substantially successful is Trypanosoma brucei. First
described in 1998 (Ngo et al. 1998), it soon became the
method of choice for generating conditional mutants for
essential genes in this parasite [for recent reviews, see
Motyka and Englund (2004); Clayton et al. (2005)].

Unfortunately, the RNAi pathway does not appear to be
present in all protozoan parasites. Moreover, RNAi is not
even conserved among members of the same phylum. For
example, the machinery for RNAi appears to be absent
from many close relatives of Trypanosoma brucei. Similar-
ly, in other protozoa, the presence and efficiency of RNAi
remains controversial. A good indication for a functional
RNAi pathway is the presence of known RNAi-related
genes, such as Argonaute (AGO-1), Dicer, or RNA-
dependent RNA polymerase (RdRp; Ullu et al. 2004).

In E. histolytica, an RNAi pathway appears to be in
place based on the presence of AGO-like proteins (Abed
and Ankri 2005), and initial reports demonstrate the
feasibility of using double-stranded RNA (dsRNA) to
down regulate gene expression in this parasite (Kaur and
Lohia 2004; Vayssie et al. 2004). In the case of G. lamblia
and G. intestinalis, it has been reported that the machinery
necessary for RNAi is present in the genomes (Ullu et al.
2004) and that small sense and antisense transcripts that
might be employed in the RNAi pathway are also present
(Ullu et al. 2005). Recently, a Dicer-like enzyme from
G. intestinalis has been characterised in detail; it can
produce small interfering RNAs (siRNAs) and is capable of
functioning in the RNAi pathway of fission yeast (Macrae
et al. 2006). Based on these findings, it can be anticipated
that the RNAi pathway is indeed functional in these early-
diverged eukaryotes and that RNAi as a molecular tool for the
down-regulation of gene expression is possible to establish.

Although some reports suggest that RNAi appears
operational in apicomplexan parasites, its study, thus far,
has been restricted to only a few genes. The machinery for
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RNAi appears to be present in Toxoplasma gondii (Ullu et
al. 2004; Al Riyahi et al. 2006), and some reports indicate
that RNAi can down regulate gene expression (Al-Anouti
and Ananvoranich 2002; Al-Anouti et al. 2004; Adams et
al. 2005). In the case of Plasmodium species, multiple
groups have failed to identify the components of the RNAi
machinery. While some reports suggest that RNAi is
functional in Plasmodium species (Malhotra et al. 2002;
McRobert and McConkey 2002; Agrawal et al. 2003;
Mohmmed et al. 2003), it cannot be ruled out at this point
that the effects are non-specific. For example, treatment of
parasites with dsRNA against P. falciparum falcipain-1
resulted in distinct morphological changes, including
abnormally swollen food vacuoles (Malhotra et al. 2002).
In contrast, ablation of the respective gene for falcipain-1
via homologous recombination had no effect on asexual
growth, and no abnormally formed food vacuoles were
observed (Eksi et al. 2004; Sijwali et al. 2004). Conse-
quently, RNAi as a tool to diminish gene expression in
apicomplexan parasites has not found widespread use to
date.

The employment of antisense transcripts to down
regulate gene expression has met with some success in
protozoan parasites like G. lamblia (Davis-Hayman and
Nash 2002) and Toxoplasma gondii (Nakaar et al. 1999).
However, so far, the antisense effects observed are only
partial, casting some limitations to this approach.

In summary, based on the biology of the respective
parasite (life cycle, ploidy, genetic setup), different
approaches to study the function of essential genes have
been established. In the context of identifying novel
candidates for vaccine or drug development, tools such as
RNAi or antisense RNAmay be adapted for high-throughput
format to allow a relatively rapid analysis of gene function.
Other technologies, such as the generation of conditional
mutants using homologous recombination, are relatively
laborious and would necessitate careful selection of target
gene(s) to investigate. Considered with analyses of the
genome and proteome, genetic and chemical screens may
help to significantly narrow the list of candidates worthy of
further investigation.

Forward genetic screens on parasites

Forward genetics, the generation of certain phenotypes and
the subsequent identification of the gene, is a powerful
strategy to identify novel genes (including hypothetical
genes that are normally neglected in reverse genetic
approaches). While technologies like RNAi in Trypano-
soma brucei allow relatively easy gene-to-function studies
in high-throughput format (see Motyka and Englund 2004),
different approaches must be pursued to identify novel

essential genes in forward genetic screens for other
protozoan parasites. As mentioned above, the unique
biology of each species has to be taken into consideration
when designing a forward genetic screen. For example,
insertional mutagenesis is a promising strategy to generate
phenotypes in haploid organisms, but will prove difficult in
diploids and tetraploids. Insertional mutagenesis can be
performed relatively easily in systems where a powerful
transfection system exists and non-homologous recombina-
tion occurs at reasonable frequency. In the following
section, we will summarize a few strategies that are currently
employed in apicomplexa and kinetoplastida.

Toxoplasma gondii grows rapidly in culture and is
particularly amenable to genetic modification; consequent-
ly, much work has been done using this parasite to develop
and enhance approaches to dissect gene function. In
addition, several high-throughput assays have been estab-
lished that permit the analysis of almost every step in the
asexual life cycle. Apart from high-throughput growth
assays using LacZ (Seeber and Boothroyd 1996; McFadden
et al. 1997) or fluorescent markers (Gubbels and Striepen
2003), invasion and attachment of the host cell can be
analyzed in laser scanning cytometer (LSC)-based assays
(Mital et al. 2006). In the absence of reliable RNAi
approaches, alternative strategies have been established to
generate and identify parasites carrying mutations in critical
genes. Initially, chemical mutagenesis was used to generate
temperature-sensitive mutants (Pfefferkorn and Pfefferkorn
1976; Radke et al. 2000; Uyetake et al. 2001), allowing
effective disruption of genes fulfilling critical roles during
the life cycle of the parasite. The identification of the
affected genes often proves difficult, however, because
chemical mutagenesis may hit several independent genes.
With the recent establishment of complementation systems
for apicomplexan parasites (Striepen et al. 2002), the
identification of single mutagenized genes appears to be
possible via genetic rescue (White et al. 2005).

Another strategy broadly used in Toxoplasma gondii to
generate a population of mutant parasites takes advantage
of a highly efficient transfection system combined with
random, non-homologous integration of the linear DNA
transfected. Insertional mutagenesis has been used for the
identification of promoters and tagging of genes with
fluorescent proteins (Roos et al. 1997; Gubbels et al.
2004; Bradley et al. 2004). The technique has been
particularly useful in the identification of genes involved
in Toxoplasma gondii differentiation (Matrajt et al. 2002;
Vanchinathan et al. 2005) or survival in activated macro-
phages (Mordue et al. 2007). Compared to chemical
mutagenesis, the identification of the locus containing the
insertion is relatively straightforward using plasmid rescue,
inverse PCR, or other PCR-based approaches. The primary
disadvantage of insertional mutagenesis is that only non-
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essential genes can be identified. In the future, it might be
possible to combine the stringent conditional regulation
provided by the Tet-inducible system (see above) with an
insertional mutagenesis strategy (our unpublished work).

Exploring the phenome in Plasmodium species will no
doubt be more complicated. While the establishment of a
transposon-based transfection tool makes insertional muta-
genesis appear possible (Balu et al. 2005; Balu and Adams
2006), the need for high-throughput analysis of the
different steps involved in the life cycle of the parasite
might complicate this approach. Another interesting sys-
tematic approach is a mutagenesis shuttle system, which
allows identification of essential genes in a medium-
throughput analysis (Sakamoto et al. 2005). Here, the
transposon mutagenesis is performed in E. coli on large
genomic fragments of P. berghei, which are then reintro-
duced into the parasite via homologous recombination. In
the event a critical element is destroyed by the integration
of the transposon, no homologous recombination can occur,
and the subsequent failure to detect the corresponding event
would indicate an essential function of the respective gene
(Sakamoto et al. 2005).

Whereas the application of these strategies in haploid
protozoa is efficient, in other protozoa, the diploid (or
tetraploid) problem needs to be overcome (Beverley 2003),
as two (or more) independent mutation events are required
to result in a complete loss-of-function mutant. Although
insertional mutagenesis for the generation of loss-of-
function mutants is limited, it can be readily employed in
these parasites to identify novel genes or promoter elements
using trapping strategies. In particular, the use of trans-
posons, like the mariner element of Drosophila mela-
nogaster, has allowed researchers to adopt these strategies
in kinetoplastida and other eukaryotes (Gueiros-Filho and
Beverley 1997).

An alternative to genetic screens is the application of
chemical genetics. In this study, chemical libraries
are screened for an ability to block certain processes during
the life cycle of the parasite. Upon identification of the
respective compound, the challenge is then to identify the
cellular target(s) [for a recent review, see Bogyo and
Cravatt (2007)].

Conclusion

The study of cellular and molecular biology of protozoan
parasites led to remarkable and surprising findings relevant
for basic research and for the discovery of novel drug and
vaccine candidates that are urgently needed to combat these
pathogens in the future. As we enter into the post-genomic
era, we are now faced with the longest list of putative
candidates in need of functional analysis. Several remark-

able tools to dissect gene function have been developed, but
a new challenge awaits in adapting these tools for high or
medium throughput analysis. The research community will
benefit by keeping the current repertoire of tools in mind
while brainstorming novel techniques to make molecular
biological studies on protozoan parasites less arduous.

Acknowledgment We thank all the investigators who are investing
time on tool development in protozoa for the recent advances, some of
which we were not able to mention due to space restrictions. We are
indebted to Dr. Friedrich Frischknecht and Dr. Angelika Herm-Götz
for carefully reading the manuscript. M.M. is funded by the BioFuture
programme of the BMBF, C.A.-N. is funded by the Schwerpunkt-
programm 688 of the DFG. The research of W.J.S. is supported by the
Public Health Service grant GM065051 from the National Institutes of
Health and the American Heart Association (0750201Z).

References

Abed M, Ankri S (2005) Molecular characterization of Entamoeba
histolytica RNase III and AGO2, two RNA interference hallmark
proteins. Exp Parasitol 110:265–269

Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G,
Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu
P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L,
Anantharaman V, Aravind L, Kapur V (2004) Complete genome
sequence of the apicomplexan, Cryptosporidium parvum. Sci-
ence 304:441–445

Adams B, Musiyenko A, Kumar R, Barik S (2005) A novel class of
dual-family immunophilins. J Biol Chem 280:24308–24314

Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK,
Mukherjee SK (2003) RNA interference: biology, mechanism,
and applications. Microbiol Mol Biol Rev 67:657–685

Al Riyahi A, Al-Anouti F, Al-Rayes M, Ananvoranich S (2006)
Single argonaute protein from Toxoplasma gondii is involved in
the double-stranded RNA induced gene silencing. Int J Parasitol
36:1003–1014

Al-Anouti F, Ananvoranich S (2002) Comparative analysis of
antisense RNA, double-stranded RNA, and Delta ribozyme-
mediated gene regulation in Toxoplasma gondii. Antisense
nucleic acid drug dev 12:275–281

Al-Anouti F, Tomavo S, Parmley S, Ananvoranich S (2004) The
expression of lactate dehydrogenase is important for the cell
cycle of Toxoplasma gondii. J Biol Chem 279:52300–52311

Amino R, Menard R, Frischknecht F (2005) In vivo imaging of
malaria parasites–recent advances and future directions. Curr
Opin Microbiol 8:407–414

Arhets P, Olivo JC, Gounon P, Sansonetti P, Guillen N (1998)
Virulence and functions of myosin II are inhibited by over-
expression of light meromyosin in Entamoeba histolytica. Mol
Biol Cell 9:1537–1547

Balu B, Adams JH (2006) Functional genomics of Plasmodium
falciparum through transposon-mediated mutagenesis. Cell
Microbiol 8:1529–1536

Balu B, Shoue DA, Fraser MJ Jr, Adams JH (2005) High-efficiency
transformation of Plasmodium falciparum by the lepidopteran
transposable element piggyBac. Proc Natl Acad Sci USA
102:16391–16396

Barrett B, LaCount DJ, Donelson JE (2004) Trypanosoma brucei: a
first-generation CRE-loxP site-specific recombination system.
Exp Parasitol 106:37–44

Appl Microbiol Biotechnol (2007) 75:963–975 971



Beverley SM (2003) Protozomics: trypanosomatid parasite genetics
comes of age. Nat Rev Genet 4:11–19

Bogyo M, Cravatt BF (2007) Genomics and proteomics from genes to
function: advances in applications of chemical and systems
biology. Curr Opin Chem Biol 11:1–3

Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL
(2003) The transcriptome of the intraerythrocytic developmental
cycle of Plasmodium falciparum. PLoS Biol 1:e5

Bracha R, Nuchamowitz Y, Anbar M, Mirelman D (2006) Transcrip-
tional silencing of multiple genes in trophozoites of Entamoeba
histolytica. PLoS Pathog 2:e48

Bradley PJ, Li N, Boothroyd JC (2004) A GFP-based motif-trap
reveals a novel mechanism of targeting for the Toxoplasma
ROP4 protein. Mol Biochem Parasitol 137:111–120

Branda CS, Dymecki SM (2004) Talking about a revolution: the
impact of site-specific recombinases on genetic analyses in mice.
Dev Cell 6:7–28

Brecht S, Erdhart H, Soete M, Soldati D (1999) Genome engineering
of Toxoplasma gondii using the site-specific recombinase Cre.
Gene 234:239–247

Brown M, Figge J, Hansen U, Wright C, Jeang KT, Khoury G,
Livingston DM, Roberts TM (1987) Lac repressor can regulate
expression from a hybrid SV40 early promoter containing a lac
operator in animal cells. Cell 49:603–612

Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC,
Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD,
Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van
Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush
J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR,
Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR,
Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP,
Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM,
Hoffman SL, Gardner MJ, Carucci DJ (2002) Genome sequence
and comparative analysis of the model rodent malaria parasite
Plasmodium yoelii yoelii. Nature 419:512–519

Carvalho TG, Thiberge S, Sakamoto H, Menard R (2004) Conditional
mutagenesis using site-specific recombination in Plasmodium
berghei. Proc Natl Acad Sci USA 101:14931–14936

Clayton CE (1999) Genetic manipulation of kinetoplastida. Parasitol
Today 15:372–378

Clayton C (2002) Life without transcriptional control? From fly to
man and back again. EMBO 21:1881–1888

Clayton CE, Estevez AM, Hartmann C, Alibu VP, Field M, Horn D
(2005) Down-regulating gene expression by RNA interference in
Trypanosoma brucei. Methods Mol Biol 309:39–60

Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd J (2002)
Toxoplasma gondii asexual development: identification of devel-
opmentally regulated genes and distinct patterns of gene
expression. Eukaryot Cell 1:329–340

Corbel SY, Rossi FM (2002) Latest developments and in vivo use of
the Tet system: ex vivo and in vivo delivery of tetracycline-
regulated genes. Curr Opin Biotechnol 13:448–452

Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern
KM, Wickham ME, Brown GV, Coppel RL, Cowman AF (1997)
Targeted gene disruption shows that knobs enable malaria-
infected red cells to cytoadhere under physiological shear stress.
Cell 89:287–296

Cui L, Fan Q,Li J (2002) The malaria parasite Plasmodium falciparum
encodes members of the Puf RNA-binding protein family with
conserved RNA binding activity. Nucleic Acids Res 30:4607–
4617

Davis-Hayman SR, Nash TE (2002) Genetic manipulation of Giardia
lamblia. Mol Biochem Parasitol 122:1–7

Deuschle U, Gentz R, Bujard H (1986) lac Repressor blocks
transcribing RNA polymerase and terminates transcription. Proc
Natl Acad Sci USA 83:4134–4137

Eid J, Sollner-Webb B (1987) Efficient introduction of plasmid DNA
into Trypanosoma brucei and transcription of a transfected
chimeric gene. Proc Natl Acad Sci USA 84:7812–7816

Eksi S, Czesny B, Greenbaum DC, Bogyo M, Williamson KC (2004)
Targeted disruption of Plasmodium falciparum cysteine protease,
falcipain 1, reduces oocyst production, not erythrocytic stage
growth. Mol Microbiol 53:243–250

Elmendorf HG, Singer SM, Nash TE (2001) The abundance of
sterile transcripts in Giardia lamblia. Nucleic Acids Res
29:4674–4683

El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G,
Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G,
Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B,
Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E,
Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M,
Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K,
Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC,
Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M,
Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T,
Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram
JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M,
Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson
L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J,
Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van
Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O,
Fraser CM, Stuart KD, Andersson B (2005a) The genome
sequence of Trypanosoma cruzi, etiologic agent of Chagas
disease. Science 309:409–415

El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J,
Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler
C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN,
Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J,
Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T,
Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC,
Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J,
Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S,
White O, Melville SE, Donelson JE, Andersson B, Stuart KD,
Hall N (2005b) Comparative genomics of trypanosomatid
parasitic protozoa. Science 309:404–409

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC
(1998) Potent and specific genetic interference by double-
stranded RNA in Caenorhabditis elegans. Nature 391:806–811

Gale M Jr, Carter V, Parsons M (1994) Translational control mediates
the developmental regulation of the Trypanosoma brucei Nrk
protein kinase. J Biol Chem 269:31659–31665

Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW,
Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James
K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S,
Chan M-S, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli
S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya
AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS,
Ralph SA, McFadden GI, Cummings LM, Subramanian GM,
Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C,
Davis RW, Fraser CM, Barrell B (2002) Genome sequence of
the human malaria parasite Plasmodium falciparum. Nature
419:498–511

Gardner MJ, Bishop R, Shah T, de Villiers EP, Carlton JM, Hall N,
Ren Q, Paulsen IT, Pain A, Berriman M, Wilson RJ, Sato S,
Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L,
Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D,
Crabtree J, Wortman JR, Haas B, Angiuoli SV, Creasy TH, Lu
C, Suh B, Silva JC, Utterback TR, Feldblyum TV, Pertea M,
Allen J, Nierman WC, Taracha EL, Salzberg SL, White OR,
Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V (2005)
Genome sequence of Theileria parva, a bovine pathogen that
transforms lymphocytes. Science 309:134–137

972 Appl Microbiol Biotechnol (2007) 75:963–975



Gatz C, Quail PH (1988) Tn10-encoded tet repressor can regulate an
operator-containing plant promoter. Proc Natl Acad Sci USA
85:1394–1397

Gatz C, Frohberg C, Wendenburg R (1992) Stringent repression and
homogeneous de-repression by tetracycline of a modified CaMV
35S promoter in intact transgenic tobacco plants. Plant J 2:397–404

Goodrich JA, Kugel JF (2006) Non-coding-RNA regulators of RNA
polymerase II transcription. Nat Rev Mol Cell Biol 7:612–616

Gossen M, Bujard H (1992) Tight control of gene expression in
mammalian cells by tetracycline-responsive promoters. Proc Natl
Acad Sci USA 89:5547–5551

Gubbels MJ, Striepen B (2003) High-throughput growth assay for
Toxoplasma gondii using yellow fluorescent protein. Antimicrob
Agents Chemother 47:309–316

Gubbels MJ, Striepen B (2004) Studying the cell biology of
apicomplexan parasites using fluorescent proteins. Microsc
Microanal 10:568–579

Gubbels MJ, Wieffer M, Striepen B (2004) Fluorescent protein
tagging in Toxoplasma gondii: identification of a novel inner
membrane complex component conserved among Apicomplexa.
Mol Biochem Parasitol 137:99–110

Gueiros-Filho FJ, Beverley SM (1997) Trans-kingdom transposition
of the Drosophila element mariner within the protozoan
Leishmania. Science 276:1716–1719

Gunasekera AM, Patankar S, Schug J, Eisen G, Kissinger J, Roos D,
Wirth DF (2004) Widespread distribution of antisense transcripts
in the Plasmodium falciparum genome. Mol Biochem Parasitol
136:35–42

Hamann L, Buss H, Tannich E (1997) Tetracycline-controlled gene
expression in Entamoeba histolytica. Mol Biochem Parasitol
84:83–91

Hariharan S, Ajioka J, Swindle J (1993) Stable transformation of
Trypanosoma cruzi: inactivation of the PUB12.5 polyubiquitin
gene by targeted gene disruption. Mol Biochem Parasitol 57:15–30

Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc
Natl Acad Sci USA 75:1929–1933

Hu MC, Davidson N (1987) The inducible lac operator–repressor
system is functional in mammalian cells. Cell 48:555–566

Huynh MH, Carruthers VB (2006) Toxoplasma MIC2 is a major
determinant of invasion and virulence. PLoS Pathog 2(8):e84

Ivens AC, Peacock CS,Worthey EA,Murphy L, Aggarwal G, Berriman
M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A,
Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley
SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M,
Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK,
Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina
G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A,
Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang
Y, Klages S, Knights A, KubeM, Larke N, Litvin L, Lord A, Louie
T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC,
Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K,
O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA,
Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J,
Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J,
Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D,
Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R,
Warren T,Wedler H,Woodward J, Zhou S, ZimmermannW, Smith
DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The
genome of the kinetoplastid parasite, Leishmania major. Science
309:436–442

Kaur G, Lohia A (2004) Inhibition of gene expression with double
strand RNA interference in Entamoeba histolytica. Biochem
Biophys Res Commun 320:1118–1122

Kim K, Soldati D, Boothroyd JC (1993) Gene replacement in
Toxoplasma gondii with chloramphenicol acetyltransferase as
selectable marker. Science 262:911–914

Kooij TW, Carlton JM, Bidwell SL, Hall N, Ramesar J, Janse CJ,
Waters AP (2005) A Plasmodium whole-genome synteny map:
indels and synteny breakpoints as foci for species-specific genes.
PLoS Pathog 1:e44

Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD,
De la Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA
(2003) Discovery of gene function by expression profiling of the
malaria parasite life cycle. Science 301:1503–1508

Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo
P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B,
Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M,
Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T,
Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S,
Mungall K, Ormond D, Squares R, Whitehead S, Quail MA,
Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N,
Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG,
Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed
NM, Petri Jr WA, Clark CG, Embley TM, Barrell B, Fraser CM,
Hall N (2005) The genome of the protist parasite Entamoeba
histolytica. Nature 433:865–868

Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams
PD, Doudna JA (2006) Structural basis for double-stranded RNA
processing by Dicer. Science 311:195–198

Mahner M, Kary M (1997) What exactly are genomes, genotypes and
phenotypes? And what about phenomes? J Theor Biol 186:55–63

Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N, Dirks RW, Khan
SM, Dimopoulos G, Janse CJ, Waters AP (2006) Regulation of
sexual development of Plasmodium by translational repression.
Science 313:667–669

Malhotra P, Dasaradhi PV, Kumar A, Mohmmed A, Agrawal N,
Bhatnagar RK, Chauhan VS (2002) Double-stranded RNA-
mediated gene silencing of cysteine proteases (falcipain-1 and -
2) of Plasmodium falciparum. Mol Microbiol 45:1245–1254

Matrajt M, Donald RG, Singh U, Roos DS (2002) Identification and
characterization of differentiation mutants in the protozoan
parasite Toxoplasma gondii. Mol Microbiol 44:735–747

Mazumdar J, Wilson EH, Masek K, Hunter CA, Striepen B (2006)
Apicoplast fatty acid synthesis is essential for organelle biogen-
esis and parasite survival in Toxoplasma gondii. Proc Natl Acad
Sci USA 103:13192–13197

McFadden DC, Seeber F, Boothroyd JC (1997) Use of Toxoplasma
gondii expressing beta-galactosidase for colorimetric assessment
of drug activity in vitro. Antimicrob Agents Chemother
41:1849–1853

McRobert L, McConkey GA (2002) RNA interference (RNAi)
inhibits growth of Plasmodium falciparum. Mol Biochem Parasitol
119:273–278

Meissner M, Soldati D (2005) The transcription machinery and the
molecular toolbox to control gene expression in Toxoplasma gondii
and other protozoan parasites. Microbes Infect 7:1376–1384

Meissner M, Brecht S, Bujard H, Soldati D (2001) Modulation of
myosin A expression by a newly established tetracycline
repressor-based inducible system in Toxoplasma gondii. Nucleic
Acids Res 29:E115

Meissner M, Schluter D, Soldati D (2002) Role of Toxoplasma gondii
myosin A in powering parasite gliding and host cell invasion.
Science 298:837–840

Meissner M, Krejany E, Gilson PR, de Koning-Ward TF, Soldati D,
Crabb BS (2005) Tetracycline analogue-regulated transgene
expression in Plasmodium falciparum blood stages using
Toxoplasma gondii transactivators. Proc Natl Acad Sci USA
102:2980–2985

Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-
specific recombination in mammalian cells using a ligand-
dependent chimeric Cre recombinase. Proc Natl Acad Sci USA
92:6991–6995

Appl Microbiol Biotechnol (2007) 75:963–975 973



Mirelman D, Anbar M, Nuchamowitz Y, Bracha R (2006) Epigenetic
silencing of gene expression in Entamoeba histolytica. Arch Med
Res 37:226–233

Mital J, Meissner M, Soldati D, Ward GE (2005) Conditional
expression of Toxoplasma gondii apical membrane antigen-1
(TgAMA1) demonstrates that TgAMA1 plays a critical role in
host cell invasion. Mol Biol Cell 16:4341–4349

Mital J, Schwarz J, Taatjes DJ, Ward GE (2006) Laser scanning
cytometer-based assays for measuring host cell attachment and
invasion by the human pathogen Toxoplasma gondii. Cytometry
A 69:13–19

Mohmmed A, Dasaradhi PV, Bhatnagar RK, Chauhan VS, Malhotra P
(2003) In vivo gene silencing in Plasmodium berghei—a mouse
malaria model. Biochem Biophys Res Commun 309:506–511

Mordue DG, Scott-Weathers CF, Tobin CM, Knoll LJ (2007) A
patatin-like protein protects Toxoplasma gondii from degradation
in activated macrophages. Mol Microbiol 63:482–496

Motyka SA, Englund PT (2004) RNA interference for analysis of
gene function in trypanosomatids. Curr Opin Microbiol 7:362–
368

Nakaar V, Samuel BU, Ngo EO, Joiner KA (1999) Targeted reduction
of nucleoside triphosphate hydrolase by antisense RNA inhibits
Toxoplasma gondii proliferation. J Biol Chem 274:5083–5087

Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA
induces mRNA degradation in Trypanosoma brucei. Proc Natl
Acad Sci USA 95:14687–14692

Nickel R, Tannich E (1994) Transfection and transient expression of
chloramphenicol acetyltransferase gene in the protozoan parasite
Entamoeba histolytica. Proc Natl Acad Sci USA 91:7095–7098

Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, Jacobs WR
Jr, Fidock DA (2006) Efficient site-specific integration in
Plasmodium falciparum chromosomes mediated by mycobacter-
iophage Bxb1 integrase. Nat Methods 3:615–621

Pain A, Renauld H, Berriman M, Murphy L, Yeats CA, Weir W,
Kerhornou A, Aslett M, Bishop R, Bouchier C, Cochet M,
Coulson RM, Cronin A, de Villiers EP, Fraser A, Fosker N,
Gardner M, Goble A, Griffiths-Jones S, Harris DE, Katzer F,
Larke N, Lord A, Maser P, McKellar S, Mooney P, Morton F,
Nene V, O’Neil S, Price C, Quail MA, Rabbinowitsch E,
Rawlings ND, Rutter S, Saunders D, Seeger K, Shah T, Squares
R, Squares S, Tivey A, Walker AR, Woodward J, Dobbelaere
DA, Langsley G, Rajandream MA, McKeever D, Shiels B, Tait
A, Barrell B, Hall N (2005) Genome of the host-cell trans-
forming parasite Theileria annulata compared with T. parva.
Science 309:131–133

Patankar S, Munasinghe A, Shoaibi A, Cummings LM, Wirth DF
(2001) Serial analysis of gene expression in Plasmodium
falciparum reveals the global expression profile of erythrocytic
stages and the presence of anti-sense transcripts in the malarial
parasite. Mol Biol Cell 12:3114–3125

Pfefferkorn ER, Pfefferkorn LC (1976) Toxoplasma gondii: isolation
and preliminary characterization of temperature-sensitive
mutants. Exp Parasitol 39:365–376

Purdy JE, Mann BJ, Pho LT, Petri WA Jr, (1994) Transient
transfection of the enteric parasite Entamoeba histolytica and
expression of firefly luciferase. Proc Natl Acad Sci USA
91:7099–7103

Radke JR, Guerini MN, White MW (2000) Toxoplasma gondii:
characterization of temperature-sensitive tachyzoite cell cycle
mutants. Exp Parasitol 96:168–177

Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW
(2005) The transcriptome of Toxoplasma gondii. BMC Biol 3:26

Ramakrishnan G, Vines RR, Mann BJ, Petri Jr WA (1997) A
tetracycline-inducible gene expression system in Entamoeba
histolytica. Mol Biochem Parasitol 84:93–100

Roos DS, Sullivan WJ, Striepen B, Bohne W, Donald RG (1997)
Tagging genes and trapping promoters in Toxoplasma gondii by
insertional mutagenesis. Methods 13:112–122

Sahoo N, Bhattacharya S, Bhattacharya A (2003) Blocking the
expression of a calcium binding protein of the protozoan parasite
Entamoeba histolytica by tetracycline regulatable antisense-
RNA. Mol Biochem Parasitol 126:281–284

Sakamoto H, Thiberge S, Akerman S, Janse CJ, Carvalho TG, Menard
R (2005) Towards systematic identification of Plasmodium
essential genes by transposon shuttle mutagenesis. Nucleic Acids
Res 33:e174

Saksouk N, Bhatti MM, Kieffer S, Smith AT, Musset K, Garin J,
Sullivan WJ Jr, Cesbron-Delauw MF, Hakimi MA (2005)
Histone-modifying complexes regulate gene expression pertinent
to the differentiation of the protozoan parasite Toxoplasma
gondii. Mol Cell Biol 25:10301–10314

Seeber F, Boothroyd JC (1996) Escherichia coli beta-galactosidase as
an in vitro and in vivo reporter enzyme and stable transfection
marker in the intracellular protozoan parasite Toxoplasma gondii.
Gene 169:39–45

Sijwali PS, Kato K, Seydel KB, Gut J, Lehman J, Klemba M,
Goldberg DE, Miller LH, Rosenthal PJ (2004) Plasmodium
falciparum cysteine protease falcipain-1 is not essential in
erythrocytic stage malaria parasites. Proc Natl Acad Sci USA
101:8721–8726

Simpson L, Sbicego S, Aphasizhev R (2003) Uridine insertion/
deletion RNA editing in trypanosome mitochondria: a complex
business. RNA 9:265–276

Soldati D, Boothroyd JC (1993) Transient transfection and expression
in the obligate intracellular parasite Toxoplasma gondii. Science
260:349–352

Soldati D, Boothroyd JC (1995) A selector of transcription initiation
in the protozoan parasite Toxoplasma gondii. Mol Cell Biol
15:87–93

Striepen B, White MW, Li C, Guerini MN, Malik SB, Logsdon JM
Jr, Liu C, Abrahamsen MS (2002) Genetic complementation in
apicomplexan parasites. Proc Natl Acad Sci USA 99:6304–
6309

Sullivan WJ Jr, Narasimhan J, Bhatti MM, Wek RC (2004) Parasite-
specific eIF2 (eukaryotic initiation factor-2) kinase required for
stress-induced translation control. Biochem J 380:523–531

Sullivan WJ Jr, Naguleswaran A, Angel SO (2006) Histones and
histone modifications in protozoan parasites. Cell Microbiol
8:1850–1861

Sun CH, Tai JH (2000) Development of a tetracycline controlled gene
expression system in the parasitic protozoan Giardia lamblia.
Mol Biochem Parasitol 105:51–60

Teixeira SM, daRocha WD (2003) Control of gene expression and
genetic manipulation in the Trypanosomatidae. Genet Mol Res
2:148–158

Touz MC, Conrad JT, Nash TE (2005) A novel palmitoyl acyl
transferase controls surface protein palmitoylation and cytotox-
icity in Giardia lamblia. Mol Microbiol 58:999–1011

Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in
protozoan parasites. Cell Microbiol 6:509–519

Ullu E, Lujan HD, Tschudi C (2005) Small sense and antisense RNAs
derived from a telomeric retroposon family in Giardia intestinalis.
Eukaryot Cell 4:1155–1157

Uyetake L, Ortega-Barria E, Boothroyd JC (2001) Isolation and
characterization of a cold-sensitive attachment/invasion mutant
of Toxoplasma gondii. Exp Parasitol 97:55–59

van Dijk MR, Waters AP, Janse CJ (1995) Stable transfection of
malaria parasite blood stages. Science 268:1358–1362

van Noort V, Huynen MA (2006) Combinatorial gene regulation in
Plasmodium falciparum. Trends Genet 22:73–78

974 Appl Microbiol Biotechnol (2007) 75:963–975



van Poppel NF, Welagen J, Duisters RF, Vermeulen AN, Schaap
D (2006) Tight control of transcription in Toxoplasma gondii
using an alternative tet repressor. Int J Parasitol 36:443–
452

Vanacova S, Liston DR, Tachezy J, Johnson PJ (2003) Molecular
biology of the amitochondriate parasites, Giardia intestinalis,
Entamoeba histolytica and Trichomonas vaginalis. Int J Parasitol
33:235–255

Vanchinathan P, Brewer JL, Harb OS, Boothroyd JC, Singh U (2005)
Disruption of a locus encoding a nucleolar zinc finger protein
decreases tachyzoite-to-bradyzoite differentiation in Toxoplasma
gondii. Infect Immun 73:6680–6688

Vats D, Vishwakarma RA, Bhattacharya S, Bhattacharya A (2005)
Reduction of cell surface glycosylphosphatidylinositol conju-
gates in Entamoeba histolytica by antisense blocking of E.
histolytica GlcNAc-phosphatidylinositol deacetylase expression:
effect on cell proliferation, endocytosis, and adhesion to target
cells. Infect Immun 73:8381–8392

Vayssie L, Vargas M, Weber C, Guillen N (2004) Double-stranded
RNA mediates homology-dependent gene silencing of gamma-
tubulin in the human parasite Entamoeba histolytica. Mol
Biochem Parasitol 138:21–28

Waller RF, McFadden GI (2005) The apicoplast: a review of the
derived plastid of apicomplexan parasites. Curr Issues Mol Biol
7:57–79

Wang Z, Morris JC, Drew ME, Englund PT (2000) Inhibition of
Trypanosoma brucei gene expression by RNA interference using

an integratable vector with opposing T7 promoters. J Biol Chem
275:40174–40179

White MW, Jerome ME, Vaishnava S, Guerini M, Behnke M, Striepen
B (2005) Genetic rescue of a Toxoplasma gondii conditional cell
cycle mutant. Mol Microbiol 55:1060–1071

Wirtz E, Clayton C (1995) Inducible gene expression in trypanosomes
mediated by a prokaryotic repressor. Science 268:1179–1183

Wirtz E, Hoek M, Cross GA (1998) Regulated processive transcrip-
tion of chromatin by T7 RNA polymerase in Trypanosoma
brucei. Nucleic Acids Res 26:4626–4634

Wu Y, Sifri CD, Lei HH, Su XZ, Wellems TE (1995) Transfection of
Plasmodium falciparum within human red blood cells. Proc Natl
Acad Sci USA 92:973–977

Wu Y, Kirkman LA, Wellems TE (1996) Transformation of
Plasmodium falciparum malaria parasites by homologous inte-
gration of plasmids that confer resistance to pyrimethamine. Proc
Natl Acad Sci USA 93:1130–1134

Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D,
Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH,
Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S,
Buck GA (2004) The genome of Cryptosporidium hominis.
Nature 431:1107–1112

Yan S, Myler PJ, Stuart KD (2001) Tetracycline regulated gene expression
in Leishmania donovani. Mol Biochem Parasitol 112:61–69

Yee J, Nash TE (1995) Transient transfection and expression of firefly
luciferase in Giardia lamblia. Proc Natl Acad Sci USA 92:5615–
5619

Appl Microbiol Biotechnol (2007) 75:963–975 975


	Molecular tools for analysis of gene function in parasitic microorganisms
	Abstract
	Introduction
	Parasite genomes: an explosion of data
	Transfection of protozoan parasites opens the way to molecular biology
	Genome manipulation using site-specific recombination
	Regulation of parasite gene expression
	Inducible transcriptional regulation
	Post-transcriptional regulation
	Forward genetic screens on parasites
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


