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Abstract
Glycophorins are transmembrane proteins of red blood cells (RBCs), heavily glycosylated on their external-facing surface. In 
humans, there are four glycophorin proteins, glycophorins A, B, C and D. Glycophorins A and B are encoded by two similar 
genes GYPA and GYPB, and glycophorin C and glycophorin D are encoded by a single gene, GYPC. The exact function of 
glycophorins remains unclear. However, given their abundance on the surface of RBCs, it is likely that they serve as a sub-
strate for glycosylation, giving the RBC a negatively charged, complex glycan “coat”. GYPB and GYPE (a closely related 
pseudogene) were generated from GYPA by two duplication events involving a 120-kb genomic segment between 10 and 
15 million years ago. Non-allelic homologous recombination between these 120-kb repeats generates a variety of duplica-
tion alleles and deletion alleles, which have been systematically catalogued from genomic sequence data. One allele, called 
DUP4, encodes the Dantu NE blood type and is strongly protective against malaria as it alters the surface tension of the RBC 
membrane. Glycophorins interact with other infectious pathogens, including viruses, as well as the malarial parasite Plasmo-
dium falciparum, but the role of glycophorin variation in mediating the effects of these pathogens remains underexplored.
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Glycophorin genes and function

Glycophorins are transmembrane proteins of red blood cells 
(RBCs), heavily glycosylated on their external-facing surface. 
In humans, there are four glycophorin proteins, glycophorins 
A, B, C and D. Glycophorins A and B are encoded by two 
similar genes GYPA and GYPB, and glycophorin C and gly-
cophorin D are encoded by a single gene, GYPC, which is 
not related to GYPA/GYPB. Glycophorin C and glycophorin 
D differ due to different translational start sites on the GYPC 
transcript (Le Van et al. 1987). A gene annotated as GYPE, 
which is very similar to GYPA and GYPB, is transcribed, but 
no protein product for glycophorin E has been detected; there-
fore, GYPE is likely to be a pseudogene (Fig. 1, Vignal et al. 

1990). Glycophorins have been characterised as carrying the 
antigens for several human blood groups. Glycophorins A and 
B carry the MN and Ss blood groups, and glycophorin C car-
ries the Gerbich blood group system (Daniels 2008; Lopez 
et al. 2021). Rare individuals without glycophorin A (En), 
glycophorin B (S- s- U-) or both  (Mk) have been identified 
by the absence of particular blood groups carried by these 
proteins. Individuals who lack glycophorin B or glycophorin 
A are healthy (Tokunaga et al. 1979), so the exact function of 
these glycophorins remains unclear. Glycophorin C has been 
shown to have a role in maintaining the biconcave discoid 
shape of the RBC (Reid et al. 1987). Given their abundance 
of glycophorins on the surface of RBCs, it is likely that they 
also serve as a substrate for glycosylation, giving the RBC a 
negatively charged, complex glycan “coat” allowing circula-
tion without adherence to other cells or walls of blood vessels.

Evolution of glycophorin genes in primates

Primates, and other mammals, have a single GYPA gene, 
with the exception of bonobos, chimpanzees, gorillas and 
humans, which all have three related genes (GYPA, GYPB 
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and GYPE) (Rearden et al. 1993), sharing about 97% iden-
tity. These three genes were generated by two duplication 
events after divergence of orangutans but before divergence 
of gorillas from the human lineage (about 10–15 MYA) 
(Fig. 2a; Kudo and Fukuda 1990; Rearden et al. 1993). There 
is no evidence for duplication of GYPC, as all primates 
have a single GYPC gene (Wilder et al. 2009). However, 
the translation initiation codon for glycophorin C appears to 
be specific to humans, with the translation initiation codon 
for glycophorin D conserved across apes. Glycophorin C 
is therefore a human-specific protein, with glycophorin D 
being present in all apes (Wilder et al. 2009).

Structural variation of glycophorin genes

The glycophorin genes A, B and E are on approximately 120-
kb tandemly arranged repeats on chromosome 4 (Fig. 2b), 
and, because of this, are prone to rearrangements driven by 
recurrent non-allelic homologous recombination (NAHR) 
events. These events can be either deletions or duplications, 
and involve either GYPA-GYPE, GYPA-GYPB or GYPB-
GYPE as partners. More complex events can be generated, 
most likely the result of a series of individual NAHR events. 
If the complex events involve the regions where the glyco-
phorin genes are encoded, then fusion genes can be formed 

Fig. 1  Summary of the role of glycophorins and infectious disease. Over-
view of the central concepts discussed in this review. Structural variation 
affects two distinct loci carrying the GYPC gene and GYPA/GYPB/GYPE. 

Different variants encode distinct glycophorin variants on the red blood cell 
surface. These glycophorins interact with a variety of different pathogens, 
including viruses, bacteria and malaria. Created with Biore nder. com

https://Biorender.com
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from different exons of GYPA/GYPE and GYPB. Many of 
these variants were initially detected as novel, rare, blood 
groups (Daniels 2008). Analysis of the molecular genetic 
basis of particular rare blood groups (e.g. some alleles with 
the S- s- blood group, Willemetz et al. 2015) has shown that 
gene conversion, where a region from one gene is “copied 
and pasted” into another, is a further source of genetic vari-
ation. Because GYPC is in a single copy region on chromo-
some 2, the gene is not prone to extensive complex structural 
variation; however, the Gerbich negative blood types are 
caused by small deletions of exon 2 (Ge2), exon 3 (Ge3) 
or both exons 2 and 3 (Ge4) and the Gerbich Lsa antigen 
is caused by a duplication or triplication of GYPC exon 3 
(Jaskiewicz et al. 2018).

Genome sequence data has allowed a systematic cata-
loguing of structural variants across the region (Leffler et al. 
2017). Many have been validated by fibre-FISH, breakpoint 
PCR, and some have been shown to underlie blood group 
variation (Louzada et al. 2020). The sizes of the observed 
duplications and deletions usually correspond to loss or gain 
of one, or sometimes two, repeat units of ~ 120 kb each. The 
most complex structural variant yet identified is DUP4, 
which is the molecular basis of the Dantu NE blood group. 
This is partial duplication/triplication and generates loss 
of GYPB but a duplication of GYPE and three copies of a 
novel GYPB-GYPA fusion gene which is expressed on the 
RBC surface (Leffler et al. 2017; Algady et al. 2018). In 
contrast to structural variants that cause changes in copy 
number, a systematic exploration of gene conversion variants 

and inversion variants in the region is lacking. Given the 
challenges in mapping short sequence reads to duplicated 
regions such as the glycophorin A-B-E region, accurate long 
sequence reads will be needed to robustly distinguish gene 
conversion events from sequence read mis-mapping.

Compared to humans, little is known about structural 
variation in primate glycophorins. Genome assemblies 
using long-read sequence data give an indication of at least 
one structural arrangement of the region, for example the 
latest bonobo assembly (Mao et al. 2021, panPan3) shows 
the same glycophorin arrangement as humans. However, the 
genome region containing glycophorin A-B-E is currently 
incompletely assembled in the most recent gorilla assembly 
(ggor6) and chimpanzee assembly (Clint_PTRv2), presum-
ably because of its highly duplicated structure. Although 
the A-B-E genomic structure has been confirmed in gorillas 
(Xie et al. 1997), we have observed a gorilla with a total of 
four glycophorin genes using fibre-FISH, though we were 
unable to determine whether the extra glycophorin gene was 
GYPA, GYPB or GYPE (Louzada, Hollox and Yang unpub-
lished). It is known that GYPE is polymorphic in copy num-
ber in gorillas, being completely absent in 9/16 individuals 
(~ 56%) (Rearden et al. 1993), so the extra gene we observe 
is likely to be GYPE. In an early chimpanzee reference 
genome (panTro2), three GYPE genes were annotated (Ko 
et al. 2011), and this arrangement confirmed using fibre-
FISH (Fig. 2c). It is likely that other genes, beyond GYPE, 
will be copy number variable in chimpanzees and gorillas, 
but a comprehensive study is needed.

Fig. 2  Evolution of glycophor-
ins in great apes. a The tree 
shows the phylogeny of great 
apes, with branches annotated 
with the changes in glycophorin 
genes along the branches. b 
Fibre-FISH representative 
image of the human gly-
cophorin region showing the 
reference haplotype. 120-kb 
repeats carrying GYPE, GYPB 
and GYPA are represented by 
coloured bars green, orange and 
purple, respectively. Each one 
of the genes was identified by 
a specific FISH pattern using 
region-specific fosmid clones 
(details in Louzada et al. 2020). 
c Structural variation in the 
glycophorin region in chim-
panzee revealed by fibre-FISH, 
highlighting the presence of 
three copies of GYPE (fibre-
FISH details in Louzada et al. 
2020)
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Genotyping the variation in glycophorin 
genes

Although genome sequencing is becoming cheaper and more 
cost effective, there is still an important role for methods 
designed to genotype structural variants by PCR, particularly 
for limited samples or in situations with limited resources. 
For DUP4, methods involving PCR amplification of GYPB-
GYPA and GYPA followed by restriction enzyme digestion 
and gel electrophoresis to distinguish the genes (Leffler 
et al. 2017) or breakpoint-specific PCR (Algady et al. 2018) 
have been developed. Designing a PCR spanning the SV 
breakpoint is challenging because PCR primers are designed 
to be specific not only to the allele but the paralogue as well. 
However, for other variants, in particular GYPB deletion 
alleles, breakpoint-specific PCRs and PCR-based paralogue 
ratio tests have been developed (Lane et al. 2020; Algady 
et al. 2021; Amuzu et al. 2021).

For genotyping single nucleotide variation, mis-mapping 
of short sequencing reads between paralogues can limit 
accuracy, particularly in regions where gene conversion 
alleles have occurred. Similarly, paralogues need to be dis-
tinguished in PCR approaches by carefully validating the 
paralogue-specificity of PCR primers, to ensure the correct 
locus is genotyped. As for structural variation, long read 
sequencing will make accurate genotyping of these dupli-
cated regions more reliable, and allow for improvements in 
haplotype phasing of variants.

Glycophorins in malaria

Both glycophorin A and glycophorin B act as receptors 
EBA-175 and EBL-1 on the surface of Plasmodium falci-
parum, the parasite responsible for malaria in Africa. Gly-
cophorin C also interacts with P. falciparum through its 
EBA-140 receptor (Wassmer and Carlton 2016). The DUP4 
structural variant, encoding the Dantu blood group, has 
been shown to be protective against severe malaria, with 
homozygotes showing 74% protection against severe malaria 
(Field et al. 1994; Leffler et al. 2017). Furthermore, in a 
village-based non-hospital setting with endemic P. falcipa-
rum malaria, DUP4 has been shown to be associated with 

higher haemoglobin levels, likely reflecting DUP4 protec-
tion against malarial anaemia (Algady et al. 2018). DUP4 
protects against malaria not by altering ligand-receptor 
interactions with P. falciparum, but by increasing the RBC 
surface tension preventing P. falciparum invasion (Kariuki 
et al. 2020).

Despite functional evidence showing that RBCs com-
pletely lacking glycophorins A and B are partially resistant 
to P. falciparum invasion (Hadley et al. 1987), there is no 
genetic evidence suggesting that other alleles of the gly-
cophorin A-B-E region affect susceptibility to malaria. A 
functional study suggested that an allele at GYPC encod-
ing Gerbich negative blood types, and at high frequency in 
Melanesians, was protective against P. falciparum invasion 
(Maier et al. 2003); however, there is no support for this from 
recent large-scale association studies in other populations.

Malaria is known to have been a major agent of natural 
selection in humans who live where malaria is endemic. 
Because of the role of glycophorins in malaria, there are sev-
eral studies that assess genetic variation for signs of natural 
selection, and discover evidence for natural selection at the 
glycophorin A-B-E region (Baum et al. 2002; Ko et al. 2011; 
Bigham et al. 2018; Johnson and Voight 2018). Although this 
is consistent with our expectations, methods using sequence 
diversity and divergence may be biased because of the highly 
duplicated nature of the glycophorin A-B-E region, and the 
extensive recombination, copy number variation and gene 
conversion that occurs. More recent selection can be detected 
using an extended haplotype test, which compares LD with 
allele frequency to test for strong recent positive selection of 
a variant, and is likely to underestimate selection in the pres-
ence of gene conversion. The DUP4 variant is young as it is 
restricted to East Africa (Table 1, Leffler et al. 2017). Using 
the extended haplotype test, it has been shown that DUP4 
has undergone recent positive selection to rapidly increase 
in frequency, presumably due to its protective effect against 
malaria (Leffler et al. 2017).

Unlike glycophorins A, B and E, the GYPC gene is not 
the result of a recent duplication, and lacks close paral-
ogues. Comparative evolutionary studies are therefore more 
straightforward as the correct orthologue can be confidently 
identified, and analysis of genetic diversity is not affected 
by potential mis-mapping of sequence reads. Comparative 

Table 1  DUP4 allele 
frequencies

Country Location DUP4 allele  
frequency

Reference

Tanzania Nyamisati 0.13 Algady et al. (2018)
Malawi Blantyre 0.039 Leffler et al. (2017)
Kenya Kilifi 0.09 Leffler et al. (2017)
USA Chicago, African-American 0.005 Unger et al. (1987)
South Africa Cape region, admixed 0.011 Moores et al. (1992)
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analysis has shown that glycophorins C and D, encoded by 
GYPC, have undergone recent natural selection of the extra-
cellular domain, strongly suggesting pathogen-mediated 
evolution (Wilder et al. 2009).

Glycophorins in other infectious diseases

There is some evidence that glycophorins A and B act as 
receptors for other pathogens. Babesia divergens, which, 
like Plasmodium, is a member of the Apicomplexa phy-
lum, is an eukaryotic intracellular parasite which can cause 
malarial-like symptoms in immunocompromised humans,  
uses glycophorins A and B to enter the RBC (Lobo 2005).

Some strains of Escherichia coli bind to glycophorin A on 
the surface of RBCs (Cooling 2015), and glycophorin A acts 
as the receptor to reoviruses, double stranded RNA viruses 
which include the rotavirus family. The single stranded 
RNA viruses encephalomyocarditis virus and hepatitis A 
also seem to use glycophorin A as a receptor for infection. 
Influenza viruses have been shown to interact with glyco-
phorin A, and because influenza viruses cannot replicate in 
the anucleated RBC, it has been suggested that glycophorins 
act as decoy receptors diverting infection away from other 
tissues (Gagneux and Varki 1999).

Conclusion

Glycophorins are major glycoproteins of the RBC surface, 
and are receptors for the malarial parasite P. falciparum. The 
region containing three paralogous 120-kb repeats, carrying 
the GYPA, GYPB and GYPE genes, has been generated by 
repeated rounds of duplication between 10 and 15 MYA, 
and shows extensive complex structural variation. One struc-
tural variant, DUP4, encodes the Dantu blood group antigen 
and is strongly protective against severe malaria. The role 
of genetic variation in the response to other pathogens that 
use glycophorins as receptors remains unclear.
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