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Abstract
Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary 
zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively 
little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely 
unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic 
areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis’ immunoge-
netics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for 
Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent 
assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the 
allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis 
and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both 
endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with 
an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and 
antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more 
exhaustive sampling could unwind in the future.
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Introduction

Plague, a bacterial disease caused by Yersinia pestis is 
notorious for causing one of mankind’s worst pandemics, 
referred to as “The Black Death,” that wiped out approxi-
mately 50 million people in Afro-Eurasia between 1346 and 
1350 (Benedictow 2004; Klunk et al. 2022). In modern days, 
plague occurs sporadically in a few countries around the 
world, earning it the badge of a re-emerging, yet neglected 
zoonotic disease (Ditchburn and Hodgkins 2019; Eisen et al. 
2021). Primarily a disease of small mammals, plague latently 
circulates among rodent hosts (and sometimes shrews) via 
flea vectors and usually goes unnoticed until a spillover to 
humans occurs (Makundi et al. 2008), which can lead to 
human-to-human transmission. Human plague reports form 
the main available source of worldwide Y. pestis distribution 
(Stenseth et al. 2008) but are imperfect tools for mapping 
the distribution of the disease given its quiescent nature. 
Furthermore, plague is usually not maintained in humans but 
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in wildlife, thus, comprehensive records of wildlife plague 
sero-prevalence can identify new hotspots (Kilonzo et al. 
2005) and may be used to predict spillover risk.

Although perceived by many as an ancient disease, plague 
re-emerges as a threat to human health in Tanzania, where 
spillover to humans occasionally results in deadly outbreaks 
in endemic foci. Introduced from Uganda in 1883, the dis-
ease spread to other parts of the country through slave and 
ivory caravans and established foci on these ancient routes 
(Msangi 1968; Kilonzo et al. 2005). The first confirmed 
record of a plague epidemic occurred in Tanzania in 1886 in 
Image, Iringa. Outbreaks foreshadowed by high rat mortality 
and heavy rains, occurred in several localities in Iringa until 
1937 (Koch 1898; Msangi 1968). Moreover, plague out-
breaks occurred in Mbulu in 1904, though this was only con-
firmed microbiologically in 1917 (Kilonzo and Mtoi 1983; 
Msangi 1968). The deadliest outbreak ever recorded in the 
country occurred in Lushoto, with nearly 8000 cases and 640 
deaths between 1980 and 2004 (Kilonzo and Mhina 1982; 
Ziwa et al. 2013a, b). The most recent epidemic occurred 
in 2007 in Mbulu (Makundi et al. 2008). Even though out-
breaks in the country have faded over the years, sporadic 
cases are still being reported in the vicinity of Mbulu and 
in the neighboring district Babati (Mwalimu et al. 2022).

Numerous small wildlife species have been identified 
as potential reservoirs of plague in Tanzania, including 
the Natal multimammate mouse (Mastomys natalensis), 
the black rat (Rattus rattus), Lophuromys spp., the delec-
table soft-furred mouse (Praomys delectorum), the typical 
striped grass mouse (Lemniscomys striatus), the woodland 
dormouse (Graphiurus murinus), Mus sp., and Crocidura 
sp. (Kilonzo et al. 2005, 2006; Makundi et al. 2008; Ziwa 
et al. 2013b; Haule et al. 2014). Plague reservoir species 
differ in their susceptibility to Y. pestis infection as shown 
by experimental infections (Shepherd et al. 1986; Rahalison 
et al. 2004; Andrianaivoarimanana et al. 2018; Russell et al. 
2019). What exactly mediates wildlife hosts susceptibility 
or resistance to Y. pestis infection is often entirely unknown, 
but host immunity is likely key. The major histocompatibil-
ity complex (MHC), a gene-dense region encoding glycopro-
teins that bind peptides (self and foreign) and present them 
to T-cells for recognition and initiation of T-cell responses, 
plays a major role in adaptive immunity of jawed vertebrates 
(Kaufman 2018). The classical MHC I initiate defenses 
against intracellular pathogens (i.e., viruses), whereas MHC 
II triggers immune reactions against extra-cellular parasites 
(i.e., bacteria and ectoparasites). Characterized by excep-
tional polymorphism (both in terms of allele number and 
sequence divergence), particularly at peptide binding sites, 
MHC genes have become an attractive model for studying 
pathogen-mediated selection (Sommer 2005; Spurgin and 
Richardson 2010) from the most basal jawed vertebrate 
lineages (e.g., Gaigher et al. 2023) to imperfectly (e.g., 

Gaczorek et al. 2023) or recently diverged species (e.g., Li 
et al. 2021; Bracamonte et al. 2022).

A central question in MHC research is how its polymor-
phism is maintained (Radwan et al. 2020). Aside from sexual 
selection, three non-exclusive mechanisms of pathogen-
mediated selection are hypothesized to act on the identity, 
diversity, and frequency of MHC alleles: A diverse MHC 
allele repertoire and higher allelic divergence increase 
resistance to a diverse pool of parasites (i.e., heterozygote/
divergent allele advantage), as, for example, reported for 
long-tailed giant rats (Leopoldamys sabanus, Lenz et al. 
2009). Because pathogens evolve to circumvent detection by 
common MHC alleles, beneficial (often rare) MHC alleles 
become more frequent in the host population (i.e., negative 
frequency-dependent selection), as was found in Trinidadian 
Guppies (Poecilia reticulata, (Phillips et al. 2018). Lastly, 
distinct pathogen communities favor distinct immunogenetic 
profiles in geographically or temporally separated host popu-
lations (i.e., fluctuating selection), as seen in three-spined 
stickleback (Gasterosteus aculeatus, Eizaguirre et al. 2012). 
Y. pestis and its vectors also mediate selection on the MHC. 
In Gunnison’s prairie dog (Cynomys gunnisoni), a series of 
severe epizootic outbreaks of Y. pestis led to a near 100% 
decline in the population, and among the surviving popu-
lation the most common MHC II DRB allele was experi-
mentally linked to resistance against Y. pestis (Cobble et al. 
2016). MHC heterozygous water voles (Arvicola terrestris) 
were co-infected by fewer fleas, mites, and ticks (Oliver 
et al. 2009). This implies a central role of MHC molecules 
in resistance to ectoparasitic vectors of Y. pestis and infec-
tions with Y. pestis itself.

In this study, we used the multimammate rat (M. natalen-
sis) as a model system to investigate links between MHC II 
gene diversity and Y. pestis infection as well as flea burden 
to understand the century-long enigma of plague persistence 
in Tanzania. M. natalensis is a common rodent throughout 
sub-Saharan Africa and has been implicated in transmission 
of a range of zoonotic diseases including plague (Kilonzo 
and Mhina 1982), though local differences in susceptibil-
ity to plague exist across its range (Isaäcson et al. 1983; 
Shepherd et al. 1986). The species further harbors a range 
of ectoparasites (Makundi et al. 2008; Shilereyo et al. 2022), 
including key vectors, such as Xenopsylla brasiliensis and 
Dinopsylus lypusus which can be found in Tanzania (Msangi 
1968; Kilonzo et al. 2006; Makundi et al. 2008; Gebrezgiher 
et al. 2023). Thus, M. natalensis is a likely candidate con-
tributing to the transmission of plague to humans in Tanza-
nia, but the underlying mechanisms are not well understood. 
Here, we carried out an enzyme-linked immunosorbent 
assays to assess Y. pestis status and recorded the ectopara-
site (flea) burden on wild M. natalensis in selected sites 
with recent (Mbulu), past (over 20 years ago: Lushoto) and 
historic (> 100 years ago: Iringa and Kilolo) cases of human 
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plague. Additionally, we tested whether flea infestation and 
Y. pestis infections were connected to rodents’ allelic and/or 
functional immunogenetic diversity.

Materials and methods

Study sites and rodent sampling

Fieldwork was conducted between 2020 and 2021 in five 
districts: Iringa, Kilolo, Lushoto, Mbulu and Mvomero in 
Tanzania (Fig. 1A). These include areas with a history of 
human plague ((Iringa including parts of Kilolo district 
(n = 75), Lushoto (n = 117), Mbulu (n = 73)) and an area 
with no human plague history (Mvomero (n = 40)). Since 
the first plague records in a village called Image in Iringa 
region more than a century ago, restructuring of adminis-
trative divisions resulted in some villages affected by the 
plague epidemic no longer being part of Iringa district but 
are now part of Kilolo district. Hence, the two districts 
(Iringa and Kilolo) are hereinafter collectively referred to 
as “Iringa.” Sylvatic plague has never been investigated 
in Mvomero prior to this study, although the climatic and 
ecological conditions in Mvomero mirror those of plague 
endemic foci in Tanzania.

Mastomys natalensis individuals (N = 305) were live- 
captured in houses and crop fields using Sherman traps. Ani-
mals and their ectoparasites were anesthetized with diethyl 
ether and fleas were collected by thoroughly scouring the 
fur of the rodent with a small brush. The fleas were pre-
served in microtubes containing 70% ethanol and identified 

microscopically following taxonomic keys (Dunnet and  
Mardon 1974; Bahmanyar et al. 1976). Blood samples were 
collected by cardiac puncture and left at room temperature 
for serum separation. The separated serum was collected into 
sterile vials and stored at − 20 °C. Each rodent was sexed and 
weighed and an ear/tail tissue samples were taken and stored 
in 90% ethanol for DNA extraction.

Serological detection of Yersinia pestis

The fraction 1 (F1) protein, a dominant surface antigen and 
an important virulence determinant of Y. pestis has been a 
target antigen for the development of many enzyme-linked 
immunosorbent assays (ELISA) (Rasoamanana et al. 1997; 
Choi et al. 2020; Hau et al. 2022). Protective antibodies 
against F1 antigen of Y. pestis (usually appearing between 
day 8 and day 13 after infection) have long been used in 
serological diagnosis of Y. pestis infection in both animals 
and humans (Meyer 1964; Shepherd et al. 1986; Esmaeili 
et al. 2023). Two ELISA tests were performed according 
to the ELISA protocol recommended by the Plague unit of 
Institute Pasteur in Madagascar (World Health Organization 
Collaborating Centre for Plague) with some modification 
(Rasoamanana et al. 1997; Dromigny et al. 1998). The first 
ELISA test aimed to detect IgG antibodies against the F1 
antigen of Y. pestis and the second test was performed to 
determine the specificity of the antibodies detected.

Detection of immunoglobulin G (IgG) antibodies 
against F1 antigen of Y. pestis was conducted by indirect 
enzyme-linked immunosorbent assay (iELISA) as previ-
ously described (for details see Andrianaivoarimanana 

Fig. 1  A Location of Tanzanian study sites where M. natalensis were 
captured. Orange-shaded areas are districts considered to be plague 
endemic, i.e., sites with a history of human plague, green indicates 
a non-plague district, i.e., site with no history of human plague. Vil-
lages sampled are depicted by white triangles (no human plague 

recorded) and orange circles (human plague recorded). B Indirect (i) 
and competitive (c) ELISA results for detection of antibodies against 
the fraction 1 antigen of Y. pestis in M. natalensis across the four 
sites sampled. C Number of individuals infected with different flea 
genera by site
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et al. 2012; Dromigny et al. 1998). The mean optical den-
sity (OD) obtained against the coating buffer alone was 
subtracted from the OD against F1 antigen (delta OD). In 
each plate, negative (3 sera) and positive sera from wild 
rodents were included as controls and sera were randomly 
scattered on the ELISA plates. For result interpretation, 
ratio (R) system was used, calculated as the ratio of the 
delta OD of the sample (OD of plate with serum sample—
OD of plate with buffer only) to the mean delta OD of 3 
negative sera + standard deviations (SD). Samples with an 
OD > 0.100 were considered positive. The OD thresholds 
were determined according to the best specificity and sen-
sitivity (Youden’s index) from the receiver operating char-
acteristic (ROC) curve and the conjugate used as described 
by Dromigny et al. (1998).

Samples with detectable anti-F1 antibodies were further 
subjected to the competitive blocking ELISA (cELISA) to 
determine the specificity (whether the antibodies detected 
were specific to Y. pestis) following a protocol previously 
described (Chu 2000). The two tests vary in sensitivity and 
specificity, while iELISA is more sensitive but less specific, 
cELISA is more specific but less sensitive. The protocol 
involves inhibiting the antibody present in each positive 
sample with a diluted F1 antigen prior to the competitive 
blocking ELISA technique. The specificity of the reaction 
was demonstrated by a decrease of OD value according to 
the amount of F1 antigen added. In contrast, the reaction 
is considered as non-specific if the OD value remained the 
same, regardless of the quantity of F1 antigen added prior 
to the test.

High‑throughput MHC sequencing

Total DNA was extracted from tissues using the ZR Zymo 
kit (Zymo Research, USA) following the manufacturer’s 
protocol. A 171 bp long fragment (covering functionally 
important antigen binding and recognition sites) on exon 2 
of MHC class II DRB was amplified using JS1/JS2 prim-
ers (5′-GAG TGT CAT TTC TAC AAC GGG ACG -3′/5′-GAT 
CCC GTA GTT GTG TCT GCA -3′ (Schad et al. 2004). These 
primers have an exceptional ability to amplify MHC class II 
DRB exon 2 in different mammalian species and have since 
been used on several rodents (Froeschke and Sommer 2005; 
Lenz et al. 2009), shrews (Oppelt et al. 2010), lagomorphs 
(Smith et al. 2011), chiropterans (Fleischer et al. 2022), 
marsupials (Meyer-Lucht et al. 2010), and non-human pri-
mates worldwide (Huchard et al. 2012). One DRB locus 
in the striped mouse (Rhabdomys pumilio, Froeschke and 
Sommer 2005) and two loci were previously amplified 
in the long-tailed giant rat (Leopoldamys sabanus, Lenz 
et al. 2009) using single stranded conformation polymor-
phism (SSCP); hence, we expected to amplify two or more 
loci with NGS. PCR conditions and allele amplification 

were tested with a subset of six samples in triplicates on 
an Illumina test run. Finally, amplification was performed 
in a 10-μL reaction volume with 1.0 μL of DNA sample, 
300 nM of each primer, 5.0 μL AmpliTaq Gold 360 Master 
Mix (Applied Biosystems, Germany), 10 μL GC enhancer, 
and 2.4 μL  H2O. The cycling parameters were an initial 
denaturation step at 95 °C for 10 min, followed by 28 cycles 
of a 30-s denaturation at 95 °C, 30-s annealing at 55 °C, and 
60-s elongation at 72 °C with a final elongation for 3 min 
at 72 °C. Amplicons were visualized on 1.5% agarose gels 
to verify the fragment size. For library preparations, the 
JS1/JS2 primers were fused with general adapters (CS1/
CS2) (Acces Array™ System for Illumina Sequencing 
Systems, © Fluidigm, USA). Four additional random base 
pairs were added to each forward primer for optimization 
of cluster recognition during sequencing (forward primer: 
CS1-NNNN-JS1; reverse primer: CS2-JS2). In a second 
PCR, sequencing adapters and a unique 10 bp barcode were 
added. The 20-μL reaction volume consisted of a 2.5-μL 
product from the initial PCR, 4.0 μL © Fluidigm barcode 
primers, 10 μL AmpliTaq Gold 360 Master Mix, 1.0 μL GC 
enhancer, and 2.5 μL  H2O. Cycling conditions consisted 
of an initial denaturation of 10 min at 95 °C, 8 cycles of a 
30-s denaturation at 95 °C, annealing for 30 s at 60 °C, and 
elongation for 60 s at 72 °C. Final elongation at 72 °C was 
set to 3 min. Barcoded PCR products were cleaned with 
beads using the NucleoMag NGS cleanup and size select 
kit (Macherey–Nagel, Germany) and pooled at equimolar 
ratios and prepared for sequencing according to the Miseq 
Reagent Kit Preparation Guide (Illumina, USA). The librar-
ies were sequenced with the Illumina v2 500-cycles kit on 
a MiSeq platform.

MHC allele calling using the ACACIA pipeline

A total of 9,892,122 raw reads were generated to charac-
terize allelic diversity at the MHC II DRB exon 2 genes. 
Raw data from Illumina MiSeq sequencing was analyzed 
and processed using the ACACIA pipeline (Gillingham et al. 
2021). In brief, the FastQC tool first assessed the sequencing 
quality of the paired-end reads. The untrimmed paired-end 
reads were then merged using FLASH (Magoč and Salzberg 
2011) with a minimum overlap set to 50 bp and a maximum 
overlap of 250 bp. The subsequent steps were performed to 
identify all artefacts. First, sequences considered low qual-
ity, i.e., with a Phred score value < 30 at more than 10% 
of nucleotide positions were removed. Sequences that did 
not contain complete primer sequences were also removed. 
Furthermore, chimeras were detected and expunged using 
VSEARCH (Rognes et al. 2016) with default settings in 
ACACIA. All remaining sequences were blasted against a 
locally built rodent MHC-DRB sequences to remove unre-
lated sequences. All retained high-quality sequences were 
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aligned using the MAFFT algorithm (Katoh and Standley 
2013). Allele calling was performed with a clustering algo-
rithm, the OLIGOTYPING tool (Eren et al. 2013) based on 
Shannon entropy (with a cutoff of 0.2), hence making it pos-
sible to distinguish very similar alleles and to detect variable 
positions in contrast to noise attributed to sequencing errors 
(Menke et al. 2014). Finally, putative alleles with less than 
10 reads and 1% reads within the sample were excluded, 
and only individuals with a minimum coverage of at least 
8000 raw reads (before merging) were kept for downstream 
analyses. About 12% of the samples (n = 36) were duplicated 
to assess repeatability and identify possible amplification 
and sequencing biases. Negative controls on sequencing runs 
were clean (< 162 reads after merging).

Identifying positively selected sites (PSSs) 
and MHC supertyping

The PSS are presumably part of or close to functionally rel-
evant antigen-binding sites. Consequently, MHC molecules 
with distinct amino acids at PSSs are presumed to bind 
distinct antigens and represent functional diversity (Cohen 
2002; Sepil et al. 2013; Schwensow et al. 2019). To identify 
PSSs, we examined positive selection using the HYPHY 
software on the Datamonkey public webserver (Pond and 
Frost 2005; Weaver et al. 2018) using complementary meth-
ods: FEL (fixed effects likelihood), SLAC (single-likelihood 
ancestor counting), FUBAR (fast unconstrained Bayesian 
approximation), and MEME (mixed effects model of evolu-
tion). In addition, we used the program PAML4 (phyloge-
netic analysis by maximum likelihood) (Yang 2007) avail-
able for the PAML-X graphical user interface (Xu and Yang 
2013) and tested the models M1/M2 and M7/M8 to identify 
sites under positive selection. Finally, we considered 10 sites 
that were supported by at least four of the tested methods for 
further analyses (Table S1).

MHC alleles with functionally similar pathogen binding 
affinities based on shared amino acid motifs at positively 
selected sites can then be clustered together into MHC 
supertypes (e.g., Doytchinova et al. 2004; Sepil et al. 2013). 
The rationale is that grouping alleles into supertypes allows 
for greater statistical power to detect biologically meaning-
ful links with pathogens and host fitness. We grouped MHC 
alleles into supertypes using the discriminant analysis of 
principal components implemented in the R package ade-
genet (Jombart et al. 2010) and identified the ideal number 
of clusters suggested by the Bayesian information criterion 
curve (Fig. S1 and Table S2).

Statistical analysis

All statistical analyses were performed using RStudio ver-
sion 4.1.3 (RStudio Team 2015). Flea count and number of 

positive Y. pestis infections were compared between study 
sites using a generalized linear model with Poisson and bino-
mial distribution, respectively. Then, an analysis of similar-
ity (ANOSIM) with Jaccard distance was used to compare 
MHC allele and supertype composition between study sites. 
We restricted the analyses to MHC alleles present in at least 
5% and MHC supertypes present in at least 10% of the indi-
viduals in each site. Associations between specific MHC 
alleles/supertypes and Y. pestis infections or flea presence 
were identified using co-occurrence analysis as outlined in 
the cooccur R package (Veech 2014; Griffith et al. 2016). 
Positive associations between an MHC allele/supertypes and 
Y. pestis or any of its vectors is assumed when the observed 
co-occurrence is significantly higher than the expected co-
occurrence and this suggests susceptibility. Conversely, a 
negative co-occurrence suggests resistance. To avoid report-
ing positive results based on covariance between alleles/
supertypes, cases in which alleles/supertypes are positively 
or negatively associated with each other, the more frequent 
allele/supertype was assumed to be driving the effect (Råberg 
et al. 2022). Significant co-occurrence results were con-
firmed with generalized linear models (GLMs) with binomial 
error structure, using Y. pestis infection and flea infestation 
(presence or absence) as response variable and the identified 
MHC II allele/supertype, the number of alleles/supertypes 
per individual, and sex as explanatory variables separate per 
study site. We retained the explanatory variables only from 
the single model with the lowest AIC score using the function 
dredge() in the MuMIn R package (Bartoń 2022).

Results

Detection of anti‑F1 antibodies against Yersinia pestis

Indirect ELISA identified 30 M. natalensis individuals with 
detectable Y. pestis anti-F1 IgG accounting for 9.8% of the 
sampled individuals (Fig. 1B). In contrast, cELISA only found 
six M. natalensis individuals, i.e., 1.9%, with specific anti-F1 
antibodies against Y. pestis. Owing to the low sensitivity of 
cELISA samples and, hence, lack of statistical power, only 
iELISA results were considered in the co-occurrence analysis 
and any further analyses. Importantly, five M. natalensis indi-
viduals from Mvomero were positive for anti-F1 antibodies, 
suggesting that sylvatic plague is not limited to areas where 
human plague has been reported previously.

Flea abundance

A total of 268 fleas were collected from all examined hosts 
and each individual carried an average of 0.88 (± 1.68 (stand-
ard deviation (SD)). Fleas belonged to 6 genera: Dinopsyl-
lus, Xenopsylla, Nosopsylla, Ctenophthalmus, Cediopsylla, 
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and Leptopsylla (Fig. 1C). Dinopsyllus, a presumed plague 
vector, was the most abundant flea across all sites, while 
surprisingly Xenopsylla another presumed plague vector, 
was also found in all study sites except Mvomero, where 
human plague has never been reported. The combined totals 
for Dinopsyllus and Xenopsylla flea species accounted for 
80.6% (n = 216) of fleas collected from hosts. Fleas of the 
genus Ctenophthalmus (n = 17), Cediopsylla (n = 1), Lep-
topsylla (n = 14), and Nosopsylla (n = 20) accounted for the 
remaining 19.4% of fleas collected. Subsequent analyses 
focused on the two most abundant flea vectors Dinopsyllus 
and Xenopsylla, which are the presumed main plague vec-
tors in Tanzania. The abundance of the common flea genus 
Dinopsyllus differed between study sites except for the com-
parisons Mbulu–Mvomero and Iringa–Lushoto (Table S3). A 
significant difference in Xenopsylla abundance was observed 
between Mbulu and Lushoto (Table S3).

MHC II allele composition of Mastomys natalensis

A total of 305 individuals were genotyped with a mean of 
29,093 (± 5530 SD) reads per sample (range: 8141–50, 425) 
and an average of 23,707 (± 4612 SD) reads after quality fil-
tering. Allele call repeatability was 98.6% among the 36 rep-
licates. Overall, 113 unique MHC class II alleles were identi-
fied, although two (DRB*29 and DRB*83) were removed as 
they contained stop codons. The resulting 111 putatively func-
tional nucleotide alleles were translated into 91 amino acids 
sequences with 57 codon sites (Fig. S2). The MHC alleles 
clustered into nine distinct supertypes (Fig. S1 and Table S2).

The total number of MHC II alleles per individual ranged 
from 1 to 8 with a mean of 4.1 (± 1.54 SD; suggesting up 
to four loci; Fig. 2), and we found between 1 and 6 super-
types per individual, with a mean of 3.07 (± 1.01 SD). How-
ever, only one individual from Lushoto carried 6 distinct 
supertypes (Fig. S3). The number of private alleles varied 
between study sites, ranging from 10 in Mvomero to 22 in 
Lushoto. All supertypes were present across all sites. This 
suggests that functional diversity is maintained across geo-
graphically distant sampling populations. Nevertheless, the 
ANOSIM identified that allele and supertype composition 
differed significantly between study sites (Fig. 2; R = 0.178; 
p = 0.001 and Fig. S3; R = 0.118, p = 0.001, respectively) 
and, thus, the subsequent co-occurrence analysis was com-
puted separately for each site.

Effects of MHC diversity on Y. pestis infection 
and flea burden

Given our limited replication, we were unable to detect an 
association between individual flea burden and Y. pestis-
positive iELISA results. While the co-occurrence analysis 

suggested an association between MHC II DRB*014 and Y. 
pestis-positive iELISA in Mvomero (Fig. S4), this effect was 
not supported by a GLM across sites since removing allele 
DRB*014 improved model fit according to our information 
theory approach. No MHC supertypes were linked to Y. pes-
tis. But based on the co-occurrence model (Table 1) and 
the confirmatory GLMs, infestation likelihood with Dinop-
syllus and Xenopsylla was positively associated with allele 
DRB*016 ((Fig. 3, (GLM, estimate: 1.05 ± 5.09, p = 0.039; 
GLM, estimate: 2.75 ± 1.18, p = 0.019, respectively)).

The best model to include an interaction between allele 
DRB*016 and study site on Xenopsylla presence (p < 0.001, 
Fig. 3): individuals carrying DRB*016 had a higher likeli-
hood of Xenopsylla infestation in Mbulu, whereas in Iringa 
DRB*016 was associated with a lower infestation likelihood 
(GLM, estimate: − 3.35 ± 1.46, p = 0.022). Although the co-
occurrence analysis suggested an association between MHC 
supertype 1 and Xenopsylla infestation likelihood, this was 
not supported in a confirmatory GLM (estimate: 0.15 ± 0.42, 
p = 0.716). As for the influence of other covariates on Xenop-
sylla infestation likelihood, the number of alleles had a weak 
effect (GLM, estimate: 0.26 ± 0.13, p = 0.042), and there 
was a lower likelihood of infestation in Lushoto (GLM, esti-
mate: − 1.00 ± 0.47, p = 0.035). Sex had no effect (Fig. 3B).

Discussion

Little is known about the true distribution of sylvatic 
plague in Tanzania—a bias inherent in many if not all 
studies of plague ecology in Tanzania that are only ini-
tiated after or during epidemics. Sylvatic hotspots with-
out records of spillover to humans thus remain unidenti-
fied. Our study provides evidence that Y. pestis is still 
circulating in sylvatic reservoirs, such as M. natalensis, 
in endemic foci/areas (Iringa, Lushoto, Mbulu), but is 
also present in areas without historic records of human 
plague, such as Mvomero. A similar observation has been 
reported in south-western Zimbabwe, where a Y. pestis-
positive M. natalensis individual was captured in a non-
endemic area (Banda et al. 2022). Aside from Y. pestis, 
we recorded a high diversity of fleas in M. natalensis 
and an exceptional high diversity of MHC II alleles. Yet, 
we were unable to detect a clear link between Y. pestis 
infection and its vectors, or between host immunogenetic 
diversity and Y. pestis or common fleas. The only asso-
ciation were between the MHC class II allele DRB*016 
and flea burden with either Xenopsylla or Dinopsyllus, 
and the direction of association differed between sites for 
Xenopsylla. Our work raises awareness of the potential 
of sylvatic reservoirs in spreading mammalian pathogens, 
such as the plague. At the same time, it emphasizes that 
exhaustive studies are needed, particularly in hosts with an 
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exceptional immunogenetic diversity, to understand local, 
regional, and pancontinental differences (e.g., in the case 
of other reservoirs such as Rattus rattus) and similarities 
to reveal spatial differences in resistance.

We found a low prevalence of Y. pestis (9.8%), which is 
a common observation for Y. pestis in natural foci during 
inter-epizootic periods (Eisen and Gage 2009; Mahmoudi 
et al. 2021; Rahelinirina et al. 2022). This is especially true 

Fig. 2  The frequency of MHC class II DRB alleles and total number 
of alleles (per individual among 305  M. natalensis genotyped) per 
site and across all sampling sites. Orange shows districts considered 
to be plague endemic, i.e., sites with a history of human plague, green 

indicates a non-plague district, i.e., site with no history of human 
plague. The dashed line indicates the 5% threshold for alleles to be 
included in further analyses
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for enzootic hosts like M. natalensis that develop antibodies 
and survive the infection, but equally serve as a reservoir for 
the continuing transmission cycle, thus maintaining plague 
in endemic foci for decades (Kilonzo et al. 2005; Makundi 
et al. 2008; Ziwa et al. 2013b). The role of rodents as plague 
reservoirs in Tanzania is fairly well understood, and more 
than ten rodent species are hypothesized to serve as poten-
tial plague reservoirs (Msangi 1968; Kilonzo et al. 2005; 
Makundi et al. 2008; Kessy et al. 2023). Yet, the true res-
ervoir of plague remains elusive, not at last due to the high 
number of potential reservoir species. Because M. natalensis 
is common, widespread, and peri-domestic, a role as poten-
tial plague reservoir is likely, even though they could merely 
be spillover hosts from an unknown cryptic reservoir as was 
reported to be the case in other species (Danforth et al. 2018; 
Colman et al. 2021).

Plague has rarely been examined in fleas in Tanzania dur-
ing active phase of human plague epidemics or epizootics 
(Kilonzo and Mhina 1982; Makundi et al. 2008), and when 
examined during quiescent periods, it has not been detected 
(Haule 2013; Hang’ombe et al. 2014; Leulmi et al. 2014). 
This appears to be representative for flea-pestis patterns as 
has been found across various African countries (Bai et al. 
2017; Rahelinirina et al. 2022) and the USA (Bron et al. 
2019; Colman et al. 2021); although, there are exceptions 
(Hang’ombe et al. 2012; Ehlers et al. 2020). Regardless of 
data paucity on Y. pestis detection in fleas, Dinopsyllus and 
Xenopsylla species are the presumed key vectors involved in 
plague transmission in Tanzania because of their predomi-
nance in plague foci. We were, however, unable to detect a 
clear link between Xenopsylla or Dinopsyllus burden and 
individuals testing Y. pestis-positive. Plague foci in Tanzania 
differ in host diversity (Haikukutu et al. 2022; Kilonzo et al. 
2005) and vector diversity (as shown in the current study). 
Xenopsylla was, for instance, not found in Mvomero, which 

presumably explains why human plague cases have never 
been reported in this area despite the presence of sylvatic 
plague. The two predominant fleas in plague foci in Tan-
zania plausibly play different roles in plague transmission 
owing to differences in host preference: Dinopsyllus might 
be involved in plague transmission between rodents, while 
Xenopsylla transmit plague from to rodents to human as 
it readily feed on humans when their natural hosts are not 
available. In fact, and unlike Dinopsyllus, only Xenopsylla 
species are considered efficient vectors of plague to humans 
(Zhang et al. 2015; Hinnebusch et al. 2017).

Only a limited number of studies investigated the immu-
nogenetic basis of resistance against Y. pestis and flea infes-
tation in wild rodents ((e.g., C. gunnisoni, R. opimus, R. 
rattus (Tollenaere et al. 2012; Cobble et al. 2016; Nilsson  
et al. 2018)). Likewise, the MHC of M. natalensis has rarely 
been investigated (Goüy de Bellocq and Leirs 2009, 2010), 
despite the rodents being a reservoir of some of the best-
known pathogens like Y. pestis (Haikukutu et al. 2022) 
and Lassa virus (Olayemi and Fichet-Calvet 2020) and its 
pancontinental distribution. We report a total of 111 MHC 
class II DRB alleles and nine distinct MHC supertypes in 
M. nataliensis in four sites. While this is high in compari-
son with the 5–32 alleles found in shrews (e.g., Oliver and 
Piertney 2006; Scherman et al. 2014), the six found in a bot-
tlenecked population of prairie dogs (Cobble et al. 2016), or 
the 27 identified in yellow-necked mice (Apodemus flavicol-
lis; Meyer-Lucht and Sommer 2005), previous work on the 
MHC diversity in M. nataliensis caught only in Morogoro 
described 21 alleles in just 24 individuals (Goüy de Bellocq 
and Leirs 2010). Given that we sampled a higher number of 
individuals and across four geographically separate loca-
tions, we likely captured the species regional MHC diversity 
with many locally unique variants.

We were unable to detect a significant association 
between MHC class II alleles or supertypes and Y. pestis 
infection in M. natalensis. This, however, does not imply a 
lack of plague-mediated selection acting on the MHC but 
could possibly be due to low statistical power. In fact, the 
variation detected in the MHC allele composition between 
sites in the current study may imply geographic variations 
in pathogen-mediated selection, including by strains of Y. 
pestis (a complex yet to be disentangled in Tanzania) simi-
lar to reports from Madagascar (Vogler et al. 2011) and the 
many other pathogens likely to vary across time and space 
(Oliver et al. 2009). Moreover, several nucleotide sequences 
translated into the same amino acid allele, which possibly 
speaks to balancing selection conserving these sequences. 
Gene duplication plays an essential role in adaptation and 
cause important adaptive variation affecting the structural 
organization of the MHC molecules that bind and present 
antigens to the T-cells (Qurkhuli et al. 2019). Nilsson et al. 
(2018) reported that duplication of the MHC class II gene 

Table 1  MHC II DRB alleles positively associated with Y. pestis 
infection and flea infestation on M. natalensis individuals based on 
the co-occurrence analysis

Co-occurrence Study site P value

MHC class II DRB allele
DRB*014 Y. pestis Mvomero 0.046
DRB*014 Dinopsyllus Iringa 0.015
DRB*016 Dinopsyllus Iringa 0.048
DRB*004 Dinopsyllus Lushoto 0.009
DRB*016 Xenopsylla Mbulu 0.009
DRB*017 Xenopsylla Mbulu 0.009
DRB*028 Xenopsylla Mbulu 0.037
Positively correlated alleles per site
DRB*004 DRB*014 Lushoto
DRB*016 DRB*017 Mbulu
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Fig. 3  Model averaged parameter estimates and their 95% confidence intervals of GLMs examining the effect of MHC class II DRB allele 
DRB*016, sex, number of MHC alleles and study site on Dinopsyllus (A) and Xenopsylla (B) infestation on M. natalensis 
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in plague-resistant great gerbil provides high peptide bind-
ing affinity for Yersinia epitopes. Similarly, Tollenaere et al. 
(2012) report gene duplication of MHC class I linked PSD4 
loci in the plague-resistant R. rattus in Madagascar. Work 
from European badgers suggests that plague resistance is 
indeed a polygenic trait with not just one gene determining 
survival (Sin et al. 2014). This is not far-fetched given the 
compelling evidence that the Black death pandemic–shaped 
human immunity, favoring individuals with more copies of 
the selectively advantageous haplotype (Immel et al. 2021; 
Klunk et al. 2022). Y. pestis may well exhibit a strong selec-
tive pressure conserving the duplicated sequences in M. 
natalensis; however, due to low Y. pestis prevalence and the 
exceptionally diverse DRB region of the MHC with many 
local variants, we did not find support for a strong link.

Despite the lack of a clear link between Y. pestis and 
MHC, we found evidence that MHC II allele DRB*016 was 
associated with flea burden in M. natalensis. For Xenopsylla, 
the effect of DRB*016 varied between sampling sites, which 
lends weight to the suggestion of local adaptation owing 
to locally distinct pathogen-mediated selection (Oliver 
et al. 2009). In another study, the MHC allele Rhpu-DRB*1 
was associated with high parasite load in the four-striped 
grass mouse (Rhabdomys pumilio, Froeschke and Sommer 
2005). Ectoparasites downregulate host innate and specific 
acquired immune defenses through special mechanisms 
that involve salivary peptides derived from anticoagulants, 
antiplatelets, vasodilators, and immunomodulators, which 
are then presented to antigen-specific T-lymphocytes at 
ectoparasite attachment sites by specific host MHC class 
II molecules (Rechav 1982). This triggers an immune cas-
cade, which include specific antibody response, interfering 
with ectoparasite attachment and nutrient absorption by 
deactivating saliva mediated proteins that play key roles in 
pathways geared towards overcoming ectoparasite infesta-
tion. Immunological defense against ectoparasites is costly, 
a trade-off between the cost of reproduction and immune 
defense against ectoparasites in bats has previously been 
reported (Schad et al. 2012). Thus far, no fitness trade-offs 
were uncovered in M. natalensis, but a distinction between 
susceptible and resistant individuals might prove meaning-
ful (Schmid et al. 2023). It is worth noting that ectoparasite 
abundance is a multifactorial trait influenced by environ-
mental factors (e.g., temperature and humidity) and host 
characteristics such as home range, social system, sex, 
reproductive state, age, and body size (Maaz et al. 2018; 
López-Pérez et al. 2022), and, thus, longitudinal studies 
(e.g., capture-mark-recapture) encompassing all these factors 
are needed to paint a better picture of the interacting factors.

Clustering of functional MHC alleles into supertypes was 
suggested as remedy to overcome the lack of statistical power 
to detect pathogen-mediated selection on many nucleotide 
or amino acid alleles with great similarity, particularly in 

strongly spatially structured but geographically wide-ranging 
hosts (Herdegen-Radwan et al. 2021). However, we found no 
link between Y. pestis or flea vectors and MHC supertypes. 
Since MHC molecules encoded by distinct alleles may differ 
slightly in the range of bound peptides, which leads to varia-
tion in functionality despite similar peptide motifs (Kaufman 
2020), the lack of association could suggest suboptimal super-
typing that was unable to capture meaningful single amino 
acid differences and thus merged functionally still too distinct 
alleles into the same supertypes. However, because we also 
only found a single MHC allele associated with fleas and none 
with Y. pestis, we suspect our sample size is still insufficient to 
detect pathogen/vector and MHC allele/supertype associations 
(Gaigher et al. 2019).

Resources for surveillance in Tanzania as in other Afri-
can countries are limited and rather directed at diseases 
of greater concern (Jowett and Miller 2005). But we have 
shown here that even sporadically occurring pathogens, like 
Y. pestis, and diseases of low incidence rates in humans, 
such as plague, quiescently circulate through sylvatic hosts 
or vectors. Our work is particularly timely given the recent 
spillover to humans reported in Babati district near Mbulu 
(Mwalimu et al. 2022). Even if surveillance was regular, 
endemic foci are often preferentially surveyed, though we 
have detected Y. pestis-positive in an area without records 
of human plague. Therefore, our work stresses the impor-
tance of regularly monitoring wildlife hosts and reservoirs 
throughout their range.

Conclusion

Investigating a disease in natural populations is complicated, 
even more so if the disease has latent patterns of transmission 
and maintenance like plague. In this study, we characterized 
the MHC class II diversity of an important plague reservoir 
to gain new insight into the genetic background of plague 
persistence in Tanzania. We found a single MHC class II 
allele associated with plague vectors. Longitudinal studies 
to generate plague surveillance data coupled with studies 
encompassing whole genome or targeted re-sequencing and 
experimental infections would propel our understanding 
plague persistence in sylvatic reservoirs.
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