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REVIEW
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Nine major HLA class I supertypes account for the vast preponderance
of HLA-A and -B polymorphism

Abstract Herein, we review the epitope approach to
vaccine development, and discuss how knowledge of
HLA supertypes might be used as a tool in the devel-
opment of such vaccines. After reviewing the main
structural features of the A2-, A3-, B7-, and B44- su-
pertype alleles, and biological data demonstrating their
immunological relevance, we analyze the frequency at
which these supertype alleles are expressed in various
ethnicities and discuss the relevance of those observa-
tions to vaccine development. Next, the existence of
five new supertypes (A1, A24, B27, B58, and B62) is
reported. As a result, it is possible to account for the
predominance of all known HLA class I with only nine
main functional binding specificities. The practical im-
plications of this finding, as well as its relevance to un-
derstanding the functional implication of MHC poly-
morphism in humans, are discussed.
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The epitope approach to vaccine development

Over the past decade, a detailed understanding of how
T cells recognize antigen has emerged. The complex of
a major histocompatibilty complex (MHC) molecule
and a peptidic antigen acts as the ligand recognized by
MHC-restricted T cells (Garcia et al. 1999; Germain
and Margulies 1993; Yewdell and Bennink 1999). The
study of single amino acid substituted antigen analogs
and the sequencing of endogenously bound, naturally
processed peptides has identified critical residues re-
quired for allele-specific binding to MHC molecules

(see, e.g., Engelhard 1994; Garcia et al. 1999; Sinigaglia
and Hammer 1994). X-ray crystallographic analysis of
MHC-peptide complexes revealed allele specific pock-
ets within the peptide binding cleft of MHC molecules
which accommodate specific peptide side chains (Fre-
mont et al. 1992; Guo et al. 1992; Madden et al. 1992;
Matsumura et al. 1992; Saper et al. 1991).

Accordingly, the definition of class I and class II al-
lele-specific MHC binding motifs allowed identification
of regions within a protein that have the potential of
binding particular MHC alleles (Engelhard 1994; Kast
et al. 1994; Sette and Grey 1992; Sinigaglia and Ham-
mer 1994). A variety of assays to detect and quantitate
the affinity of peptide-MHC binding have also been es-
tablished (Engelhard 1994; Joyce and Natheson 1994;
Sette and Grey 1992; Sidney et al. 1998), and the
threshold of affinity associated with generation of im-
mune responses has also been elucidated (Schaeffer et
al. 1989; Sette et al. 1994; Southwood et al. 1998). Thus,
by a combination of motif searches and MHC-peptide
binding assays, potential candidates for epitope-based
vaccines can now be identified rapidly and accurately.

The epitope approach to vaccine development offers
several potential advantages. These include not only a
more potent response than that obtained by the use of
whole antigens (Ishioka et al. 1999), but also control
over qualitative aspects of the immune response. By
the selection of appropriate epitopes, broad responses
simultaneously targeting multiple dominant and sub-
dominant epitopes can be induced (Oukka et al. 1996;
Tourdot et al. 1997). The breadth of an immune re-
sponse is thought to represent a crucial factor in control
and /or resolution of HIV and HCV infection (Cooper
et al. 1999; Couillin et al. 1994; McMichael and Phillips
1997; Missale et al. 1996). Accessing subdominant spe-
cificities might be of particular value in the case of tu-
mor antigens, where self-tolerance might have inacti-
vated T cells recognizing the most dominant specifici-
ties (Disis et al. 1996; Feltkamp et al. 1995). The epi-
tope approach also allows focusing of immune re-
sponses against multiple conserved epitopes, a factor of



202

crucial importance in the case of rapidly mutating pa-
thogens, such as HIV and HCV (Borrow et al. 1997;
Cooper et al. 1999; Goulder et al. 1997a, b; Nowak et
al. 1995; Price et al. 1997; Weiner et al. 1995).

By combining epitopes derived from multiple antig-
ens into a single immunogen, (Ishioka et al. 1999), it
might be possible to overcome the limited capacity of
certain delivery systems. By the same strategy, it is also
possible to guard against low efficacy due to a lack or
loss of antigen expression (Kawashima et al. 1998), a
factor of importance when a single protein antigen is
targeted for vaccine development. Furthermore, epi-
tope based vaccines can also be analogued to increase
potency and break tolerance, as highlighted by a num-
ber of different studies (Ahlers et al. 1997; Parkhurst et
al. 1996; Sarobe et al. 1998; Tsai et al. 1997).

It is important to emphasize that the use of epitopes
isolated from the context of the antigen of origin can
overcome potential safety concerns, as exemplified by
the case of the HPV E6 and E7 antigens whose expres-
sion is clearly associated with cervical carcinoma
(Crook et al. 1989; Hawley-Nelson et al. 1989).

In parallel, recent evidence has been provided to
validate the epitope approach for treatment and/or pre-
vention of numerous different types of disease. For ex-
ample, vaccination with either dominant or subdomi-
nant epitopes has been shown to protect against acute
or chronic viral infection in systems such as influenza or
LCMV (An et al. 1997; Oukka et al. 1996; van der Most
et al. 1996). A variety of studies have also validated epi-
tope-based vaccines as a strategy to address parasitic
and microbial infections (Le et al. 1998; Wang et al.
1996), and cancer (Iwasaki et al. 1998; Mayordomo et
al. 1996; Melief et al. 1996; Morgan et al. 1998; Vier-
boom et al. 1997). For example a tumor epitope pre-
viously engineered for high HLA binding (Parkhurst et
al. 1996) was effective for treatment of human melano-
ma when delivered in a mineral oil emulsion in the
presence of IL2 (Rosenberg et al. 1998).

In conclusion, our understanding of the role played
by specific residues in the presentation peptide epi-
topes by class I and class II HLA molecules has greatly
advanced in the past several years. A body of knowl-
edge enhancing the ability to identify and design pep-
tides that bind across many HLA types has emerged,
and could greatly facilitate the development of vaccines
for the prevention and treatment of important infec-
tious diseases or neoplasias.

The discovery of HLA-A2-, -A3-, and -B7-supertypes: a
quick review

The large degree of HLA polymorphism is a factor to
be taken into account in the development of epitope-
based vaccines. To address this factor, epitope selection
encompassing identification of peptides capable of
binding multiple HLA molecules can be utilized (Sette
and Sidney 1998; Sidney et al. 1996b). Our studies have

identified several HLA supermotifs, each of which cor-
responds to the ability of peptide ligands to bind sev-
eral different HLA alleles. The HLA alleleic variants
that bind peptides possessing a particular HLA super-
motif are collectively referred to as an HLA supertype
(Sette and Sidney 1998; Sidney et al. 1996a, b, c).

Early studies defined the motifs recognized by some
of the most common HLA types (DiBrino et al. 1993a,
b; Falk et al. 1994; Kubo et al. 1994; Zhang et al. 1993).
It was found that HLA-A*0301 and -A*1101 recognized
very similar motifs, leading to the hypothesis that a sig-
nificant overlap might exist amongst their peptide bind-
ing repertoires. This hypothesis was verified by a study
which also demonstrated that the A*0301 and A*1101
repertoires overlapped with those of A*3101, A*3301,
and A*6801 (Sidney et al. 1996a). This group of alleles,
characterized by similar peptide specificity, was defined
as the A3-supertype. Similarly, a significant overlap in
peptide binding repertoires was demonstrated amongst
several serologically distinct HLA-B alleles (B*0702,
B*3501, B*5101, B*5301, and B*5401 (Sidney et al.
1995, 1996c), and among different A2-subtypes (del
Guercio et al. 1995; Fruci et al. 1993; Sidney et al.
1997). It has also been noted that various HLA-B al-
leles share a main anchor specificity that overlaps with
that of HLA-B*44 (Sidney et al. 1996b). This work re-
sulted in the definition of the B7-, A2- and B44-super-
types, which has been reviewed in detail elsewhere
(Sette and Sidney 1998; Sidney et al. 1996b). Following
is a quick summary of the crucial features of the A3-,
A2-, B44-, and B7-supertypes.

The A2-supertype includes, A*0201, A*0202,
A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and
A*6901. These alleles recognize peptides of about 9 or
10 residues in length which bear small or aliphatic hy-
drophobic residues (L, I, V, M, A, T, or Q) at position
2 and L, I, V, M, A, or T at the C- terminal position.
The B pocket of A2-supertype molecules is character-
ized by a consensus motif including residues (where the
subscript indicates MHC residue position) F/Y9, M45,
E/N63, K/N66, V67, H/Q70, and Y/C99. Similarly, the A2-
supertype F pocket is characterized by a consensus mo-
tif including residues D77, T80, L81, and Y116 (del Guer-
cio et al. 1995; Sidney et al. 1996b).

The A3-supertype includes the A*0301, A*1101,
A*3101, A*3301, and A*6801 alleles (Sidney et al.
1996a, b). A3-supertype molecules recognize a broad
motif characterized by A, V, I, L, M, S, or T in position
2, and R or K at the C-terminus (DiBrino et al. 1993a;
Falk et al. 1994; Kubo et al. 1994; Maier et al. 1994;
Sidney et al. 1996a). Peptide lengths of 9 to 10 amino
acids have been most frequently reported, although
longer peptides can bind, and sometimes be recognized,
in the context of A3-supertype molecules. The B pock-
et of A3-supertype molecules is characterized by the
consensus motif of M45, N/K66, M/V67, Q/H66, and Y99.
This structural motif is similar to that of A2-supertype
B pockets and is in good agreement with the largely
overlapping B-pocket specificity of A2- and A3-super-
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type alleles. The F pocket of A3-supertype molecules is
characterized by D77, T80, L81, and D116. The dominant
presence of a negatively charged residue (D) in posi-
tions 77 and 116 correlates with the specificity of A3-
supertype alleles for peptides with a positively charged
C-terminus.

The B7-supertype, as originally described by Sidney
and co-workers (1995, 1996b, c), included B*0702,
B*3501-03, B*51, B*5301, and B*5401. Additional data
for B*0703-05, B*1508, B*5501-02, B*5601-02, B*6701,
and B*7801 indicated that these alleles should also be
included within the B7-supertype (Barber et al. 1995,
1997; Rammensee 1995). B7-supertype molecules share
a peptide binding specificity for P in position 2 and a
hydrophobic aliphatic (A, L, I, M, or V) or aromatic (F,
W, or Y) residue at the C-terminal position of their
peptide ligands. Modeling and X-ray crystallographic
studies of the structure of B7 and B*3501 have been
published (Huczko 1993; Smith et al. 1996a, b), offering
insights into the specificity of B7-supertype molecules.
Structurally, the B7-supertype molecules share a B
pocket consensus motif of Y9, N63, I66, F/Y67, N/Q70,
and Y99. By contrast, no discrete B7-supertype F pock-
et consensus motif has yet been defined.

Finally, the B44-supertype was defined on the basis
of a shared specificity for peptides with negatively
charged (D, E) residues in position 2, and hydrophobic
residues at the C-terminus, noted in published pool se-
quencing motifs for B*3701, B*4402, B*4403, B60
(B*4001), and B61 (B*4006) (DiBrino et al. 1995; Falk
et al. 1993, 1995a; Harris et al. 1993; Fleischhauer et al.
1994; Thorpe and Travers 1994). One B18-restricted
epitope (EBV 397–405, sequence DEVEFLGHY) has
been reported in the literature (Steven et al. 1997),
which suggests that the HLA molecules encoded by
B*18 alleles may also share this specificity. With the ex-
ceptions of B*18 and B*3701, B44-supertype alleles
possess K in position 45, suggesting that this positively
charged residue is characteristic, and dictates the B
pocket specificity, of B44-supertype alleles. Based on
analysis of B and F pocket structures of various HLA
alleles it is hypothesized that B*4101, B*4501, B*4901,
and B*5001 may also belong to the B44 supertype.

Biological validation, population coverage, and
evolutionary significance

The studies referenced above demonstrate that a large
fraction of HLA class I molecules can be classified into
a relatively few supertypes, each characterized by large-
ly overlapping peptide binding repertoires and consen-
sus structures in the main peptide binding pockets. T-
cell recognition data in infectious diseases and cancer
contexts, obtained in a number of different studies, fur-
ther demonstrate that cross-reactive peptides are fre-
quently recognized in the course of natural disease
processes (Bertoletti et al. 1997; Bertoni et al. 1997;
Doolan et al. 1997; Fleischhauer et al. 1996; Kawashima

et al. 1998; Khanna et al. 1998; Threlkeld et al. 1997;
Wang et al. 1998) and in the context of multiple HLA
molecules, underlining the biological significance of the
cross-reactivities detected by HLA binding assays.

Taken individually, each of the HLA class I super-
types discussed above (A2, A3, B44, and B7) allows
coverage of about 35–55% of the general population,
irrespective of ethnicity (Sidney et al. 1996b). This
might, in fact, represent a minimal estimate since it is
based on analysis of only the most common HLA mol-
ecules, and population coverage might be expanded by
other less common and as yet unidentified members of
the various supertypes. However, when epitopes from
the A2-, A3-, B7-, and B44-supertypes are combined,
general population coverage in excess of 90% is
achieved.

Interestingly, while the frequency of individuals po-
sitive for a given particular allele might vary drastically,
the overall frequency of each supertype is remarkably
constant across different ethnicities. For example in the
case of the B7-supertype, B53 is present in 22.6% of
Blacks, but only 0.2% of Japanese (Sidney et al.
1996b). Conversely B54 is found in 12.4% of the Japa-
nese population, but is virtually absent in the Black
population. However, the overall frequency of B7-su-
pertype molecules is 54.7 in Blacks, and 55.1 in Japa-
nese. Irrespective of the ethnicity considered, at least
43% of individuals express B7-like supertype molecules
(Sidney et al. 1996b).

This high degree of overall expression, conserved
amongst different populations, has potential biological
implications and may be compatible with convergent
evolution. It is also possible that the similar motifs
grouped in a given supertype might be reflective of a
common ancestry of the corresponding alleles. It is no-
teworthy that alleles of a given supertype are all en-
coded by either the HLA-A or the HLA-B locus, but
not by both. This observation would tend to support
the notion of common evolutionary origin. In this re-
spect, since every main HLA-A evolutionary lineage
contains at least one A3-supertype allele, and every
HLA-B main evolutionary lineage contains at least one
B7-supertype allele, A3- and B7-supertype molecules
may document “primeval” HLA class I specificities.

Alternatively, convergent evolution might also ex-
plain these observations (Sidney et al. 1996a). It is not-
able that the main supertype specificities appear com-
posed of “coupled” B- and F-pocket specificities. For
example, a large fraction of alleles is associated with
specificities for P in position 2 and hydrophobic resi-
dues at the C-terminus (B7-supertype), or with hydro-
phobic residues in position 2 and positive charges at the
C-terminus (A3-supertype). Yet no motif has been re-
ported which is composed of P in position 2 and posi-
tive charges at the C-terminus.

It is also interesting to note that human TAP mole-
cules appear to be associated with peptide specificities
largely overlapping with those of HLA supertypes. This
observation suggests the hypothesis that the specifici-
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ties of HLA molecules and the enzymatic machinery in-
volved in antigen processing and presentation are sub-
ject to coordinate evolution (Sidney et al. 1996b; van
Endert et al. 1996).

Can additional supertypes be defined?

The data described above summarizes the discovery
and validation of four main HLA class I supertypes.
Encouraged by these results, we undertook further
analysis to examine whether additional supertypes
might exist. For these studies, described herein for the
first time, binding motifs were compiled either from
data presented in the literature, or from our own stud-
ies. Additionally, we utilized the motif listings pub-
lished by Rammensee and co-workers (1995, 1999).
Binding motifs were defined using data from pool se-
quencing analyses, analysis of the binding capacity of
large libraries of peptides, single substitution analysis,
and sequence motifs frequently found in known epi-
topes. In certain cases, residues allowed within a motif
were inferred on the basis of chemical similarity, or
predicted on the basis of pocket analysis.

All HLA-A and -B alleles identified through 1995
(Parham et al. 1995) were included. In some cases, mo-
tifs have been reported for a specific allele, but not for
other alleles corresponding to the same serological
HLA antigen and with identical peptide binding pock-
ets. In these instances, we have drawn the conclusion
that highly related alleles of the same HLA antigen,
which share identical peptide binding pockets, also
share identical peptide binding motifs. To limit redun-
dancy in the data, only one sequence was entered for
alleles bearing the same serological antigen (i.e., sub-
types) and identical HLA peptide binding pockets. The
alleles sharing the same antigen and the same binding
pockets have been noted in the tables.

For pocket analyses, the residues comprising the B
and F pockets of HLA molecules described in crystallo-
graphic studies (Freemont et al. 1992; Guo et al. 1992;
Madden et al. 1992, 1993; Matsumura et al. 1992; Saper
et al. 1991) were compiled from the database of Par-
ham and co-workers (1995). In these analyses, residues
9, 45, 63, 66, 67, 70, and 99 were considered to provide
the peptide contact in the B pocket, and thereby to de-
termine the specificity for the residue in the second po-
sition of peptide ligands. Similarly, residues 77, 80, 81,
and 116 were considered to determine the specificity of
the F pocket, and thereby the specificity for the C-ter-
minal residue of a peptide ligand bound by the HLA
molecule.

Population frequency data have been compiled from
published sources (Fernandez-Viña et al. 1992; Imani-
shi et al. 1992; Krausa et al. 1995). Population frequen-
cy data is, in most cases, at the level of the HLA antig-
en, and only more rarely at the level of allelic subtypes.
Total population coverage was calculated assuming
Hardy-Weinberg equilibrium and considering only

HLA molecules experimentally confirmed to share the
supertype binding preference, and may therefore repre-
sent a minimal estimate. Furthermore, in cases where
peptide binding, pool sequencing, or pocket structure
analysis suggested that subtypes have similar peptide
main-anchor preferences, a 1 :1 correspondence be-
tween subtype alleles and the serologically defined an-
tigens was assumed.

Definition of a potential HLA-A1-supertype

Evaluation of the pool sequencing motifs associated
with the A*0101, A*2601, and A*2602 alleles revealed
important similarities. Specifically, these alleles bound
peptides having a general motif of small (T, S) and hy-
drophobic (L, I, V, M, F) residues in position 2, and
aromatic (Y, F, W) residues at the C-terminus (DiBrino
et al. 1993b, 1994a; Dumrese et al. 1998; Kondo et al.
1997; Kubo et al. 1994). A similar motif has been infer-
red for two other alleles, A*2501 and A*3201, based
upon published sequences of known epitopes (Harrer
et al. 1996; Rickinson and Moss 1997; van Baalen et al.
1996) (Tables 1, 2). These five alleles are tentatively de-
fined as the A1-supertype. Considering residues toler-
ated by multiple A1-supertype alleles, an A1-supermo-
tif may be defined as (TSIVLM)2 and (YWF)c.

Analysis of the B-pocket polymorphic residues of
these five alleles revealed that they possessed a com-
mon pattern at the following positions: M45, N66, M or
V67, and H70. In contrast, other alleles which are known
to present a different specificity for position 2, such as
B*0702, B*2702, B*4402, and A*2402, matched this
consensus motif only partially, or not at all (Table 1). It
is evident that the residues comprising the B pocket of
the A1-supertype alleles are very similar to those of the
alleles in the A2- and A3-supertypes, consistent with
the observation that alleles of these three groups prefer
aliphatic or hydrophobic residues in position 2 of their
peptide ligands.

The F pocket of A1-supertype alleles is associated
with two different structural motifs: N77, T80, L81, D/
N116 (A*0101, A*2601, and A*2602), and S77, I80, A81,
D116 (A*2501 and A*3201) (Table 2). These two struc-
tural motifs are not found in any other HLA molecule
associated with an F-pocket specificity differing from
the A1-like specificity for aromatic residues.

Listed in Table 3 are the phenotypic frequencies of
A1-supertype alleles in five major ethnic populations.
The A1 supertype is represented with an average fre-
quency of 25.2%, ranging from a low of 14.7% in His-
panics, to a high of 47.1% in Caucasians.

Examination of the sequences of HLA-A and -B al-
leles for which no peptide binding motif is known re-
vealed that A*0102, A*2604, A*3601, A*4301, and
A*8001 possess A1-supertype B-pocket consensus se-
quences (Table 1), and also exactly match A*0101 and
A*2601 in the F pocket (Table 2). On the basis of these
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Table 1 B-pocket residues defining an HLA-A1-supertype

Antigen Allele(s) Position 2
motif

Reference(s)a B-pocket residuesb

9 45 66 67 70

A1 A*0101 TS 1–5 F M N M H
A25 A*2501 TIM 6–7 Y M N V H
A26 A*2601 VITLF 8 Y M N V H
A26 A*2602 VITLF 8 Y M N V H
A32 A*3201 I 9 F M N V H

A24 A*2402 YF 4, 10–11 S M K V H
B7 B*0702 P 10, 12–14 Y E I Y Q
B27 B*2702 R 15–16 H E I C K
B44 B*4402 E 17–19 Y K I S N
B57 B*5701 ATS 20 Y M N M S
B62 B*1501 QL 20–22 Y M I S N

A1 A*0102 Unknown S M N M H
A26 A*2604 Unknown Y M N V H
A36 A*3601 Unknown F M N M H
A43 A*4301 Unknown Y M N V H
A80 A*8001 Unknown F M N V H

a References: 1. DiBrino et al. 1993b; 2. DiBrino et al. 1994a; 3.
Kondo et al. 1997; 4. Kondo et al. 1994; 5. Falk et al. 1994; 6. Van
Baalen et al. 1996; 7. Rickenson and Moss 1997; 8. Dumrese et al.
1998; 9. Harrer et al. 1996; 10. Maier et al. 1994; 11. Kondo et al.
1995; 12. Sidney et al. 1995; 13. Huczko et al. 1993; 14. Barber et
al. 1995; 15. Rötzschke et al. 1994; 16. Jardetzky et al. 1991; 17.
Fleischhauer et al. 1994; 18. Thorpe and Travers 1994; 19. DiBri-
no et al. 1995; 20. Barber et al. 1997; 21. Falk et al. 1995a; 22.
Prilliman et al. 1997; 23. del Guercio et al. 1995; 24. Falk et al.

1991; 25. Ruppert et al. 1993; 26. Parker et al. 1992; 27. Sidney et
al. 1997; 28 Sidney et al. 1996a; 29. diBrino et al. 1993a
b Residues hypothesized to form the B or F pocket, and to have
potential contact with side chains of peptide residues. see, e.g.,
Saper and co-workers (1991) and Madden and co-workers (1992,
1993), Guo and co-workers (1992), and Freemont and co-workers
(1992). Shaded residues indicates conformation with the putative
supertype consensus pocket structure

Table 2 F-pocket residues defining an HLA-A1-supertype

Antigen Allele(s) C-terminus
motif

Reference(s)a F-pocket residuesb

77 80 81 116

A1 A*0101 Y 1–5 N T L D
A25 A*2501 W 6–7 S I A D
A26 A*2601 YF 8 N T L D
A26 A*2602 YF 8 N T L N
A32 A*3201 W 9 S I A D

A2 A*0201 LIVMAT 23–27 D T L Y
A3 A*0301 RK 4, 10, 28–29 D T L D
B7 B*0702 LIVMAFWY 10, 12–14 S N L Y

A1 A*0102 Unknown N T L D
A26 A*2604 Unknown N T L D
A36 A*3601 Unknown N T L D
A43 A*4301 Unknown N T L D
A80 A*8001 Unknown N T L D

see Table 1 legend

shared structural features, A*0102, A*2604, A*3601,
A*4301, and A*8001 should therefore be included with-
in the A1-supertype.

Definition of a potential HLA-A24-supertype

Peptides naturally bound by A*2402 and A*3001 HLA
molecules (Kubo et al. 1994; Maier et al. 1994; Krausa
and co-workers; as listed in Rammensee et al. 1999),

are characterized by aromatic residues (F, W, Y) in po-
sition 2 and hydrophobic residues (Y, W, F, L, I, V, M)
at the C-terminus (Tables 4, 5). This specificity has also
been confirmed, in the case of A*2402, by extensive
analysis of a peptide binding database (Kondo et al.
1995). Analysis of published epitopes recognized by
A*2301 (Khanna et al. 1996; Koziel et al. 1995) suggests
that its peptide binding specificity might overlap with
that of A*2402 and A*3001. A*2301 and A*3001 also
appear to accommodate small and/or hydrophobic resi-
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Table 3 Phenotypic frequency of the HLA-A1-supertype

Antigen Alleles Subtypes in supertype Phenotypic frequency (%)a

Defined Predicted Caucasian NA Black Japanese Chinese Hispanic Average

A1 A*0101-02 A*0101 A*0102 28.6 10.1 1.4 9.2 10.1 11.9
A25 A*2501 A*2501 P 6.1 1.6 0.0 0.8 4.2 2.5
A26 A*2601-04 A*2601-02 A*2604 7.3 3.2 20.4 3.8 6.7 3.9
A32 A*3201 A*3201 P 9.6 1.6 0.2 1.2 6.7 3.9

A36 A*3601 P A*3601 0.8 5.3 0.0 0.4 0.6 1.4
A43 A*4301 P A*4301 0.0 0.2 0.2 0.0 0.0 0.1
A80 A*8001 P A*8001 P P P P P P
Total coverage 47.1 16.1 21.8 14.7 26.3 25.2

a Total coverage assumes Hardy-Weinberg equilibrium. The total
coverage is calculated considering only those antigens or alleles
experimentally confirmed to share the supertype binding prefer-
ence, and therefore represents a minimal estimate. Where peptide-
binding data, pool-sequencing analysis, or pocket structure based
on primary sequence suggest that subtypes will have very similar,

if not identical, peptide main-anchor preferences and overlapping
peptide-binding specificities, a 1 :1 correspondence between sub-
type alleles and the serologically defined antigens was assumed.
As peptide binding motifs for more alleles are reported, it is con-
ceivable that the population coverage achieved by a particular su-
pertype will increase

Table 4 B-pocket residues defining an HLA-A24-supertype

Antigen Allele(s) Position 2
motif

Reference(s)a B-pocket residuesb

9 45 66 67 70

A23 A*2301 IY 1–2 S M K V H
A24 A*2402 YFW 3–5 S M K V H
A30 A*3001 YFVLMIT 6 S M N V Q

A26 A*2601 VITLF 7 Y M V H H
A31 A*3101 LIVMAST 8–9 T M N V H
B27 B*2702 R 10–11 H E I C K
B44 B*4402 E 12–14 Y K I S N
B57 B*5701 ATS 15 Y M N M S
B62 B*1501 QL 15–17 Y M I S N
B7 B*0702 P 4, 18–20 Y E I Y Q

A24 A*2403 Unknown S M K V H
A24 A*2404 Unknown S M K V H
A30 A*3002-03 Unknown S M N V H

a References: 1. Koziel et al. 1995; 2. Khanna et al. 1996; 3. Kubo
et al. 1994; 4. Maier et al. 1994; 5. Kondo et al. 1995; 6. Krausa et
al. submitted; 7. Dumrese et al. 1998; 8. Falk et al. 1994; 9. Sidney
et al. 1996a; 10. Rötzschke et al. 1994; 11. Jardetzky et al. 1991; 12.
Fleischhauer et al. 1994; 13. Thorpe and Travers 1994; 14. DiBri-
no et al. 1995; 15. Barber et al. 1997; 16. Falk et al. 1995a; 17.
Prilliman et al. 1997; 18. Sidney et al. 1995; 19. Huczko et al. 1993;
20. Barber et al. 1995; 21. del Guercio et al. 1995; 22. Falk et al.

1991; 23. Ruppert et al. 1993; 24. Parker et al. 1992; 25. Sidney et
al. 1997; 26. DiBrino et al. 1993a
b Residues hypothesized to form the B or F pocket, and to have
potential contact with side chains of peptide residues. See, e.g.,
Saper and co-workers (1991) and Madden and co-workers (1992,
1993), Guo and co-workers (1992) and Freemont and co-workers
(1992). Shaded residues indicates conformation with the putative
supertype consensus pocket structure

Table 5 F-pocket residues defining an HLA-A24-supertype

Antigen Allele(s) C-terminus
motif

Reference(s)a F-pocket residuesb

77 80 81 116

A23 A*2301 WI 1–2 N I A Y
A24 A*2402 FLI 3–5 N I A Y
A30 A*3001 LYFM 6 D T L H

A2 A*0201 LIVMAT 21–25 D T L Y
A3 A*0301 RK 3–4, 8, 26 D T L D
B7 B*0702 LIVMAFWY 4, 18–20 S N L Y

A24 A*2403 Unknown N I A Y
A24 A*2404 Unknown N T L Y
A30 A*3002-03 Unknown N T L H

See Table 4 legend
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Table 6 Phenotypic frequency of the HLA-A24-supertype

Antigen Alleles Subtypes in supertype Phenotypic frequency (%)a

Defined Predicted Caucasian NA Black Japanese Chinese Hispanic Average

A23 A*2301 A*2301 P 3.2 14.3 0.0 1.6 5.5 4.9
A24 A*2402-04 A*2402 A*2403-04 16.8 8.8 58.1 32.9 26.7 28.7
A30 A*3001-03 A*3001 A*3002-03 4.7 18.8 0.8 7.3 8.4 8.0
Total coverage 23.9 38.9 58.6 40.1 38.3 40.0

a See Table 3 legend

dues (L, V, I, M, T) in position 2. Thus, an A24-super-
motif incorporating residues commonly recognized by
A24-supertype alleles may be defined as (FWYL-
VIMT)2 and (FIYWLM)c.

A*2301 and A*2402 share an identical B-pocket
structural motif of S9, M45, E63, K66, V67, H70. The B-
pocket structure of A*3001 differs from that of A*2301
and A*2402 at 3 positions: F9, N66, and Q70. Neither of
these structural motifs are found in alleles with differ-
ent B-pocket specificities (Table 4).

The presence of a small residue (S) in position 9, as
opposed to the F or Y present in most other HLA-A
alleles, is hypothesized to allow A*2301 and A*2402 to
accommodate large aromatic residues in position 2 of
their peptide ligands. Furthermore, it is noted that the
A*3001 B pocket matches that of A*0301, which ac-
commodates a broad range of residues in position 2 of
its peptide ligands (Kubo et al. 1994; Sidney et al.
1996a).

The following F-pocket residues of A*2301 and
A*2402 are identical: N77, I80, A81, Y116 (Table 5). This
motif is also found in HLA-B alleles (B*5101-05,
B*5201, and B*5702), which share the same C-terminal,
but not the same B-pocket, specificity (Barber et al.
1997; Falk et al. 1995b; Sidney et al. 1996b). The F
pocket structure of A*3001 (D77, T80, L81, H116) is again
somewhat different from that of A*2301 and A*2402,
and is indeed unique among HLA alleles; no other al-
leles sequenced to date possess H in position 116.

Of alleles for which no peptide binding motif is
known, only the A*24 and A*30 subtypes A*2403,
A*2404, A*3002, and A*3003 possess B and F pocket
structures identical, or conservatively similar, to the
A24-supertype alleles. These alleles have also been ten-
tatively included within the A24-supertype. The A24-
supertype is represented in the five major ethnic popu-
lations with an average frequency of 40.0%, ranging
from a low of 23.9% in Caucasians, to a high of 58.6%
in Japanese (Table 6).

Additional potential HLA-B-supertypes

Pool sequencing motifs for peptides bound to HLA-
B*1401-02, B*1503, B*1509, B*1510, B*1518, B*3801-
02, B*3901, B*3902, B*3903-04, B*4801-02, B*7301,
and B*2701-08 (Barber et al. 1996a, 1997; Boisgérault

et al. 1996; DiBrino et al. 1994b; Falk et al. 1995c;
Rötzschke et al. 1994; Garcia et al. 1997; Jardetzky et
al. 1991) share positively charged (R, H, K) residues in
position 2, and hydrophobic (A, L, I, V, M, Y, F, W)
residues at the C-terminus (Tables 7A, B). These al-
leles, because of their shared overlapping peptide spe-
cificity, have been collectively designated as the B27-
supertype.

Analysis of the relevant B-pocket residues of these
alleles reveals a B27-supertype consensus structural
motif of E in position 45, and either C or S in position
67. An E in position 45 is also present in some B7-
supertype alleles, but only in combination with F or Y
in position 67. Similarly, S in position 67 is seen also in
B44- and B62-supertype alleles (see below), but never
in combination with E in position 45. C in position 67
appears to be exclusive to B27-supertype alleles.

B*1503, B*1510, B*1518, B*2701, B*2708, B*4801,
and B*4802 also possess the B27-supertype B pocket
consensus structural motif. The structure of their F
pockets is consistent with those of other HLA-B alleles
binding peptides with hydrophobic C-termini. These al-
leles have also been tentatively included within the
B27-supertype. The B27-supertype is represented with
an average frequency of 23.4% in five major ethnic
populations. The frequency of the supertype ranges
from a low 13.3% in Japanese, to a high of 35.3% in
Hispanics.

By contrast, B*1516, B*1517, B*5701, B*5702, and
B*58 share a preference for small aliphatic residues (A,
S, and T) in position 2, and aromatic (F, W, Y) or hy-
drophobic (L, I, V) residues at the C-terminus of their
peptide ligands (Barber et al. 1997; Falk et al.1995a).
The B pocket structures of these alleles, collectively de-
signated the B58-supertype, indicate a consensus motif
of Y9, N66, M67, S70. This structural motif is entirely
unique to B58-supertype alleles. The B58-supertype is
represented in the Black population with a frequency
of 25.1%. Overall, it is represented, on average, in the
five major ethnic populations with a frequency of
10.3%.

Finally, the pool sequencing motifs of B*4601, B*52,
B*1501 (B62), B*1502 (B75), and B*1513 (B77) reveal
a shared preference for ligands with the polar aliphatic
residue Q, or hydrophobic aliphatic residues (L, V, M,
P and I), in position 2, and hydrophobic residues (F, W,
Y, M, I, V) at the C-terminus (Barber et al. 1996, 1997;



208

Table 7 Summary of HLA-supertypes
A Overall phenotypic frequencies of HLA-supertypes in different ethnic populations

Supertype Specificitya Phenotypic frequency

Position 2 C-terminus Caucasian N.A. Black Japanese Chinese Hispanic Average

B7 P AILMVFWY 43.2 55.1 57.1 43.0 49.3 49.5
A3 AILMVST RK 37.5 42.1 45.8 52.7 43.1 44.2
A2 AILMVT AILMVT 45.8 39.0 42.4 45.9 43.0 42.2
A24 YF [WIVLMT] FI [YWLM] 23.9 38.9 58.6 40.1 38.3 40.0
B44 E [D] FWYLIMVA 43.0 21.2 42.9 39.1 39.0 37.0
A1 TI [LVMS] FWY 47.1 16.1 21.8 14.7 26.3 25.2
B27 RHK FYL [WMI] 28.4 26.1 13.3 13.9 35.3 23.4
B62 QL [IVMP] FWY [MIV] 12.6 4.8 36.5 25.4 11.1 18.1
B58 ATS FWY [LIV] 10.0 25.1 1.6 9.0 5.9 10.3

B Estimated population coverage afforded by different HLA-supertype combinations

HLA-supertypes Phenotypic frequency

Caucasian N.A. Black Japanese Chinese Hispanic Average

A2, A3, and B7 83.0 86.1 87.5 88.4 86.3 86.2
A2, A3, B7, A24, B44 and A1 99.5 98.1 100.0 99.5 99.4 99.3
A2, A3, B7, A24, B44, A1, B27, B62, and B58 99.9 99.6 100.0 99.8 99.9 99.8

a Motifs indicate the residues defining supertype specificities. The
motifs incorporate residues determined on the basis of published
data to be recognized by multiple alleles within the supertype.

Residues within brackets are additional residues also predicted to
be tolerated by multiple alleles within the putative supertype

Falk et al. 1995a, b; Prilliman et al. 1997). On the basis
of this shared specificity, these alleles have been desig-
nated the B62-supertype.

B62-supertype alleles carry a B-pocket consensus
motif of Y9, M/T45, I66, S67, N70. This structural motif is
similar to that found in some B44- and B27-supertype
alleles, except that B62-supertype alleles do not possess
a charged residue at position 45. B*1301-02, B*1506,
B*1512, B*1514, B*1519, and B*1521 are additional
HLA-B alleles which match the B62-supertype B pock-
et consensus structural motif, and which have F pocket
structures consistent with a hydrophobic specificity.
Thus, these alleles have been tentatively included with-
in this supertype.

The B62-supertype is represented with an average
frequency of 18.1%, ranging from a low of 4.8% in
Blacks to a high of 36.5% in Japanese. It should be
noted that the B62-supermotif has similarities to the
A2- and A24-supermotifs. Thus, additional coverage
may be achieved by including some or all of these al-
leles in the A2- and/or A24-supertypes.

Major histocompatibility complex polymorphism and
military corps: an analogy

Together, the previous and present analyses indicate
that a total of nine HLA-supertypes may exist. Ta-
ble 7A summarizes these supertypes, and indicates an
estimate of their prevalence in major ethnic groups.

It appears that all known HLA class I A and B al-
leles might be classified in one of these nine supertypes

(A29, B8, and B46 being exceptions). We currently es-
timate that six major supertypes alone account for over
85% of HLA-A genes, and 40% of HLA-B genes. In
practical terms, epitopes from just the six most frequent
supertypes afford an average population coverage of
99.3% (98.1 to 100% for five major ethnic groups; see
Table 7B). As mentioned above, the overall frequency
of each of these supertypes is remarkably high and fair-
ly conserved among very different ethnicities. Thus,
there might be some advantage for human populations
to present approximately five to ten main binding spe-
cificities, and that each one of these is maintained at
relatively high frequency.

What is the biological meaning of these observa-
tions? A book of old military uniforms might provide a
useful analogy. At first glance, a similarly high, and
hard to comprehend, degree of diversity is noted (Heck
1994). One might wonder about the significance of so
many different types of military corps and uniforms and
how to classify them. Analysis of their function will,
however, reveal that most military corps can in fact be
classified into a few broad categories: “navy”, “artille-
ry”, “cavalry”, “infantry”, and so on. In each army, ir-
respective of nationality, uniforms belonging to each
category are represented in relatively high and relative-
ly constant frequencies. It would be difficult to find an
army made of artillery only, with no cavalry, infantry or
navy.

To fight a war requires a balance amongst different
military functions. No function is all-encompassing, and
an army which is not diversified might be eliminated.
Yet there are a limited number of effective army func-
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tions, and an army lacking a crucial function will likely
be doomed. Recent military history illustrates this
point. Wars are not won by air or sea supremacy alone,
and by the same token, an opponent severely outdone
in terms of air support can be in serious trouble.

In this respect, different HLA alleles are analogous
to different military corps, and whole armies to popula-
tions fighting disease. Main supertypes would then cor-
respond to main military functions.

The collective immune system of human populations
is at constant war with pathogens. HLA supertypes de-
scribe the main functional specificities of peptide class I
binding. Each population in its own way, as an adapta-
tion to local conditions, will fine-tune its main popula-
tion’s peptide binding specificities, and optimize it’s ca-
pacity to fight the war against pathogens.

Conclusion

The data described above illustrates how the vast ma-
jority of known HLA class I binding specificities can be
classified into nine major functional supertypes. The
relevance of this observation might well expand beyond
the human species, as it has recently been noted that
HLA-supertype specificities extend to chimpanzees
(Bertoni et al. 1998; Kowalski et al. 1996), macaques
(Allen et al. 1998), and gorillas (Urvakes and co-work-
ers, unpublished data). Independent observations de-
monstrate that the motif of the mouse class I allele Ld

is identical to the B7-supermotif (Corr et al. 1992; Falk
et al. 1991)

While the necessary task of fully exploring and cata-
loging MHC polymorphism continues, we have begun
to appreciate the common denominators and similari-
ties hidden within this very large degree of polymor-
phism. A classification based on MHC function (which
is, after all, to bind peptides), is possible. This classifica-
tion can help to illustrate how the many different popu-
lations and ethnic backgrounds which make up our hu-
man species are engaged in a never-ending war against
disease, and must outsmart pathogens having a capacity
to mutate much faster than MHC alleles. We are uti-
lizing this knowledge as a tool to design effective vac-
cines for the treatment and prevention of human dis-
eases.
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