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Abstract The activity of natural killer (NK) cells is tightly
regulated by inhibitory and activating receptors. Inhibitory
killer immunoglobulin-like receptors (iKIRs) survey the
surface of target cells by monitoring the expression of
human leukocyte antigen (HLA) class I. The binding of
iKIRs has been shown to be sensitive to the peptides pre-
sented by HLA class I, implying that iKIRs have the ability
to detect the changes in the repertoire of peptide-HLA class
I complexes (pHLA), a process occurring during viral infec-
tion and in tumor cells. To study how the pHLA repertoire
changes upon infection, and whether an iKIR is able to
detect these changes, we study peptides eluted from cells
prior and after infection with measles virus (MV). Remark-
ably, most changes in the repertoire of potential iKIR
ligands are predicted to be caused by the altered expres-
sion of self-peptides. We show that an iKIR can detect these
changes in the presented peptides only if it is sufficiently
specific, e.g., if iKIRs can distinguish between different
amino acids in the contact residues (e.g., position 7 and 8).
Our analysis further indicates that one single iKIR per host
is not sufficient to detect changes in the peptide repertoire,
suggesting that a multigene family encoding for different
iKIRs is required for successful peptide recognition.
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Introduction

Natural killer (NK) cells are key players of the innate
immune response. Their activity is tightly regulated by sev-
eral germline encoded inhibitory and activating receptors,
including the highly polymorphic killer immunoglobulin-
like receptors (KIRs) that interact with the classical major
histocompatibility complex (MHC) class I molecules (in
humans encoded by the HLA complex) expressed on target
cells. Because inhibiting signals dominate over activating
signals, healthy cells do not initiate NK cell cytotoxicity.
However, virus-infected or malignant cells may up-regulate
ligands for activating receptors (“induced self detection”)
or down-regulate ligands for inhibitory receptors (“missing
self detection”), thereby inducing NK cell activation and
target cell lysis (Fig. 1) (Vivier et al. 2008; Lanier 2005).

Unlike T cell receptors, inhibitory KIRs (iKIRs) are not
highly specific for particular peptide-HLA class I complexes
(pHLA). Instead, they recognize subsets of class I HLA
(HLA-I) molecules sharing structural motifs, including four
mutually exclusive epitopes on HLA-I alleles: A3/11, Bw4,
C1, and C2 (Moretta et al. 1996). Additionally, several
studies have shown that iKIRs are also sensitive to the peptides
bound by HLA-I molecules (Malnati et al. 1995; Rajagopalan
and Long 1997; Peruzzi et al. 1996; Thananchai et al. 2007;
Hansasuta et al. 2004; Fadda et al. 2010). Crystal struc-
tures of KIR2DL1 and KIR2DL2 in complex with their
HLA-C ligands further supported this observation by reveal-
ing that specifically positions 7 (P7) and 8 (P8) of the
HLA-I bound peptide are in direct contact with residues
of inhibitory KIRs (Boyington et al. 2000; Brooks et al.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00251-017-1019-1&domain=pdf
http://dx.doi.org/10.1007/s00251-017-1019-1
mailto:paola.carrillo-bustamante@bioquant.uni-heidelberg.de


88 Immunogenetics (2018) 70:87–97

Tolerance

NK cell

Healthy cell

Missing self Induced self Altered self Altered self

stress
induced
ligand

aKIR

iKIR

pHLA: 
Human derived
peptide

pHLA:
Virus-derived
peptide

cytotoxic
granules

Virus infected 
cell

Virus infected 
cell: MHC downregulation

a

b c d e

Fig. 1 Models of NK cell activation: How can NK cells recognize
virus infected or aberrant cells. The main ligands for iKIRs (depicted
in red) in humans are HLA-I molecules (depicted in blue), which
render NK cells tolerant towards healthy tissue (a). The current mod-
els for NK cell activation include “missing self detection” (b), and
“induced self detection” (c), where virus-infected or malignant cells
down-regulate the expression of HLA-I, or up-regulate stress lig-
ands for activating KIRs (aKIRs, depicted in green), respectively.

Complementing these models is “altered-self,” describing the sen-
sitivity of iKIRs to changes in the peptide repertoire presented by
HLA-I (d, e). A different peptide-HLA repertoire caused, e.g., by a
virus-derived peptide (depicted in yellow) can promote aKIR bind-
ing or block iKIR binding resulting in enhanced NK cell activation
(d). Alternatively, changes in the peptide repertoire (caused by, e.g.,
a virus-derived peptide) may enhance the binding of iKIRs to their
HLA-I molecules, resulting in a stronger inhibiting signal (e)

2000; Fan et al. 2001; Li and Mariuzza 2014. This suggests
that NK cell activation may be regulated in a peptide depen-
dent manner. Indeed, pHLA that have weak or no binding
to iKIRs can efficiently reduce KIR-mediated inhibition
(Cassidy et al. 2014; Fadda et al. 2010). Other studies also
show that sequence variations within HLA-C restricted HIV
epitopes have a large impact on the binding of inhibitory
KIR2DL2, with some peptides enhancing and others dis-
rupting the binding, and consequently abrogating the inhi-
bition of NK cells (Fadda et al. 2012; Van Teijlingen et al.
2014). Also in the context of simian immunideficiency virus
(SIV), new findings demonstrate how viral peptides modu-
late NK cell responses through KIR-MHC-I interactions, in-
creasing the binding of MHC-I ligands to iKIRs as a mech-
anism to suppress NK cell responses (Schafer et al. 2015).

These studies convincingly underline potential functional
consequences of the presented peptide in KIR-MHC-I inter-
actions, and thereby in NK cell regulation. This calls for
an extension of the current model of NK cell activation:
“missing self” or “induced” (Fig. 1a, b) detection should
be complemented by “altered self,” where changes in the
MHC-I peptide repertoire after a viral infection modulate
NK cell signaling (Fig. 1c, d). Depending on the repertoire
of peptide-MHC-I complexes (pMHC), the KIR mediated
activity of NK cells can be either promoted or inhibited.
Stronger NK cell activation might arise if some pMHC
bind activating KIRs, or if some pMHC disrupt the bind-
ing to iKIRs thereby abrogating inhibiting signals (Fig.
1c). Alternatively, strong NK cell inhibition would result
from particular peptides enhancing the binding of iKIRs to
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MHC-I molecules (Fig. 1d). Indeed, viruses would escape
from NK cell activation by encoding peptides increasing
iKIR-pMHC binding (Alter et al. 2011; Schafer et al. 2015;
Fadda et al. 2012; Van Teijlingen et al. 2014).

In this study, we will address two questions. First, is it
likely that iKIRs can detect changes in the peptide reper-
toire presented by HLA-I molecules? And secondly, can this
“peptide sensitivity” provide an explanation for evolution of
specific iKIR molecules and thereby account for the high
genetic diversity observed in the KIR family? To investi-
gate the possibility of NK cell regulation via altered peptide
repertoires, we analyze how the iKIR-ligands change after
infection with measles virus (MV) using published pep-
tide elution data from cells prior and after infection with
this virus (Schellens et al. 2015a; Schellens et al. 2015b).
Our analysis shows that iKIRs need to be specific to detect
changes in the peptide repertoire, and that this required
specificity might be sufficient to select for a multigene
iKIR family.

Results

How do iKIR ligands change after a viral infection?

Although several studies have tried to address how the
pHLA repertoire changes during a viral infection (Wahl
et al. 2010; Rucevic et al. 2016; Ternette et al. 2016; Spencer
et al. 2015), there are no quantitative estimates of how an
infection affects iKIR ligands. To tackle this question, we
made use of recent data of four B lymphoblastoid cell-lines
(BLCLs) infected with MV (Schellens et al. 2015a; Schellens
et al. 2015b). The details of this study are fully described
in Schellens et al. (2015a), Schellens et al. (2015b). Briefly,
pHLA were purified from four BLCLs, after which acid
elution was applied to separate the peptides from the HLA-
I molecules. All four BLCLs were either left uninfected,
or infected with MV. To isolate the pHLA complexes, the
authors used an antibody with a comparable affinity for all
three major HLA class I molecules (HLA-A, -B and -C).
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Fig. 2 Distribution self and viral peptides in the four BLCL. We ana-
lyze the abundances of all eluted peptides (a, c) and those predicted
to be restricted to HLA-I alleles expressing any of the four motifs
A3/A11, Bw4, C1, and C2, i.e., potential ligands for iKIRs (b, d),
before and after infection with MV. Given are the number unique pep-
tides (nH, nHI, nMV), as well as their expression levels, i.e., abundances
(TH, TI, TMV). a, b The bars depict the total abundance (T) of eluted
human (self) peptides from uninfected (TH) and MV infected BLCLs

(THI), as well as the abundance of viral peptides (TMV). c, d We com-
pute the fraction of eluted peptides that are predicted to bind to each
particular HLA-I allele (fi = nHLAi/T∗, where nHLAi is the total
abundance of eluted peptides predicted to bind to HLAi, and depending
on the set of analyzed peptides, T∗ is TH, THI, orTMV (see “Material
and methods” section). Assigned HLA-I alleles are given on the right
(“NA” are peptides that could not be assigned to any HLA-I molecule).
Data from Schellens et al. (2015a), Schellens et al. (2015b)
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As a result, the HLA-I assignment of the eluted peptides
was unknown, and a peptide-HLA-I binding affinity predic-
tion program (NetMHC 3.0 Lundegaard et al. 2008; Nielsen
and Andreatta 2016) was used to determine which of the
HLA class I molecules expressed by BLCLs was most likely
presenting the identified peptides. The HLA-I molecules of
BLCLs are given in Fig. 2. With this approach, the number
of unique self peptides in uninfected and infected BLCLs
(nH, nHI, respectively) and the number of unique viral pep-
tides (nMV) associated to particular HLA-I alleles; as well as
the concentration (i.e., total abundance (T)) of each unique
peptide could be determined (Fig. 2).

There is a large variation in the number of presented pep-
tides among the four different cell lines after the infection
with MV. The number of unique peptides decreases in all
BLCLs after infection (compare nH to nHI + nMV in Fig.
2), with more than 50% of specific peptides completely
disappearing (Table 1). However, the total abundance of
peptides increases in BLCLs 1053 and 1112, and decreases
in BLCLs 1090 and 1077 (compare TH to THI + TMV in
Fig. 2a, b). Similarly, the presentation of peptides by HLA-
alleles differs in each BLCL, and the identified peptides
are not equally distributed over the expressed HLA class
I molecules (Fig. 2c, d). Importantly, the majority of pep-
tides were derived from self proteins, whereas only very few
peptides were derived from viral proteins. We performed a
second analysis of only those peptides that are presented by
the HLA-I molecules carrying the A3/A11, Bw4, C1, or C2
epitope, since the main ligands for iKIRs include at least
these four motifs (Trowsdale et al. 2001) (Fig. 2b). The dis-
tribution of this peptide subset is very similar to that of all
eluted peptides, suggesting that the abundance of iKIRs lig-
ands (hereafter referred to as ligand density) increased in
two out of the four cell lines studied here, and decreased in
the other two.

Table 1 Fraction of unique human peptides disappearing after MV
infection. Summarized from Schellens et al. (2015a), Schellens et al.
(2015b)

BLCL identifier

HLA-I alleles 1053 1077 1090 1112

All 0.66 0.74 0.73 0.59

A3/11, Bw4, C1, C2 0.59 0.74 0.72 0.61

We analyze the peptides predicted to be presented by all HLA-I
molecules and those restricted to HLA-I alleles expressing any of
the four motifs A3/A11, Bw4, C1, and C2, i.e., potential ligands for
iKIRs. The fraction of unique peptides is defined as nH\nHI

nH
, where

nH \ nHI is the number of unique human peptides that is not found in
the human peptides of MV-infected cells, and nH the total number of
unique human peptides eluted from uninfected BLCLs

Sequence-based analysis of iKIRs ligands

The threshold for NK cell activation is determined dur-
ing development, in a process called NK cell education or
licensing (Bessoles et al. 2014; Höglund and Brodin 2010;
Brodin et al. 2009). During this process, the amount of
inhibitory and activating signals are balanced, preventing
NK cells from targeting healthy tissue. Therefore, changes
in any of the signals NK cell receive, e.g., upon viral infec-
tions or cancer, could disrupt this balance. The increased
peptide/ligand density after MV infection suggests then that
some iKIRs could receive an even stronger inhibiting sig-
nal, hampering the activation of those NK cells expressing
that iKIR. Note however that different NK cells express-
ing different iKIRs will recognize different subsets from all
these peptides. For any iKIR detecting a decrease in its set
of ligands, all NK cells carrying this iKIR would receive
a reduced inhibiting signal and could become activated.
Thus, the probability of a single iKIR detecting a decrease
of ligands should determine whether or not there will be
quantitative change inx NK cell response.

To study “altered-self” recognition, we performed a
sequence based analysis of the eluted peptides before and
after the infection with MV. First, we analyzed the 9-mers
among the peptides presented by HLAs carrying either the
A3/A11, Bw4, C1, or C2 motif. Given that iKIRs are in
contact with P7 and P8 of the presented peptide (Boyington
et al. 2000; Brooks et al. 2000; Fan et al. 2001; Li and
Mariuzza 2014) and that there can be 20 amino acids per
position, we first assumed that iKIRs are able to distin-
guish between any of the 400 pairs of amino acids in those
residues (i.e., a maximal specificity of iKIRs) and grouped
the peptides according to the unique amino acid combina-
tions in P7 and P8 (for a detailed description see “Material
and methods” section). To determine the density of iKIR
ligands, we summed the abundances of all peptides carry-
ing these “KIR motifs.” We then counted how often there
is a decrease, or an increase, in the ligand density after MV
infection, thereby estimating how likely an individual iKIR
can detect changes in its pool of ligands. The results are
summarized in Fig. 3.

In all BLCLs, the number of KIR motifs (NP7P 8 in Fig.
3) is smaller than the theoretical maximum of 400, because
not all possible amino acid pairs are present in P7 and P8
of the peptides presented by these cell lines . The major-
ity of motifs are derived from self-peptides, confirming that
most changes in the ligand pool are not due to viral pro-
teins (particulary, in BLCL 1077 no viral peptides were
associated with any of the HLA-I molecules that is a tradi-
tional iKIR ligand, i.e., NP7P 8,MV = 0). The density of KIR
ligands changes remarkably after infection. In all BLCLs,
infection with MV results in up-regulation of some iKIR
ligands, including novel peptides which are only expressed
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Fig. 3 Changes in the total abundance of motifs for specific iKIRs
using the sequence based analysis. HLA-I eluted 9-mers (restricted to
HLA-I molecules carrying the A3/A11, Bw4, C1, or C2 alleles) were
grouped according to (a) their unique amino acid combinations in P7
and P8 (i.e., assuming 400 different pairs of amino acids), or (b) into
four distinct groups based on their physico-chemical properties (i.e.,
16 different pairs of amino acids). The number of unique KIR motifs
(i.e., unique amino acid pairs, or pairs of amino acids groups in P7

and P8) is given by NP7P8, out of which NP7P8,MV motifs are derived
from viral peptides. In this analysis, we monitor for each iKIR motif
whether its abundance increases (yellow), or a decreases (lime green)
after infection with MV. Using the percentual change, we also quan-
tify the changes in ligand density after MV infection. The frequency
of decreases by at least 50% is depicted in dark green and the loss in
ligands in blue. Novel ligands, i.e., peptides carrying the KIR binding
motifs present only in infected cells are represented in orange

in infected cells (Fig. 3a, orange bars). However, infection
with MV causes a decrease in ligand density for most iKIRs
(Fig. 3a, light green bars) in all cell lines; a surprising obser-
vation given that BLCL 1112 and 1053 have an enhanced
peptide presentation. The most striking case is BLCL 1112,
in which almost 50% of the iKIRs are expected to detect a
decrease in their ligands.

Because iKIRs are not merely sensitive to the presence
of a peptide but also to the total abundance of pHLA com-
plexes they interact with (reviewed in Cassidy et al. 2014),
it is important to quantify by how much the abundance of
KIR motifs changes after viral infection, and thereby predict
the functional consequences of “altered-self” recognition.
We indeed observe that the density of a large proportion of
KIR ligands decreases by at least 50% (Fig. 3a, dark green
bars), and some iKIR ligands completely disappear in all
cell lines (Fig. 3a, blue bars). Since degranulation of NK

cells increases linearly with decreasing ligand concentra-
tion (Cassidy et al. 2014), the strong decrease in KIR motifs
observed here is likely to induce a strong NK cell activa-
tion. Thus, if highly specific, a large proportion of iKIRs
are expected to detect substantial changes in the peptides
presented by the MV infected BLCLs studied here.

Until now, we have considered maximal specificity of
iKIRs, i.e., we assumed that they can discriminate between
any pair of amino acids in P7 and P8. iKIRs are probably
less specific and could, for instance, just recognize groups
of amino acids based on their physico-chemical properties
(e.g., non polar, polar, basic and acidic) in P7 and P8. If there
were four such amino acid groups, the chance of any peptide
becoming an iKIR ligand would increase. Our results hardly
change after decreasing the specificity (Fig. 3b). Although
the frequency of disappearing ligands is reduced, subsets of
iKIRs are still able to detect decreases in their binding motif.
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Altogether, our sequence based analysis suggests that suffi-
ciently specific iKIRs are expected to detect a decrease, or
even loss, in their ligands in all four BLCLs studied here.

iKIR can detect decreases in ligand concentration
provided they are sufficiently specific

Because we do not precisely know how iKIRs recognize
their ligands we also analyzed the data using a more gen-
eral sampling model where iKIRs bind any peptide with
a pre-defined probability p (see “Material and methods”
section). Similar to the sequence-based analysis, we deter-
mined the ligand density for a single iKIR by adding the
abundance of each sampled peptide. After each sample,
we compared whether the ligand density obtained by sam-
pling uninfected cells is larger, or smaller, than that obtained
by sampling after infected cells (Fig. 4). Repeating this
procedure 10,000 times for all four BLCLs allowed us
to generalize the findings from the sequence-based analy-
sis, and robustly estimate the chance of one random iKIR
detecting a decrease of ligands after the infection (Fig. 4).

We started by setting p = 1/400, which would corre-
spond to the maximal specificity used above. Even though
we here ignored the identity of the positions recognized by
iKIRs, we found similar results (Fig. 4). The density of iKIR

ligands typically decreases in BLCLs having a decreased
peptide presentation after infection, i.e., BLCL 1090 and
1077 (lime green bars Fig. 4b, c). In these cell lines, at least
80% of the “simulated” iKIRs detect a lower density of lig-
ands. Interestingly, we also found that subsets of iKIRs can
detect a decrease in their ligands even when peptide presen-
tation is enhanced after MV infection (i.e., BLCLs 1053 and
1112, Fig. 4a, d). Once again, BLCL 1112 is particularly
interesting, as more than half of the simulated iKIRs are
expected to detect a decrease in their ligands, 40% of which
recognize a decrease of at least half and approximately 15%
detect a loss (Fig. 4d). The strong decrease in ligand density
predicted by our sampling model implies a potential strong
NK cell activation in all cell lines.

To quantify how iKIR specificity relates to their capacity
to detect changes in ligand densities, we repeated this sam-
pling analysis for various values of p (Fig. 5). Less specific
iKIRs (which would correspond to p = 1/16) are less likely
to recognize substantial decreases in cells with an increased
peptide presentation (i.e., BLCL 1053, and 1112; Fig. 5).
To have a more accurate estimate of the actual iKIRs speci-
ficity, we adopted data published by Fadda et al. (2010),
where the binding of KIR2DL2, KIR2DL3, and KIR2DS2
to HLA-C-peptide complexes was studied. Out of 59 pep-
tides where amino acids in P7 and P8 form a unique pair, 13
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Fig. 4 Distribution of iKIR ligands in four BLCLs using a sampling
model. The group of peptides forming the set of iKIR ligands is deter-
mined by sampling with probability p = 1/400 from the pool of
n = nH + nHI + nMV unique peptides in BLCL 1053 (a), 1077 (b),
1090 (c), and 1112 (d). The distribution of changes in ligand den-
sity after sampling 10,000 times is depicted in the right column. The
fold change is calculated as (LI − LU)/LU, where LU and LI are
the ligand densities in uninfected and infected cells, respectively (see

“Material and methods”). Visualized are fold-changes with a fre-
quency larger than 1%. The red vertical line shows decreases of 50%.
On the right column, the bars depict the total occurrence of having an
increased (yellow), decreased (lime green), or equal (red) ligand con-
centration after MV infection. Decreases by at least 50% are depicted
in dark green and the loss in ligands in blue. Novel ligands, i.e.,
peptides present only in infected cells are represented in orange
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Fig. 5 Changes in the iKIR binding repertoire as a function of iKIR-
specificity. Probability of a random iKIR detecting “altered-self” given
as the frequency of iKIR ligand densities that were predicted by our
sampling model to change after infection. To quantify how the speci-
ficity influences the changes in ligand density, the model was run for
various values of p: 0.0025, 0.01, 0.04, 0.0625, 0.1250, 0.25, 0.50,
0.7500, and 1. Highlighted with the dashed black lines are the val-
ues p = 1/400, p = 1/16, p = 0.2. An iKIR successfully detects
“altered-self” if it recognizes a decrease in its ligands, with larger func-
tional consequences if the detected decrease is larger than 50%. The
changes in ligand density are depicted in the rainbow scale

were described as KIR2DL2 binders (Supplementary Table
1 in Fadda et al. 2010), suggesting that the probability of
this iKIR recognizing a peptide as a ligand is approximately
p = 0.2. Also in this specificity range, most iKIRs are
unable to recognize large decreases in their ligands in cells
with enhanced peptide presentation (i.e., presenting a larger
abundance of peptides, Fig. 5). In BLCL 1053, less than
10% of the sampled iKIRs detect a large depletion of their
ligands, whereas none of the iKIRs is able to detect these
substantial reductions in BLCL 1112.

Our model shows that the more degenerate iKIRs are
(i.e., the larger p), the more challenging it is for them to
detect disappearing ligands (Fig. 5). In fact, if all iKIRs are
completely degenerate (i.e., p = 1), they can only detect
large decreases in their binding repertoire in cells having
reduced peptide presentation after MV infection (BLCL
1077 and 1090 in Fig. 5). However, in cells with increased
peptide presentation (i.e., 1053 and 1112), subsets of iKIRs
can detect reductions of their ligands only if they are highly
specific (i.e., with p < 0.1, blue line in Fig. 5). Our model
thus shows that successful detection of “altered-self” in all
four cell lines examined can only be achieved if iKIRs are
more specific than estimated by Fadda et al. (2010).

Specific recognition of peptides requires several iKIRs

Having an estimation of the probability that an iKIR recog-
nizes changes in the ligand pool from both our data analysis

and sampling model (Figs. 3, and 5), we can speculate
about the number of receptors that an individual host would
require for a successful iKIR mediated NK cell response.

Consider a “worst-case” scenario, e.g., BLCL 1112 in
Fig. 5. After interacting with this cell line, less than 15% of
highly specific iKIRs (p = 1/400) would result in a strong
NK cell activation, as less than 15% of KIR motifs disappear
upon the viral infection (BLCL 1112 in Fig. 5). Because an
individual basically needs at least one iKIR detecting altered
self (as all NK cells expressing that iKIRshould become
activated and respond), it is tempting to speculate that six, or
seven, different highly specific iKIRs per individual would
be sufficient to successfully detect “altered-self” in BLCL
1112. Note that NK cell degranulation increases linearly
when the ligand density (i.e. concentration of pHLA com-
plexes) on the cell surface decreases (Cassidy et al. 2014). If
a reduction of iKIR ligands at least by half were necessary
to mount a successful NK cell response, approximately 40%
of iKIRs in BLCL 1112 would detect a decrease in their lig-
ands (Fig. 5), implying that two to three iKIRs would be
required for NK cell activation.

To have a lower estimate for the required KIR diversity,
consider now a “best-case scenario” (e.g., BLCL 1077 in
Fig. 5). Here, more than 50% of iKIRs would completely
lose their ligands (BLCL 1077 in Fig. 5), and 80% of iKIRs
would detect ligands decreasing in their abundance by half
(BLCL 1077 in Fig. 4b). Thus, two iKIRs would be suffi-
cient to detect a decrease in ligands, and result in activation
of NK cells expressing these iKIRs. This analysis of the best
and worst case scenarios indicate that one single iKIR is not
sufficient for “altered-self” detection.

Discussion

The potential functional consequences of the presented pep-
tide in KIR-HLA interactions have remained unresolved.
Here, we use data analysis and a simple modeling approach
to study (1) how the peptide repertoire changes after a viral
infection, and (2) the probability of iKIRs to recognize these
changes. We show that most changes in the peptide pool are
originating from altered presentation of self-proteins (prob-
ably due to gene expression changes), and that iKIRs can
detect decreases in the peptide pool if they are sufficiently
specific.

The importance of peptide sensitivity for iKIRs has
been mostly related to viral infections, especially in HIV-1
infections (Fadda et al. 2012; Van Teijlingen et al. 2014).
Recent studies demonstrate that sequence variations within
HLA-C restricted HIV epitopes strongly engage inhibitory
KIR2DL2, inducing a strong inhibiting signal for NK cells
(Van Teijlingen et al. 2014). Although these studies cer-
tainly have important functional implications, especially
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regarding viral escape mechanisms, our study shows that
changes in the presented self-peptides can be sufficient to
detect a viral infection. If the HIV-1 peptides are not highly
abundant on productively infected cells, their contribution
to the total changes in the peptide repertoire might be small.
Indeed, all changes in the peptide repertoire (i.e., derived
from self and viral proteins) as well as the abundance of
the peptides are necessary to estimate the implications of
peptides on iKIR mediated NK cell regulation.

The BLCL data set allowed us to investigate how the
peptide pool that is relevant for iKIR-binding (i.e., the
peptides restricted to HLA-A3/A11, -Bw4, C1, and C2)
changes after a viral infection. A crucial parameter in all our
analyses is the total abundance of peptides, which was esti-
mated by comparing the mass-spectrometry (MS) response
of two specific standard peptides to those eluted from the
BLCLs (Schellens et al. 2015a; Schellens et al. 2015b). It
should be noted that this type of quantification is based on
the assumption that the eluted and standard peptides have
equal response factors (count/mole) in the MS analysis, and
that not all peptides behave equally. Hence, the abundances
might not be accurate. Additionally, it is important to note
that the assignment of the eluted peptides to the HLA alleles
was predicted in silico, and possibly some eluted peptides
were not assigned to any HLA molecule. Furthermore, the
HLA-C restricted peptide pool might have been underes-
timated, as there is a preference in assignment to HLA-A
and -B alleles, because the prediction performance for the
better-studied HLA-A and HLA-B alleles is higher than that
for HLA-C alleles. Even if the contribution of these “pos-
sible ligands” is underestimated, the main outcome of our
study does not change much, as the analysis including all
9-mers (even considering also peptides that have not been
assigned to any HLA molecule) show results very similar to
those considering only the group of peptides presented by
HLA-A3/A11, -Bw4, C1, and C2 (Fig. S1).

By considering that an iKIR can discriminate any pair of
amino acids in P7 and P8, we assumed the maximal iKIR-
specificity (i.e., p = 1/400). However, neither in the data
set of Schellens at al., nor in that from Fadda et al., all 400
pairs of amino acids are present among the peptides stud-
ied. It is indeed likely that not all pairs of amino acids are
presented by the HLA molecules studied in those studies, or
that some combinations do not frequently occur. The actual
iKIR specificity is necessary to make a proper conclusion
about diversity. In our sampling model, we show that the
required genetic KIR diversity varies widely among BLCLs,
with approximately six or seven specific iKIRs being nec-
essary to detect changes in the peptide repertoire in BLCL
1112, and two iKIRs being sufficient in BLCL 1077 if iKIRs
can distinguish between all 400 duplets in P7 and P8 of
a pHLA. If the real specificity were lower, like suggested
by Fadda’s study (where 13/59 peptides were KIR-binders

Fadda et al. 2010), the detection of the altered peptide reper-
toire would become more challenging, as shown by our
sampling model (Fig. 5). Similarly, if iKIRs were to rec-
ognize groups of amino acids in all presented 9-mers, the
detection of altered-self would be hampered (Figs. 3b and
5). Note that by restricting our model and sequence analy-
sis to the peptides presented by HLA-I alleles relevant for
iKIR binding (i.e., HLA-A3/A11, Bw4, C1, and C2), we
have ignored an additional element of specificity. In real-
ity, iKIRs must first bind to one of these alleles, and then
be specific for the binding motifs in the peptide. Since this
increases the specificity, even more iKIRs per individual
would be necessary to detect the viral infection.

To our knowledge, this is the first study that comprises
a detailed analysis of the variation in the iKIR-ligands after
a viral infection. By combining a mathematical model with
experimental data, we were able to estimate the numbers
and direction of change in the peptide repertoire, shedding
light on the complex mechanisms of peptide sensitivity and
its possible functional consequences. Although the required
number of iKIRs we have estimated in this study (six
to seven in the “worst-case” scenario) is in line with the
observed number of iKIRs in humans (Gendzekhadze et al.
2009; Wilson et al. 2000; Witt et al. 1999), further studies
are indispensable to get a better estimate about the genetic
diversity and optimal specificity of iKIRs. To this end, we
have previously studied the evolution of KIRs by using
an evolutionary computational model (Carrillo-Bustamante
et al. 2013, 2014, 2015a, b). By expanding those models
with the understanding of the peptide repertoire prior and
after infection we have gained in this current study, we
can more accurately study the selection pressure on iKIRs
caused by peptide sensitivity.

Material and methods

Elution data

The details of the experimental setup are fully described
in the studies of Schellens et al. (2015a). Briefly, HLA
class I molecules were immunoprecipitated from uninfected
and 48 h MV-infected BLCLs using the HLA-I specific
monoclonal antibody W6/32. The peptide repertoires eluted
from the HLA-I molecules were fractionated, and ana-
lyzed by high-resolution nanoscale liquid chromatography-
mass spectrometry (nano-LC-MS) and mass sequencing.
To identify the identity of the eluted peptides, the mass
spectrometry (MS) data were processed using BioWorks
(version 3.3.1 SP1; Thermo Scientific, San Jose, USA)
against the human- and MV-annotated proteins extracted
from the UniProtKB/Swiss-Prot database. The peptide
expression levels (i.e., total abundance T) was determined
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by comparing their MS response to that of two standard
peptides. This quantification procedure is based on the
assumption of equal response factors (counts/mole) for the
eluted peptides and these standard peptides in the MS anal-
ysis. By this approach, the number of unique peptides
(nH, nHI, nMV) and the total abundance (TH, THI, TMV) was
determined.

Because the antibody W6/32 has comparable affinity
for all three HLA-I molecules, the HLA-I assignment of
the identified peptides was unknown, and a peptide-HLA-
I binding affinity prediction tool (NetMHC3.0 Lundegaard
et al. 2008; Nielsen and Andreatta 2016) was used to deter-
mine which of HLA-I molecules expressed by the cell
lines were most likely to present the identified peptides.
All identified peptide sequences, with their amino acid
length, estimated total abundance, and the predicted HLA-I
molecule are given in Supplementary Table 1 in Schellens
et al. (2015a).

Data analysis

For each set of peptides (i.e., self peptides eluted from unin-
fected and infected cells, and virus-derived peptides), the
fraction of eluted peptides predicted to bind particular HLA-
I allele was computed as f i = nHLAi/T∗, where nHLAi is
the total abundance of eluted peptides predicted to bind to
HLAi, and T∗ is TH, THI, orTMV (depending on the set of
peptides).

The proportion of disappearing peptides was calculated
as nH\nHI

nH
, where nH and nHI represent the number of unique

self peptides eluted from uninfected and MV-infected cells,
respectively. The term nH\nHI denotes the number of unique
self peptides found in uninfected cells that are not present in
MV infected BLCLs.

Sequence-based analysis

We extracted all 9-mers which had been associated to the
HLA-I molecules carrying the A3/A11-Bw4, C1, or C2 epi-
tope. To characterize “KIR motifs,” we grouped the selected
peptides according to (1) the unique amino acid combina-
tions and (2) four distinct amino acid groups in P7 and
P8 (non polar, including Glycine, Alanine, Valine, Leucine,
Isoleucine, Methionine, Phenylalanine, Tryptophan, and
Proline; polar including Serine, Threonine, Cysteine, Tyro-
sine, Asparagine, and Glutamine; basic including Lysine,
Arginine, and Histidine; and acidic including Aspartate
and Glutamate). We then summed the abundances of all
peptides carrying each of the NP7P8 unique KIR motifs,
thereby determining the iKIR ligand density. Note that
NP7P8 is composed of human-derived motifs in uninfected
and infected cells (NP7P8,H and NP7P8,HI), and MV-derived
motifs (NP7P8,MV).

To analyze how the iKIR ligand density changes after
MV infection, we monitored how often there was a
decrease, or an increase in ligand abundance, in MV-
infected BLCLs compared to uninfected cells. The changes
in ligand density were categorized into three main groups:
“decrease,” “equal,” and “increase.” Decreased ligand den-
sities were additionally sub-categorized into “decrease >

50%” and “disappeared.” Similarly, “novel” ligands, i.e.,
KIR motifs present only in infected cells, were included in
the “increase” category.

Sampling model

We developed a simple sampling model that randomly
selects a set of peptides as iKIR ligands and monitors how
their density changes after MV-infection. We first defined
p as the probability of a peptide being an iKIR ligand.
Based on this probability value, we randomly selected pep-
tides out of the n = nH + nI + nMV unique peptides
eluted from each BLCL. The expected number of unique
iKIR ligands for a particular cell line (i.e., the number of
“sampled” peptides) would then be N = p × n. Next, we
estimated the ligand density L for one iKIR by summing
the measured abundances of each of the sampled peptides
in uninfected (i.e., TH) and infected cells (THI + TMV).
Thus, the ligand density in uninfected and infected cells
is given by LU = ∑i=N

i=0 TH,i, and LI = ∑i=N
i=0 THI,i +

∑i=N
i=0 TMV,i, respectively. We quantified the change in lig-

and density for one iKIR by calculating the fold change
(LI − LU)/LU.

For every cell line, we repeated this procedure 10,000
times, obtaining a distribution of the fold change in ligand
density (as shown in the left column of Fig. 4). Similar to
the sequence-based analysis, we categorized the estimated
fold change into three major categories: “decrease,” “equal,”
and “increase.” Decreased ligand densities were additionally
sub-categorized into “decrease > 50%” and “disappeared.”
Similarly, “novel” ligands, i.e., peptides present only in
infected cells, were included in the “increase” category
(right column of Fig. 4).

For the analysis of peptides restricted to HLA-I
molecules carrying one of the A3/A11, Bw4, C1, and C2
alleles, we used the number of unique peptides nH, nHI, nMV

as depicted in Fig. 2d. Accordingly, for the analysis
including all peptides, we used the number of unique
peptides nH, nHI, nMV as depicted in Fig. 2c. To quan-
tify how the specificity influences the changes in ligand
density, we repeated this sampling for various values of
p: 0.0025, 0.01, 0.04, 0.0625, 0.1250, 0.25, 0.50, 0.7500,
and 1.

We used R scripts to analyse the data and perform the
sequence-based analysis and sampling model. The source
code is available upon request.
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