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Tuning of human NK cells by endogenous HLA-C expression
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Abstract
NK cells are primarily responsible for detecting malignant or pathogen-infected cells, and their function is influenced both by
stress-associated activating signals and opposing inhibitory signals from receptors that recognize self MHC. The receptors that
produce this inhibitory signal shift from the NKG2A:HLA-E system to that of KIR:HLA as the NK cells mature. This maturation
is associated with an increase in lytic activity, as well as an increase in HLA-C protein levels controlled by the NK-specificHLA-
C promoter, NK-Pro. We propose that modulation of the translatability of HLA-C transcripts in NK cells constitutes an evolu-
tionary mechanism to control cis inhibitory signaling by HLA-C, which fine tunes NK cell activity. Furthermore, the high degree
of variability in KIR receptor affinity for HLA alleles, as well as the variable expression levels of both KIR and HLA, suggest an
evolutionary requirement for the tuning of NK lytic activity. Various data have demonstrated that mature NK cells may gain or
lose lytic activity when placed in different environments. This indicates that NK cell activity may be more a function of constant
tuning by inhibitory signals, rather than a static, irreversible “license to kill” granted to mature NK cells. Inhibitory signaling
controls the filling of the cytolytic granule reservoir, which becomes depleted if there are insufficient inhibitory signals, leading to
a hyporesponsive NK cell. We propose a novel model for the tuning of human NK cell activity via cis interactions in the context
of recent findings on the mechanism of NK education.
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Introduction

Natural killer (NK) cells are innate lymphocytes possessing a
variety of activating receptors that detect cells undergoing
stress, malignant transformation, or the presence of pathogens
(Arase et al. 2002; Raulet et al. 2017; Barrow et al. 2019). The
signals transmitted by these activating receptors are opposed
by inhibitory signals generated by receptors that recognize
MHC proteins (Karlhofer et al. 1992; Colonna and
Samaridis 1995; McQueen and Parham 2002). Human NK
cells are defined as lymphocytes that express neural cell ad-
hesion molecule 1 (NCAM1/CD56), and lack surface expres-
sion of the T-cell receptor-associated complex epsilon chain
(CD3E/CD3) (Lanier et al. 1986).

Human NK cells are divided into early and late develop-
mental stages based on the level of CD56 expression, either
CD56bright or CD56dim, respectively (Freud and Caligiuri
2006). The CD56dim subset generally accounts for greater than
80% of peripheral blood NK cells. CD56dim NK cells express
killer cell immunoglobulin-like receptors (KIR), cytolytic
granules containing perforin (PRF1) and granzyme B
(GZMB), and high surface levels of the low-affinity immuno-
globulin gamma Fc region receptor III-A (FCGR3A/CD16),
enabling the killing of antibody-coated target cells. Although
the less mature CD56bright cells are a minor component of the
peripheral blood NK population, they are the major subset in
secondary lymphoid tissues (Ferlazzo et al. 2004). CD56bright

NK cells express lower resting levels of cytotoxic effector
proteins, are generally CD16 negative, and use the CD94/
NKG2A receptor complex (KLRD1/KLRC1) to achieve self-
tolerance, as KIR expression is only found in the CD56dim

subset. CD56bright NK cells are also potent cytokine producers
(IFN-γ, TNF, GM-CSF) when stimulated with cytokine com-
binations; however, they show limited antitumor activity
ex vivo (Fehniger et al. 1999).

NKG2A is the major inhibitory MHC receptor expressed
by immature CD56bright NK cells, and it recognizes the HLA-
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E molecule (Lee et al. 1998b). This is a highly conserved
interaction, since HLA-E has few alleles and it presents the
HLA leader peptide (Lee et al. 1998a; Parham et al. 2012). As
NK cells mature, NKG2A expression is replaced by the var-
iegated expression of KIR that recognize specific HLA-A,
HLA-B, or HLA-C alleles (Béziat et al. 2010; Björkström
et al. 2010).

A comparison of the leader peptide of the HLA-A, HLA-B,
and HLA-C proteins reveals an interesting feature that may
reflect an evolutionary process whereby KIR:HLA-B/HLA-C
interactions are supplanting NKG2A:HLA-E interactions to
control NK activity. The HLA-A gene possesses two closely-
spaced ATG codons that both conform to the optimal context
for translation initiation: a purine at − 3 and a guanine at + 4
(Fig. 1) (Kozak 1986). In this context, the first ATG would be
dominant, as demonstrated by Kozak (Kozak 2005).
However, in the HLA-B and HLA-C genes, the guanine at +
4 of the first ATG has been replaced by a cytosine residue,
which would allow for enhanced initiation at the downstream
ATG. This is significant, as the leader peptide presented by
HLA-E begins at the valine residue that precedes the second
methionine. Therefore, the HLA-B and -C proteins produced
by initiation at the downstream ATG would not provide li-
gands for HLA-E. Furthermore, the HLA-B gene contains a
dimorphism that replaces the second ATG with ACG (threo-
nine), resulting in a leader peptide that cannot be presented by
HLA-E. HLA-B alleles possessing a leader peptide that can be
presented by HLA-E typically do not contain the Bw4 epitope
recognized by KIR3DL1 (Litwin et al. 1994; Lutz 2014),
while those alleles that have leader peptides that cannot be
loaded into HLA-E tend to possess the Bw4 epitope, indicat-
ing a shift from alleles that are recognized via NKG2A to
those seen by KIR3DL1 (Horowitz et al. 2016).

All HLA-C alleles are recognized by at least one KIR,
whereas less than half of the HLA-A or -B alleles are KIR
ligands (Norman et al. 2007). KIR gene expression is activat-
ed by a probabilistic mechanism, and the majority of NK cells
(~ 80%) express from 1 to 3 KIR (Valiante et al. 1997; Li et al.
2008). These NK cells are specialized, as their inhibitory re-
ceptors recognize a subset of HLA alleles, enhancing

identification of aberrant cells which have lost or downregu-
lated expression of a single HLA allele. MHC-C is the most
recently evolved MHC class I, and is found only in humans
and great apes, along with the appearance of the MHC-C-
specific KIR: KIR2DL1; KIR2DL2; KIR2DL3 (Guethlein
et al. 2007). Dimorphism at position 80 in the α1 domain of
HLA-C defines two mutually exclusive epitopes, C1 (aspara-
gine 80) and C2 (lysine 80), which are recognized by different
KIR (Winter and Long 1997). KIR2DL1 recognizes HLA-C
alleles possessing the C2 supratype, while KIR2DL2/L3 rec-
ognize the C1 group of HLA-C alleles.

The appearance of the MHC-C gene in the genome of
hominid primates has been linked with a greater invasion of
placental trophoblasts into maternal decidual tissue (Moffett
and Colucci 2015). NK cells are the dominant lymphocyte
population in the decidua, and they interact directly with in-
vading trophoblasts, which lack expression of HLA-A and
HLA-B but express HLA-C together with HLA-E, HLA-F,
and HLA-G, indicating a potential role for KIR:HLA-C inter-
actions in the regulation of trophoblast invasion (Redman
et al. 1984; Ishitani et al. 2003; Apps et al. 2009; Hackmon
et al. 2017; Moffett et al. 2017). Specific combinations of
maternal KIR and fetal HLA-C alleles are associated with ei-
ther preeclampsia and low birth weight, or obstructed labor,
indicating that the balance of inhibitory/activating receptor
interactions in NK cells can affect pregnancy outcomes
(Hiby et al. 2004, 2010, 2014).

Licensing, education, and tuning via
inhibitory signaling

The activity of natural killer cells, as measured by either re-
lease of IFN-γ or cytolytic granules, is enhanced by the pres-
ence of inhibitory receptors that recognize MHC ligands
expressed by the host. This was first observed in the murine
system and was described as “licensing” of the NK cell (Kim
et al. 2005). A similar phenomenonwas subsequently reported
in the human system and has been referred to as “NK cell
education” (Anfossi et al. 2006; Kim et al. 2008; Yawata

Fig. 1 Evolution of the HLA-B and HLA-C leader peptide to decrease its
binding to HLA-E. The DNA sequence of the translation initiation region
of the HLA-A, HLA-B, and HLA-C genes is shown. Competing ATG
elements are shown in red, and flanking nucleotides that enhance trans-
lation initiation are shown in bold. The dimorphic nucleotide in HLA-B

that changes the fourth codon from ATG (methionine) to ACG
(threonine) is indicated by the underlined bold Y. The consensus amino
acid sequence of the leader region is shown above with variable amino
acids indicated by X, and the HLA-C leader is shown below with the
peptide presented by HLA-E underlined in bold
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et al. 2008). Individual NK cells stochastically express self
MHC I-specific inhibitory receptors, and the affinity of inhib-
itory receptors for MHC ligands varies; thus, NK cells are
exposed to differing degrees of inhibition, depending on their
inhibitory receptor repertoire and the MHCmolecules that are
expressed in their environment (Held and Kunz 1998; Parham
2006). NK cells expressing multiple self-specific inhibitory
receptors are the most responsive subset. As the number of
inhibitory receptors decreases, the cells become less respon-
sive. Similar results were generated in the analysis of human
and mouse NK cells, leading to the concept that the NK re-
sponse is tuned through the integration of multiple inhibitory
and stimulatory signals (Yu et al. 2007; Fauriat et al. 2010;
Béziat et al. 2013). Progressively decreasing the number of
MHC molecules expressed by mice, using gene knockouts
and transgenic animals resulted in progressively lower respon-
siveness of the NK cells in the animals (Brodin et al. 2009b).
Conversely, human NK cells lacking a self-ligand for a spe-
cific KIR gained reactivity following transfer to mice express-
ing the HLA ligand for that KIR (Boudreau et al. 2016).
Collectively, these findings suggest that the responsiveness
of NK cells increases in proportion to the amount of inhibitory
signaling the cell receives.

These data led to the analogy of a “rheostat” that governs
NK cell activity, which was proposed to explain the observa-
tion that the magnitude of the murine NK response varies,
rather than reflecting only responsive or hyporesponsive states
(Brodin et al. 2009a; Joncker et al. 2009). For an electrical
system, a rheostat is a variable resistor that controls current.
The analogy with respect to NK cell function is that target cell
activation of NK cells is opposed by the resistance generated
from the inhibitory receptors. However, it is important to con-
sider both the lytic potential and the threshold of activation
together, as increased resistance to activation should also lead
to an increased stored capacity which would result in an en-
hanced capacity to mediate serial killing (Prager et al. 2019).
The acquisition of lytic activity associated with the mature
CD56dim stage of NK cell differentiation can also be viewed
as an on/off switch that is subsequently controlled by a
rheostat.

It is important to note that differences in the activity of
mature NK cells attributed to education/tuning are not due to
changes in gene expression, but rather are the result of differ-
ences in signaling. Examination of gene expression in beta-2
microglobulin (β2m) or KbDb knockouts compared with con-
trol C57BL/6J mice revealed no functionally significant
change in gene expression, but rather a change in the mem-
brane compartmentalization of activating and inhibitory re-
ceptors (Guia et al. 2011). Furthermore, RNAseq of human
CD56dim NK cells also showed no significant difference be-
tween educated and uneducated subsets. Gene expression pat-
terns were highly correlated when subsets with a KIR receptor
recognizing self MHC were compared with NK cells

expressing KIR that lacked a ligand (Goodridge et al. 2019).
In contrast, a comparison of CD56bright versus CD56dim NK
cells showed that differentiation and KIR acquisition were
associated with increased transcription of granzyme B and
several other genes known to be involved in effector function
(Goodridge et al. 2019). Therefore, the differentiation of NK
cells from the CD56bright to CD56dim stage turns on the lytic
machinery that is then subject to tuning by KIR inhibitory
receptors that are expressed at this stage. A recent study has
revealed functional differences in the behavior of educated
NK cells by single-cell imaging of NK cells possessing only
a single inhibitory receptor (CD56dim/KIR−/NKG2A+) versus
NK cells lacking all inhibitory receptors (CD56dim/KIR−/
NKG2A−). NKG2A-expressing NK cells displayed increased
migration, made more contacts with target cells, and killed
targets more frequently than receptor-negative cells. NK cells
capable of serial killing were primarily found within the
NKG2A+ cell population, indicating an increase in stored lytic
capacity (Forslund et al. 2015).

The effect of removing inhibitory signals from NK cells at
equilibrium should result in a lower threshold of activation
and subsequent depletion of the cytolytic reservoir, defined
as the reserve of mature cytolytic granules in an NK cell.
This loss of responsiveness has been observed when murine
NK cells are moved to an environment that lacks MHC li-
gands. When human NK cells lacking a self-ligand for a spe-
cific KIR were transferred to transgenic mice that expressed
the HLA ligand for that KIR, those NK cells gained reactivity
(Boudreau et al. 2016). Target cell HLA-C has been shown to
be transferred to the NK cell plasma membrane and cytoplasm
in a KIR-dependent manner. Only HLA-C alleles that are
recognized by KIR2DL1 (C2 group) are transferred to
KIR2DL1-expressing NK cells and this process depends on
NK cell ATP (Carlin et al. 2001). While cis interactions in
murine NK cells have been clearly demonstrated, no direct
evidence of the physical cis HLA:KIR interaction in human
NK cells has been identified. Surprisingly, human NK cells
that possessed a KIR:HLA ligand pair retained their activity
when transferred to mice lacking the ligand, indicating an NK
cell intrinsic, or cis effect of HLA expression. Additionally,
knock-down of HLA within the human NK cells decreased
their function, thus indicating the importance of cis interac-
tions for maintaining their lytic potential (Boudreau et al.
2016). Allelic variation in the level of HLA-C cell surface
expression has been inversely correlated with lytic activity,
providing further evidence for the cis effect of NK cell HLA
expression (Li et al. 2018). The inability of murine NK cells to
retain their responsiveness when placed in a mouse lacking
MHC ligands—contradictory to the maintained human NK
activity when similarly transferred—suggests that the cis-sig-
naling mechanisms operating in the human and mouse sys-
tems are distinct. Murine NK cells possess both cis and trans
interactions, and it appears both are necessary for NK activity
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and the generation of a normal MHC receptor repertoire
(Bessoles et al., 2013). We speculate that human NK cells
maintain activity via an either/or mechanism, rather than re-
quiring both cis and trans to function properly.

The murine Ly49 molecules contain a flexible stalk that
permits interaction with MHC in cis on the NK cell surface,
and this interaction has been shown to be required for the
licensing of mouse NK cells (Doucey et al. 2004; Bessoles
et al. 2013). KIR molecules lack flexible stalks, and are not
expected to engage in cis interactions at the cell surface (Held
and Mariuzza 2008). Recently, however, there have been sev-
eral lines of investigation examining cis signaling in NK cells
that suggest alternative means for such an interaction to take
place. For example, LILRB1 has been shown to interact in cis
with HLA class I, despite lacking a flexible stalk, challenging
the notion that for a cis interaction to occur, it must do so
similarly to the flexible Ly49 molecule (Li et al. 2013).
Furthermore, we speculate that the endosomal compartment
may provide an environment for HLA-C:KIR cis interaction
and inhibitory signaling to occur within NK cells. Surface
class I MHC are continually endocytosed, and are either de-
graded, or recycled back to the plasma membrane (Donaldson
and Williams 2009). We speculate that both KIR and their
ligands are continually brought into close proximity within
endosomes, offering a more favorable geometry for their in-
teraction and subsequent inhibitory signaling. Consequently,
the higher levels of surface HLA-C generated by the NK-Pro
would be expected to contribute to greater cis inhibitory sig-
naling in the NK cell endosomal compartment. Lastly, in line
with the findings that cell-intrinsic class I expression is re-
quired to retain effector potential, it is possible that the
LILRB1 receptor contributes to cis inhibition of NK cells,
due to its broad reactivity for HLA class I molecules.
However, the magnitude of inhibition by LILRB1 is generally
lower than KIR, and the level of LILRB1 inhibition associated
with HLA-C binding is marginal when compared to HLA-A,
HLA-B, and HLA-G binding (Vitale et al. 1999). While there
is an increasing body of evidence for the importance of cis
signaling for lytic activity and maintenance of the cytolytic
reservoir, further research is necessary to clarify the mecha-
nism of cis inhibition and its role in arming/licensing of hu-
man NK cells.

Fine tuning of the KIR:HLA inhibitory signal

Although the response to pathogens is a major force driving
the diversification of HLA and KIR alleles, the importance of
an appropriate level of KIR/HLA interaction for preventing
excessive immune activation and for successful reproduction
places a strong selective pressure on this system that requires
tuning of the inhibitory signal.

The evolution of a finely balanced system is reflected in the
high degree of variability in receptor:ligand affinities and ex-
pression levels of KIR/HLA alleles. The affinity of a given
KIR2DL1 allele for different HLA-C2 alleles varies, as does
the affinity of a given HLA-C2 allele for individual KIR2DL1
alleles. The same variation is present for KIR2DL2/2DL3 rec-
ognition of the C1 group of alleles (Hilton et al. 2015a). There
is well-documented variation in cell surface expression levels
of KIR and HLA as well (Yawata et al. 2006). The primary
role of HLA-C in tuning NK cell activity is also supported by
its low expression level when compared with the ten-fold
higher level of HLA-A or HLA-B on most cell types (Apps
et al. 2015). This lower level of HLA-C expression may be
necessary in order to achieve a tunable threshold of inhibitory
signaling by KIR. Moreover, HLA-C has a less efficient
peptide-binding pocket and weaker association with β2m that
reduces the rate of assembly and export of HLA-C:peptide
complexes and their stability on the cell surface (Güssow
et al. 1987; Neisig et al. 1998). If cells are infected by patho-
gens that downregulate HLA to avoid T-cell recognition, this
lower expression level of HLA-C provides an increased like-
lihood of a significant loss of inhibitory KIR signaling when
downregulated. The core HLA-C promoter lacks NF-κB-
binding sites, and this results in decreased promoter activity
and a lack of responsiveness to TNF-mediated induction of
transcription, thus maintaining low levels of HLA-C expres-
sion at sites of inflammation (Anderson 2018). Tuning of the
KIR:HLA-C interaction is also reflected in allelic variation of
the cell surface level of HLA-C expression, which has been
associated with differential outcomes in HIV infection (Apps
et al. 2013). Multiple mechanisms have been described that
contribute to variation in cell surface levels of HLA-C, includ-
ing promoter/enhancer polymorphisms, variation in 3′-UTR
miRNA binding sites, and efficiency of peptide binding
(Kulkarni et al. 2011; Vince et al. 2016; Kaur et al. 2017).
The higher cell surface expression of the HLA-C*05 and
HLA-C*06 alleles has been associated with differences in
the peptide-binding domain of these alleles (Kaur et al.
2017; Goodson-Gregg et al. 2020), consistent with the con-
straints placed upon HLA-C expression by their inefficient
assembly and export.

The MHC environment is a powerful determinant of NK
cell function. For example, the strength of the KIR:HLA-C
interaction appears to be predictive of the magnitude of the
missing-self response. NK cells expressing only KIR2DL3
have been shown to mount a stronger missing-self response
in donors carrying the more strongly interacting HLA-C*07
(C1) when compared to the weaker interaction when HLA-
C*1402 (C1) is present (Yawata et al. 2008). Thus, in contrast
to the view of a fixed NK cell lytic potential, the reality ap-
pears closer to a constantly “tuned” NK cell that has its cyto-
lytic threshold determined by inhibitory signals. It may be
more informative to consider education as an all-or-none
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digital event that leads to NK cell maturation, and to interpret
differences in NK activity associated with the strength of
receptor:ligand interactions as an analog mechanism, or rheo-
stat, that tunes the responsiveness of mature cytolytic NK cells
(Brodin et al. 2009a; Joncker et al. 2009). From this perspec-
tive, NK cells would be classified as either mature (CD56dim

cells expressing KIR receptors) or immature (CD56bright cells
lacking KIR) with variable NKG2A expression, and differ-
ences in the magnitude of the missing-self response in mature
cytolytic NK cells would be attributed to variation in the
strength of inhibitory signaling.

NK-specific HLA-C transcripts

The recent discovery of an NK-specific HLA-C promoter (Li
et al. 2018), which produces a wide array of differentially
splicedHLA-CmRNAswith distinct translational efficiencies,
points to an important role for endogenous HLA-C expression
in NK cells and indicates the emergence of an NK-specific
HLA-C-tuning mechanism. Although upstream HLA-A tran-
scripts have been identified in a macrophage cDNA library,
there only appears to be a single mRNA isoform generated (Li
et al. 2018). The NK-specific transcripts of HLA-C contain 3
non-coding exons that vary in size due to the presence of
alternative splice donor and acceptor elements, some of which
are allele-specific. These exons have been named −1a, −1b,
and −1c. The first coding exon (exon 1), located adjacent to
the core HLA-C promoter, also varies in size when transcrip-
tion is initiated from the upstream NK-specific promoter: this
is due to the differential use of multiple exon 1 splice accep-
tors. However, only one alternative splicing event in the 5′-
UTR affects the HLA-C open reading frame: in a subset of
NK promoter transcripts, exon −1c is spliced to exon 2, thus
skipping the initiation codon in exon 1 and resulting in an
untranslatable HLA-C message. This untranslatable message
is more abundant in immature NK cells, and decreased exon 1
skipping is associated with increased HLA-C expression as
NK cells mature. Retention of introns 1 and 2 has also been
observed in bone marrow and spleen, providing an additional
mechanism that would prevent protein expression from either
the proximal or NK-specific HLA-C promoter transcripts (Li
et al. 2018).

Seven −1a exon variants have been observed, four allele-
specific −1b exons, four −1c exons, and seven exon 1 variants,
one of which is allele-specific. Therefore, a large number of
distinct 5′-UTR sequences with different combinations of
these exons could be generated. However, due to the overlap
of the larger exon −1a and exon 1 splice variants with the −1b
and −1c exons, and the presence of allele-specific exons, the
number of possible exon splicing combinations is 135 for the
HLA-C*06 allele alone, and of these only 25 have been ob-
served to date (Fig. 2).

There are currently 42 distinct full-length HLA-C splice
forms deposited in GenBank, however, direct analysis of the
5′-UTR region by RT-PCR indicates that many more splice
forms exist. The extreme diversity of the NK-specific HLA-C
transcripts is remarkable, and the observation of distinct pat-
terns of transcripts in NK cells from different tissues suggests
the evolution of a mechanism to fine-tune HLA-C expression
in NK cells in response to distinct environmental stimuli (Li
et al. 2018).

The hypothesis that alternative 5′-UTR content arose to
fine-tune HLA-C expression levels in developing NK cells
in different tissues, predicts that the translatability of alterna-
tively spliced HLA-C mRNAs varies and is controlled by al-
ternative exon usage. Initial analyses indicated a linear rela-
tionship between increased 5′-UTR size and decreased levels
of protein expression (Li et al. 2018). Amore detailed analysis
of a large panel of differentially spliced HLA-C mRNAs has
revealed that the presence of competing AUG start codons
also contributes to the variable translatability of HLA-C
mRNA isoforms (Goodson-Gregg et al. 2020). The exon
−1c splice donor and exon 1 splice acceptor combination de-
termines if a competing AUG in exon −1c produces a short
open reading frame upstream of the HLA-C initiation codon,
or if it generates a longer open reading frame that overlaps the
HLA-C AUG and prevents its use. Larger exon 1 isoforms
(exons 15–17) also contain a 42 amino acid open reading
frame that inhibits translation. However, increased length
alone is not sufficient to decrease translatability, as the larger
exon −1a3 isoform increases expression, likely due to the ad-
dition of an A/T-rich sequence at the 5′ end of the mRNA,
weakening secondary structure and facilitating ribosome entry
and scanning.

Tissue specificity of HLA-C mRNA isoforms

The patterns of HLA-C NK promoter transcripts have been
analyzed in bone marrow, spleen, and peripheral blood, re-
vealing extensive differences in exon usage between these
tissues (Li et al. 2018). Some of these differences may reflect
the developmental stage of the NK cell, such as an abundance
of poorly translatable and untranslatable isoforms in bone
marrow and spleen due to the presence of immature NK cells.
However, an RT-PCR comparison of 5′-UTR HLA-C mRNA
isoforms in peripheral blood from donors with matched HLA-
C alleles revealed significant differences in the minor splice
forms observed (Goodson-Gregg et al. 2020). These differ-
ences potentially represent the presence of tissue-resident
NK cells, which have entered the blood due to inflammation
or stress occurring in a particular organ. A thorough charac-
terization of HLA-C splice forms in multiple tissues may pro-
vide a “splicing profile,” capable of determining the tissue of
origin of circulating NK cells. The possibility that NK cells
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possess distinct HLA-C splice forms that reflect the tissue in
which they reside could potentially lead to a method for eval-
uating NK cell dynamics in health and disease. Notably, ex-
tensive alternative splicing has been observed for the KIR and
LILRB1 genes, resulting in the production of alternative pro-
tein isoforms (Bruijnesteijn et al. 2018; Jones et al. 2009).
Whether these alternative splice forms are regulated in a de-
velopmental or tissue-specific manner remains to be
determined.

NK-Pro transcripts are absent in some HLA-C
alleles

The emergence of an elaborate mechanism to control HLA-C
levels within NK cells suggests an important role in their
development or function. However, there are five HLA-C al-
leles that do not express NK-Pro transcripts due to a polymor-
phism in a key Ets-binding site in the promoter (Li et al.

2018). Two alleles are of the C1 group (C*07, C*08) and three
belong to the C2 group (C*02, C*05, C*17). The frequency of
individuals that possess HLA-C alleles lacking a functional
NK-Pro is approximately 50% (http://www.allelefrequencies.
net/default.asp). Upregulation of HLA-C expression in NK
cells by the NK-Pro could have evolved in order to compen-
sate for differing levels of affinity of the HLA-C alleles for
their cognate KIR. This would predict that an HLA-C allele
with a high affinity for its cognate receptor would be more
likely to lack NK-Pro transcripts. Although an initial study
demonstrated significantly higher binding of the NK-Pro de-
ficient HLA-C*02 and HLA-C*05 alleles to KIR2DL1 than
HLA-C*06 (Moesta et al. 2008), subsequent studies did not
(Hilton et al. 2012, 2015b). Furthermore, the non-upregulated
HLA-C*07 and HLA-C*08 alleles did not exhibit higher
binding to KIR2DL2 or KIR2DL3 than other C1 group alleles
that have an active NK-Pro and are expressed at higher levels
on mature NK cells (Moesta et al. 2008; Hilton et al. 2012,
2015b; Frazier et al. 2013). Therefore, it is more likely that the

Fig. 2 The predicted versus
observed splice variants of the
HLA-C*06 gene. All possible
combinations of the alternative
exons observed for the HLA-
C*06 allele are listed, beginning
with a group depicting the 64
combinations predicted by the
separate inclusion of each of the
four possible exons: −1a (blue);
−1b (yellow); −1c (red); exon 1
(green). Exon groups are
contained within parentheses.
Subsequent groups indicate splice
forms resulting from varying re-
tention of the three introns that
separate these exons. The pre-
dicted number of exon combina-
tions is shown in the black box
next to each group, and the ob-
served number of splice forms is
shown in the red box
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modulation of HLA-C levels by the presence or absence of
alternatively spliced NK-Pro transcripts occurs in order to
control the level of HLA-C expression in a developmental
and tissue-specific manner, as evidenced by the increase in
translatable NK-Pro transcripts in mature NK cells (Li et al.
2018).

If the system of HLA-C regulation in NK cells evolved to
provide a specialized tuning system that acts to modulate NK
cell reactivity after they have become “licensed killers,” and
increase the threshold of activation so that a stronger signal is
required to trigger killing, then the predicted effect of NK-Pro
presence or absence would be differences in the level of self-
reactivity. Since NK cells have been shown to limit the mag-
nitude of the anti-viral T-and B-cell responses (Waggoner
et al. 2016), the outcome of viral infections, especially the
degree to which NK cells kill activated CD4 cells, could be
modulated by variation in the endogenous HLA-C levels me-
diated by the NK-Pro. It may be informative to look at the
outcome of viral infections in individuals lacking the HLA-C
NK-Pro versus those capable of upregulating HLA-C in ma-
ture NK cells. In addition, since HLA-C is also upregulated in
KIR-expressing decidual NK cells, there may be differences
in pregnancy outcomes associated with the presence or ab-
sence of NK-Pro transcripts.

We propose that the variation in expression level of HLA-C
mediated by alternative splicing of NK-Pro transcripts during
the process of NK cell education and differentiation serve to
modulate the selectivity and killing potential of NK cells dur-
ing their development. First, it is worth deconstructing the
concept of licensing/education of an NK cell versus the tuning
of lytic potential in mature NK cells. Immature CD56bright NK
cells are not innately cytolytic; however, naive and inhibitory
receptor-deficient NK cells can have an effector phenotype
when stimulated by cytokines to express perforin and
granzymes (Fehniger et al. 2007; Björkström et al. 2010;
Romee et al. 2012). This is of particular importance, as NK
cells can possess an effector phenotype regardless of educa-
tion status. NK cells that lack self-specific receptors are hypo-
responsive (Fernandez et al. 2005; Kim et al. 2005). However,
even NK cells that are hyporesponsive can still respond to
cytokines. In the murine system, 10–13% of the NK cells lack
MHC-specific receptors and are hyporesponsive; yet, they
remain capable of responding to infection normally and se-
creting IFN-γ (Fernandez et al. 2005). While proper exposure
to activating and inhibitory signals are required for licensing/
education and spontaneous effector phenotype, these cells can
still lose their activity if not exposed continuously to proper
environmental stimuli. Murine NK cells moved to an MHC-
deficient mouse lose functional responsiveness within 4 days
(Elliott et al. 2010; Joncker et al. 2010).

As NK progenitor cells differentiate into immature NK
cells in the bone marrow, the NK-Pro becomes active. At this
stage, the transcripts originating from this promoter are largely

untranslatable in the immature cell, owing to the majority of
splice forms skipping exon 1, or retaining introns 1 or 2.
Moreover, as NK cells mature and gain lytic activity, translat-
able NK-Pro transcripts become more abundant (Li et al.
2018). A comparison of individuals possessing an intact Ets
site in the NK-Pro to those that do not, reveals a nearly two-
fold increase in total cell surface HLA-C protein on CD56dim

NK cells due to a functional NK-Pro (Li et al. 2018). Taken
together, these observations raise an interesting question as to
the functional advantage of delaying this increase in protein
expression until the cell is fully mature. The functional effect
of the switch from low endogenous HLA-C expression in
immature NK cells to high expression in mature cytolytic
NK may indicate a transition from education by stromal cells
to attenuation of the missing-self response by endogenous
HLA-C as NK cells mature.

Concluding remarks

The development and control of NK cell killing activity en-
tails several distinct processes. Initially, there is an increase in
the production of cytolytic effector molecules that accom-
panies the transition from CD56bright to the CD56dim stage.
However, inhibitory signaling is required for the packaging
of effector molecules into mature cytolytic granules
(Goodridge et al. 2019). Finally, the activation and degranu-
lation of the NK cell is controlled by the interplay of activating
receptors detecting stressed cells and inhibitory signals recog-
nizing self MHC. These processes and their impact on the
functionality of NK cells are diagrammed in the model shown
in Fig. 3. The immature CD56bright NK cell is depicted as
having low levels of effector molecules and lacking cytolytic
granules, but still capable of cytokine secretion. The CD56dim

NK cells have a ten-fold higher level of effector molecules
(Jacobs et al. 2001); however, their functional state is deter-
mined by the level of inhibitory signaling. The CD56dim, in-
hibitory receptor-negative (IR−) NK cell is hyporesponsive as
it lacks the inhibitory signaling required to generate mature
cytolytic granules. CD56dim NK cells with a low level of in-
hibitory receptor signaling produce mature cytolytic granules,
and thus represent the licensing/arming stage, or provision of
ammunition for target cell killing. However, due to a lower
level of inhibition, they are more prone to degranulation,
resulting in a depleted cytolytic granule reservoir, and are
subsequently less able to mediate serial killing. NK cells re-
ceiving a high level of inhibitory signaling due to either a
greater number of inhibitory receptors, high affinity interac-
tions, or upregulation of HLA-C by the NK cell are postulated
to have increased cis-mediated inhibition, and would be less
likely to be activated to kill. As such, they would be expected
to maintain a larger cytolytic reservoir, enabling an increased
serial killing capacity.
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In immature NK cells, the lower levels of HLA-C as com-
pared to mature cells may serve to calibrate their responsiveness
in the context of the HLA-C expressed by the surrounding cells.
It may be advantageous for a mature NK cell to express higher
levels of HLA-C to increase cis-mediated inhibition, especially
if it is in the circulation with more limited cell-cell contacts, thus
increasing selectivity against potential targets. It has been shown
that NK cells allowed to degranulate too frequently lose their
killing potential, thus increasing their response threshold is ben-
eficial for maintaining high levels of missing-self surveillance
(Prager et al. 2019). Moreover, as educated NK cells are contin-
ually “tuned” by their environment, it seems useful for these
cells to only respond against the strongest of signals, and as
such, higher levels of cis HLA-C would limit killing of tran-
siently stressed cells undergoing proliferation. The correlation
between NK-Pro upregulation of HLA-C levels and the acqui-
sition of lytic activity in mature CD56dim NK cells suggests that
this mechanism evolved to increase the activation threshold for
lysis of targets to a higher level than that required for cytokine
release by CD56bright NK cells. This would be analogous to
requiring further safety training for individuals that are licensed
to carry lethal weapons.
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