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Abstract All higher vertebrates share the fundamental com-
ponents of the adaptive immune system: the B cell receptor,
the T cell receptor, and classical MHC proteins. At a more
detailed level, their immune systems vary considerably, espe-
cially with respect to the non-polymorphic MHC class I-like
proteins. In mammals, the CD1 family of lipid-presenting
proteins is encoded by clusters of genes of widely divergent
sizes and compositions. Another MHC class I-like protein,
MR1, is typically encoded by a single gene that is highly
conserved among species. Based on mammalian genomes
and the available data on cellular expression profiles and pro-
tein structure, we review MR1 genes and families of CD1
genes in modern mammals from a genetic and functional per-
spective. Understanding the CD1 and MR1 systems across
animal species provides insights into the specialized functions
of the five types of CD1 proteins and facilitates careful con-
sideration of animal models for human diseases in which im-
mune responses to lipids and bacterial metabolites play a role.
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Whereas MHC genes and the genes for T cell receptors ap-
peared simultaneously during evolution and are present in all
extant jawed vertebrates, the genes for CD1 and MR1 have a
more limited distribution. Keeping the phylogenetic relation-
ships among animal species in mind, we will describe the
CD1 and MR1 genes in extant species. The evolution of these
genes is beyond the scope of this review. CD1 and MR1 pro-
teins bind lipids and vitamin B metabolites respectively, and
present these to T cells, as opposed to the classical MHC pro-
teins, which present peptide antigens to T cells. CD1 and MR1
genes have not been found in fish, while fish do contain MHC
class I and II genes (Dascher 2007). Reptiles (Yang et al. 2015),
birds (Miller et al. 2005; Salomonsen et al. 2005), and marsu-
pials (Baker and Miller 2007; Cheng and Belov 2014) have
CD1 genes that can clearly be distinguished from classical
MHC genes and form an interspecies group with the mamma-
lian CD1 genes. CD1a, CD1b, CD1c, CD1d, and CD1e pro-
teins most likely arose in a common ancestor of placental mam-
mals from a primordial form of CD1. Gene duplications, dele-
tions, and gene inactivations shaped the composition of the
CD1 family of genes, possibly under selective pressure associ-
ated with an immune function. MR1 genes are absent in fish
and reptiles, but in marsupials andmammals, there is typically a
single functional MR1 gene. Of all the MHC Class I-like pro-
teins, MR1 shows the highest conservation among species.

Chromosomal location and gene structure of CD1
and MR1

In mammals, the CD1 and MR1 genes are not part of the
MHC locus. In humans, the CD1 and MR1 genes are located
on chromosome 1 and the MHC locus lies on chromosome 6.
However, in chicken, the CD1 and MHC loci are linked
(Miller et al. 2005; Salomonsen et al. 2005). The genes that
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encode the classical MHC molecules are highly polymorphic
with hundreds to thousands allelic variants, and this is thought
to be closely related to their function of presenting peptides to
T cells. No allelic variants for CD1b, CD1c, and MR1 are
known. Allelic variants in the form of non-synonymous single
nucleotide polymorphisms in human CD1a and CD1d are
known, but the affected amino acids are not located in the
antigen-binding cleft or the TCR-binding surface (Han et al.
1999; Oteo et al. 2001). Together, this justifies the common
description of CD1 and MR1 genes as non-polymorphic.

Because of its non-polymorphic nature, shared structural
features, and the fact that it presents small metabolite antigens
rather than peptides, MR1 is often compared to CD1.
However, MR1 genes are distinct fromCD1 genes, and, based
on sequence alignments, form their own interspecies group.
Even though in humansMR1 and CD1 are located in the same
MHC paralogous region on chromosome 1, the MR1 locus is
separate from the CD1 cluster of genes, or CD1 locus
(Hashimoto et al. 1995; Shiina et al. 2001). The CD1 locus
is located between the KIRREL and olfactory receptor genes
and consists of multiple genes, often in both orientations. The
MR1 gene is embedded between STX6 and IER5 genes. In
mice, a chromosomal rearrangement caused the separation of
the CD1 andMR1 genes, which are located on chromosome 3
and chromosome 1, respectively (Dascher and Brenner 2003).
In the available assembled primate data, MR1 and CD1 are
located on the same chromosome, but in other mammals that
were studied, like cow and pig, they are not (Goldfinch et al.
2010; Reinink and Van Rhijn 2016).

The human genome encodes one MR1 protein and five
different CD1 proteins, called CD1a through CD1e. These
five CD1 proteins and their orthologs are called CD1 iso-
forms. Even though for other proteins this term is used to
define RNA splice variants derived from the same gene, in
the CD1 field, the word isoforms is used to indicate products
of separate genes. The overall structure of CD1 and MR1
proteins resemblesMHC class I molecules: a type I transmem-
brane protein, called the heavy chain, consisting of α1, α2,
and α3 domains associated with β2 microglobulin. CD1 and
MR1 genes have an intron-exon structure comparable to
MHC class I genes: they contain 6 exons that encode 5′
UTR and leader signal peptide, α1 domain, α2 domain, α3
domain, transmembrane domain, and cytoplasmic tail and 3′
UTR combined (Yamaguchi et al. 1998). CD1 genes in mam-
mals are named after the human CD1 isoform they group with,
based on sequence comparison. Comparison, based on overall
alignment of the full coding sequence or only the α1 and α2
domains that form the antigen binding cleft, gives identical
results. This is caused by the fact that α3 domains are highly
conserved among all CD1 isoforms within one species (Balk
et al. 1989), and cytoplasmic domains, even though they show
considerable differences among the isoforms, are very short.
Thus, effectively, CD1 isoforms are grouped and named

according to resemblance of the sequence encoding their
antigen-binding cleft-forming α1 and α2 domains.

CD1 in humans and common research, farm,
and companion animals

For nine mammalian species (human, rabbit, guinea pig, cow,
pig, dog, horse, mouse, and rat), the CD1 genes have been
studied extensively and, except for rabbit and guinea pig, their
CD1 loci have been carefully mapped and curated. The func-
tionality of many of these CD1 genes has been studied by
cloning the transcripts from cDNA, sometimes followed by
protein expression studies. Genomes from these nine mamma-
lian species contain from one (rat (Katabami et al. 1998)) to
thirteen (horse and dog (Dossa et al. 2014; Schjaerff et al.
2016)) CD1 genes. From rabbits, two CD1a, two CD1b, one
CD1d, and one CD1e transcripts have been identified, but this
study was not set up or intended to define the complete rabbit
CD1 locus (Hayes and Knight 2001). Southern blots sug-
gested the presence of at least eight CD1 genes in the rabbit
(Calabi et al. 1989). Guinea pigs have been reported to contain
four functional genes for CD1b, three for CD1c, one for CD1e
gene, and at least five CD1 pseudogenes (Dascher et al. 1999).
Later, one functional gene for CD1d was described (Looringh
van Beeck et al. 2009), and one gene of unknown functional-
ity for CD1a (Van Rhijn and Moody 2015). The guinea pig
CD1 locus has not been mapped, but while the genome is
being updated and assembled, even more CD1 genes have
been identified in guinea pig (Reinink and Van Rhijn 2016).
The first attempt to define the bovine CD1 locus was based on
an early draft of the bovine genome and identified one CD1a
gene, five CD1b genes, two CD1d genes, and a CD1e gene.
Among these, the CD1a gene, three CD1b genes, and
the CD1e were identified as functional genes (Van Rhijn
et al. 2006). A later version of the genome brought the number
of bovine CD1 genes to 12 (Nguyen et al. 2015). The porcine
CD1 locus has been described based on BAC sequencing and
contains six CD1 genes: two genes for CD1a, and one for each
of the other isoforms (Eguchi-Ogawa et al. 2007). One of the
CD1a genes is a pseudogene. Twelve CD1 genes were
mapped in the canine locus based on the available genome
at the time, and a 13th gene was not mapped in the locus
and was thought to be an allele (Looringh van Beeck et al.
2008). Subsequently, BAC sequencing placed the 13th gene in
the locus, which is now known to contain nine CD1a genes, and
one gene or each of the other isoforms (Schjaerff et al. 2016).
Four of the canine CD1a genes are thought to be functional. The
horse genome contains 18 CD1 genes, among which five
pseudogenes (Dossa et al. 2014). The functional equine CD1
genes are seven CD1a genes, two CD1b genes, one CD1c gene,
one CD1d gene, and twoCD1e genes. Themouse genome, with
its small locus consisting of only two CD1d genes, has been
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shown to have undergone a rearrangement that caused the loss
of the other CD1 genes (Bradbury et al. 1988; Dascher and
Brenner 2003). Rats have only one CD1 gene, which encodes
CD1d (Ichimiya et al. 1994).

CD1 loci in less well studied mammalian genomes

Only a very small number of CD1 loci of the total of
almost 4000 extant species of placental mammals have
been studied. For species other than human, rabbit, guinea
pig, cow, pig, dog, horse, mouse, and rat, the study of
CD1 genes is now facilitated by the availability of multi-
ple genomes. It should be noted however that many ge-
nomes, especially from species other than primates and
rodents, are not yet finalized and contain multiple gaps.
Also, not all sequence materials may have been assigned
to a chromosomal location yet, and artifacts like duplica-
tions may be present. Therefore, attempts to describe a
CD1 locus based on genomic data available at a certain
point in time may need to be adjusted later based on
improved versions of the genome (Nguyen et al. 2015;
Schjaerff et al. 2016). Because transcription and correct
splicing of existing genes cannot reliably be predicted,
mRNA- and cDNA-based sequences provide the most re-
liable data on functionality and the possible expression of
individual CD1 proteins in vivo. However, RNA

sequence-based data are unlikely to provide a complete
overview of CD1 proteins in a species because expression
of CD1 genes is often limited to a specific tissue and cell
type. Therefore, to get an indication of the total number of
CD1 genes in a species, searches using the basic local
alignment search tool (BLAST) or collection of annotated
genes in genomes provide more reliable information than
expressed sequence tags or cDNA databases. Table 1
shows numbers of CD1 genes obtained from whole ge-
nomes of 15 mammals, including less well studied species
like alpaca, dolphin, elephant, two bat species, panda, and
sloth (Reinink and Van Rhijn 2016). Of note, BLAST-
based searches reveal functional genes and pseudogenes.
Therefore, differences between results of de novo BLAST
searches, automated annotation of open reading frames,
and published data with regard to the total number of
CD1 genes per species are expected.

CD1 genes have undergone multiple duplications in most
mammals, leading to extended multigene families. The gen-
eral picture that emerges is that CD1a has undergone the
most extensive multiplications and CD1e the least or none.
Automated annotations of CD1 isoforms of species other
than mouse or human often indicate a certain degree of
uncertainty, and are sometimes annotated as BCD1a-like,^
for example. However, the golden standard for isoform as-
signment is sequence alignment of the combined α1 and α2
domains. All CD1 genes from 15 mammals that were

Table 1 CD1 and MR1 gene numbers

Common name Genome Binomial species name CD1a CD1b CD1c CD1d CD1e Total CD1 MR1

Alpaca vicPac2 Vicugna pacos 1 1 1 1 1 5 1

Bonobo panPan1 Pan paniscus 1 1 1 1 1 5 2

Chimpanzee panTro4 Pan troglodytes 1 1 1 1 1 5 2

Dog CanFam3 Canis lupus 9 1 1 1 1 13 1

Dolphina turTru2 Tursiops truncatus 0 1 0 0 0 1 0

Elephant loxAfr3 Loxodonta africana 1 2 1 1 1 6 1

Horse equCab2 Equus caballus 9 2 2 1 2 16 1

Human hg38 Homo sapiens 1 1 1 1 1 5 2

Megabat pteVam1 Pteropus vampyrus 3 1 1 0 1 6 1

Microbat myoLuc2 Myotis lucifugus 17 2 0 5 2 26 1

Mouse mm10 Mus musculus 0 0 0 2 0 2 1

Panda ailMel1 Ailuropoda melanoleuca 8 1 1 1 1 12 1

Pig susScr3 Sus scrofa 2 1 1 1 2 7 1

Rabbit oryCun2 Oryctolagus cuniculus 5 2 0 1 2 10 0

Rhesus macaque rheMac3 Macaca mulatta 2 1 1 1 1 6 2

Slotha choHof1 Choloepus hoffmanni 1 0 0 1 0 2 1

For each of the indicated mammalian genomes, a list of CD1 and MR1 genes as determined by BLAST-based searches was merged with a list of
Ensembl-annotated CD1 and MR1 genes when available (adapted from (Reinink and Van Rhijn 2016)). Redundancies (genes with identical genomic
location) were removed
a The dolphin and sloth genomes are not completely assembled and consist of relatively small contigs, which may have led to the fragmentation of CD1
or MR1 genes and subsequent failure of identification
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recovered group with one of the five known CD1 isoforms,
but were not always correctly named by automated annota-
tion (Fig. 1). The clear grouping with the five isoforms
suggests that the isoform nomenclature that was based on
the human CD1 locus appropriately describes all currently
known mammalian CD1 isoforms. With more than 10 CD1
genes, the little brown bat, Myotis lucifugus, can be consid-
ered a species with high numbers of CD1 genes.
Intermediate numbers are found primates, alpaca, and ele-
phant. These data confirm once more that mouse and rat are
atypical with the lowest absolute number of CD1 genes (two
and one, respectively). Though not identical, the gene

numbers obtained by BLAST-based searches and automated
annotation are largely consistent (Reinink and Van Rhijn
2016). Because misassemblies of repeated sequences and
unmerged overlaps due to polymorphisms resulting in artifi-
cial duplications can occur in incompletely assembled ge-
nomes, we expect that in some species, the exact numbers
of CD1 genes will be adjusted in the future. However, it is
clear that humans should be considered to have an interme-
diate number of CD1 genes, while many other mammals
have more extensive families of CD1 genes. Large CD1
families are often dominated by multiplied CD1a genes
and to a lesser degree, CD1b, CD1c, and CD1d genes.
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Fig. 1 CD1 and MR1 genes in mammals. From 16 mammals, known
CD1 genes and predicted CD1 paralog open reading frames were
obtained from Ensembl (www.ensembl.org). An alignment of these
sequences and human MICA, MICB, HLA-A, HLA-B, and murine H2-

M3 was generated by MUSCLE (Edgar 2004), clustered according to a
neighbor joining algorithm, and shown as a radial cladogram. Groups
were color-coded based on the clustering with human CD1 isoforms
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Mammalian MR1 genes

Searches in whole genomes (Table 1), as well as other pub-
lished data, show that primates have two MR1 genes. In
humans and chimpanzees, one of these genes is known to be
functional and the other one is a pseudogene (Parra-Cuadrado
et al. 2001; Parra-Cuadrado et al. 2000). No MR1 gene could
be identified in the rabbit genome, which is in line with re-
cently published data on lagomorphs (rabbit and pika)
(Boudinot et al. 2016). The panda and dog MR1 genes that
resulted fromBLAST-based searches (Table 1) are most likely
pseudogenes because it was shown that members of the order
of Carnivora, including cats, dogs, ferrets, and pandas, have a
MR1 pseudogene and lack a functional MR1 gene (Boudinot
et al. 2016). Other mammals (alpaca, elephant, horse, bat) also
have one MR1 gene. While in dolphin no MR1 gene was
found, this does not conclusively prove the absence of MR1
in this species because the dolphin genome is still incomplete-
ly assembled. The sloth MR1 gene has a gap in the current
version of the sloth genome (choHof1).

Functional specialization of CD1 isoforms

Interspecies comparisons between individual CD1 proteins
have been made based on sequence alignment, protein models
(canine versus human CD1a (Looringh van Beeck et al.
2008)), or crystal structures (bovine versus human CD1b
(Girardi et al. 2010), bovine versus human CD1d (Wang
et al. 2012), and murine versus human CD1d (Koch et al.
2005)). CD1 proteins within one species differ from each oth-
er in ways that suggest functional specialization. One aspect
determines the function of a CD1 protein is the size and shape
of the antigen-binding cleft, which is formed by theα1 andα2
helices. Among the human CD1 proteins, the biggest size
difference is observed between CD1a and CD1b. In addition,
there are significant differences in shape with the CD1b cleft
consisting of four pockets (Gadola et al. 2002) of which three
are interconnected and the CD1a cleft consisting of one cavity
(Zajonc et al. 2003). These differences translate into differ-
ences in size and shape of antigens that can be bound by the
human CD1a and CD1b proteins. Because the CD1 isoforms
form interspecies groups based on phylogenetic relationship
based on the sequences of their α1 and α2 helices, functional
specializations of CD1 molecules that relate to the antigen-
binding cleft are generally conserved across species.
Especially, the size of the cleft seems to be well conserved
when human CD1 isoforms are compared with an ortholog.
However, as seen in the bovine CD1dmolecule, despite a very
high homology between human and bovine CD1d, tryptophan
166 in the bovine protein, which is a cysteine in humans and
mice, blocks part of the A’ pocket so that long fatty acyl chains
will not fit (Wang et al. 2012). A comparable situation exists

when human CD1b and bovine CD1b3 are compared: the
tunnel that is present in the human CD1b protein is closed in
bovine CD1b3 by valine 98, which prevents the binding of
extremely long ligands (Girardi et al. 2010). Structural aspects
of these CD1 molecules will be reviewed by Zajonc et al. in
this special issue of Immunogenetics. Thus, despite very high
sequence homology and overall structural resemblance be-
tween orthologs, a single amino acid difference can have pro-
found functional impact.

One specific feature of CD1 molecules that is difficult to
predict from crude genomic data is the cytoplasmic tail, which
determines the transport and subcellular location of individual
CD1 isoforms (Moody and Porcelli 2003). The cytoplasmic
tail is encoded by the very small exon 5 that is located between
two longer introns of variable length and cannot reliably be
predicted based on the genomic sequence of the CD1 gene.
However, the many cDNA sequences that are available have
provided a number of cytoplasmic tails that allows for com-
parative analysis and predictions on intracellular trafficking of
these CD1 proteins (Table 2).

Intracellular trafficking is determined by the CD1
cytoplasmic tail

Cellular lipids are bound in the antigen binding cleft during
synthesis of the CD1 protein. When the CD1 protein recycles
and encounters other lipids in an endosomal compartment,
these may replace the initial endoplasmic reticulum-derived
lipid. The type of endosomal compartment a lipid travels to
is thus a determining factor in the kind of antigenic lipids it
presents. The cytoplasmic tails of CD1 molecules may or may
not contain short consensus sequences for adaptor proteins.
CD1b, CD1c, or CD1d molecules often carry a modi-
fied dileucine motif and/or a tyrosine-based YXXZ motif,
where X is any amino acid, and Z is a bulky hydrophobic
amino acid. YXXZ motifs interact with adaptor proteins and
are responsible for recycling from the cell surface to interme-
diate and late endosomal compartments (Briken et al. 2002;
Sugita et al. 2002). CD1e does not appear at the cell surface
and does not recycle and has a function in lipid antigen loading
and processing (Angenieux et al. 2005; de la Salle et al. 2005).

Comparing the cytoplasmic tails of all cell surface-
expressed isoforms across species, the following general pic-
ture emerges: CD1a tails are highly variable in length. Most
CD1a tails contain histidine residues, with unknown function,
or cysteines, which can be palmitoylated. The human CD1a
cytoplasmic tail contains a cysteine residue that is
palmitoylated and involved in incorporation in lipid rafts
(Barral et al. 2008; Sloma et al. 2008), but the mechanism of
recycling to the sorting or early endosomal compartment,
which is so typical for human CD1a, is unknown. None of
the 17 known cytoplasmic tails of CD1a proteins has a

Immunogenetics (2016) 68:515–523 519



Table 2 Cytoplasmic tails of CD1 proteins in mammals

Gene name (alias) Cytoplasmic tail Motif Reference cDNA

boCD1a2 RKSWSTYMSDA (Nguyen et al. 2015)

boCD1a1 WKHWTHRESPSSVLPLE (Van Rhijn et al. 2006)
boCD1a

canCD1a2 KAHWRPQCMDFPSEREPSSPSSSTYLNPAQH (Schjaerff et al. 2016)

canCD1a6 KRWKTHNRPQCTDFPLK (Looringh van Beeck et al. 2008)

canCD1a9 KAHWRPQCTDFPSEQEPSSPGSSTYLNPAQH (Looringh van Beeck et al. 2008; Schjaerff et al. 2016)
canCD1a8.1

canCD1a8 KRWKAH (Looringh van Beeck et al. 2008; Schjaerff et al. 2016)
canCD1a8.2

eqCD1a1 THCEAPCTIVPLK (Dossa et al. 2014)

eqCD1a2 IRHQLQRTLLPLD Dileucine (Dossa et al. 2014)

eqCD1a3 IHSELPRTLLPLE Dileucine (Dossa et al. 2014)

eqCD1a4 VISISVSILVRKPCATPRTPLPSQ (Dossa et al. 2014)

eqCD1a5 RSCESASNLLWNEIPGAQDPGHI Dileucine (Dossa et al. 2014)

eqCD1a6 WLRKRWTRCEPPSNLISLE (Dossa et al. 2014)

eqCD1a7 WLRKRGTHCEFPRTCLPLE (Dossa et al. 2014)

huCD1a RKRCFC (Calabi and Milstein 1986; Martin et al. 1987)

pigCD1a1 WHRKHWKHCDPSSALHRLE (Chun et al. 1999; Eguchi-Ogawa et al. 2007)
pCD1.1

rabCD1a1 RKCWIHHGPLETLLPLQ Dileucine (Hayes and Knight 2001)

rabCD1a2 KKRWSHHGSPNSLLPLK Dileucine (Hayes and Knight 2001)

boCD1b1 RFMGSHRVGHD (Nguyen et al. 2015; Van Rhijn et al. 2006)

boCD1b3 RRWSYQNIL YXXZ, dileucine (Nguyen et al. 2015; Van Rhijn et al. 2006)

boCD1b5 RRWSYQTIL YXXZ, dileucine (Nguyen et al. 2015)

canCD1b RRWSYQSIS YXXZ (Looringh van Beeck et al. 2008)

eqCD1b1 SYQNIS YXXZ (Dossa et al. 2014)

eqCD1b2 SYLNIP YXXZ (Dossa et al. 2014)

gpCD1b1 RRWSYEDIL YXXZ, dileucine (Dascher et al. 1999; Hiromatsu et al. 2002)

gpCD1b2 KHWSYQDIL YXXZ, dileucine (Dascher et al. 1999; Dascher et al. 2002)

gpCD1b3 RRLRCEGIF (Dascher et al. 1999; Dascher et al. 2002)

gpCD1b4 RRWSYEDIF YXXZ (Dascher et al. 1999)

huCD1b RRRSYQNIP YXXZ (Martin et al. 1987)

ovCD1b RRWSYQNIL YXXZ, dileucine (Ferguson et al. 1996)
scd1b42

ovCD1b RRWSHRNIL Dileucine (Ferguson et al. 1996)
scd1b52

ovCD1b RRWSYLTIL YXXZ, dileucine (Ferguson et al. 1996)
scd1a25

pigCD1b RRWSYQSVL YXXZ (Eguchi-Ogawa et al. 2007)

rabCD1b RRRSYQNIL YXXZ, dileucine (Calabi et al. 1989; Hayes and Knight 2001)

canCD1c RKCCSYQDIP YXXZ (Looringh van Beeck et al. 2008)

eqCD1c SYQNIQRDSSPCFPHCNENCTAQEHRTTE YXXZ (Dossa et al. 2014)

gpCD1c1 KRCTYQGIQ YXXZ (Dascher et al. 1999)

gpCD1c2 KRCTYQGIP YXXZ (Dascher et al. 1999)

gpCD1c3 KKCCTYQGIPa YXXZ (Dascher et al. 1999)

huCD1c KKHCSYQDIL YXXZ, dileucine (Martin et al. 1987)

eqCD1d KKRSSYQDIL YXXZ, dileucine (Dossa et al. 2014; Looringh van Beeck et al. 2009)

gpcD1d RRGRSYQDIL YXXZ, dileucine (Looringh van Beeck et al. 2009)
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modified dileucine- and/or a tyrosine-based YXXZmotif, con-
sistent with the absence from intermediate and late endosomes
of the human CD1a protein, and strongly suggesting that this is
an evolutionary conserved feature (Table 2 ). CD1b, CD1c,
and CD1d tails are of comparable length, typically contain a
YXXZ motif, and sometimes an additional modified dileucine
motif. In addition, all known CD1c cytoplasmic tails contain a
cysteine of unknown function. There are exceptions to these
general observations, like the bovine CD1b1 (Nguyen et al.
2015), guinea pig CD1b3 (Dascher et al. 1999), and African
elephant CD1d (Looringh van Beeck et al. 2009) cytoplasmic
tails, which lack any known motif. Indeed, guinea pig CD1b3
does not travel to late endosomes and rather has a CD1a-like
subcellular distribution pattern (Dascher et al. 2002). However,
the bovine CD1b3 andCD1b5 and guinea pig CD1b1, CD1b2,
and CD1b4 have Btypical^ CD1b cytoplasmic tails. Thus,
cows and guinea pigs have typical and atypical cytoplasmic
tails among the proteins belonging to the CD1b isoform. For
the African elephant, no other cytoplasmic tails have been
sequenced from cDNA yet. Generally speaking, it seems that
when there are multiple proteins of one CD1 isoform in a
species, there is functional diversification, but when a species
has just one gene for a certain CD1 isoform, this one gene
usually shows the Btypical^ combination of cleft and tail.

Expression patterns of CD1 isoforms

Human cortical thymocytes express high levels of CD1a,
CD1b, CD1c, and CD1d on their cell surface. Broad CD1
expression in the thymus was confirmed in all other species
where CD1 expression was studied (Hiromatsu et al. 2002;
Howard et al. 1993; Looringh van Beeck et al. 2008; Van
Rhijn et al. 2006). Outside the thymus, the general picture that
emerges is that CD1d is widely expressed at a low level, with

some specific high CD1d-expressing cells in certain tissues,
like hepatic stellate cells in the liver (Winau et al. 2007), and
marginal zone B cells in the spleen (Makowska et al. 1999). In
humans, CD1b expression is limited to dendritic cells; CD1a
is expressed by dendritic cells and at high levels by
Langerhans cells in the skin, and CD1c is expressed by den-
dritic cells and subsets of B cells. Like humans, dogs express
CD1a in the skin and thymus (Looringh van Beeck et al.
2008). However, only two of the three studied canine CD1a
genes (out of the nine CD1a genes in the dog CD1 locus) were
preferentially expressed in the skin. In rabbits, one of the two
CD1a genes is preferentially expressed in the skin, while the
other one has a more general expression pattern (Hayes and
Knight 2001). In guinea pigs, different CD1b genes have dif-
ferent expression patterns in peripheral blood and spleen
(Hiromatsu et al. 2002). Mice that are transgenic for the part
of the human locus that encodes CD1a, CD1b, CD1c, and
CD1e with their endogenous promoters show a CD1 expres-
sion pattern that is surprisingly comparable to the human CD1
expression pattern in that all isoforms are expressed on thy-
mocytes and lymph node dendritic cells, while CD1a stands
out as highly expressed on Langerhans cells, and CD1c is
expressed on B cells (Felio et al. 2009).

Closing remarks

A typical pattern of gene distribution has been described for
immune function-related genes including genes that encode
TCRs, immunoglobulins, classical MHC molecules, and NK
receptors. This pattern is the result of gene family expansion,
diversification, and contraction or Bbirth and death^ evolution,
and usually leads to families of genes that include a consider-
able number of pseudogenes (Nei and Rooney 2005).
Furthermore, complete loss of certain family members and

Table 2 (continued)

Gene name (alias) Cytoplasmic tail Motif Reference cDNA

huCD1d RFKQTSYQGVL YXXZ, dileucine (Balk et al. 1989)

lafCD1d KRHCS (Looringh van Beeck et al. 2009)

moCD1d1 RRRSAYQDIR YXXZ (Bradbury et al. 1988)

moCD1d2 RRRSAYQDIR YXXZ (Bradbury et al. 1988)

ovCD1d RKHRRYQDIS YXXZ, dileucine (Rhind et al. 1999)
scd1d

pigCD1d RRRVYQNIQ YXXZ (Eguchi-Ogawa et al. 2007)

rabCD1d RRRCSYQGIL YXXZ, dileucine (Calabi et al. 1989; Looringh van Beeck et al. 2009)

ratCD1d RRRSYQDIM YXXZ (Ichimiya et al. 1994)

The cytoplasmic tails of CD1 proteins, grouped by isoform. Only tail sequences that have been confirmed by cDNA sequences are included. Species
fromwhich the sequences were derived are indicated as bo: bovine; can: canine; eq: equine; gp: guinea pig; hu: human; laf: African elephant; mo:mouse;
ov: ovine; rab: rabbit; dileucine: modified dileucine motif
a The sequence shown is based on GenBank sequence NM_001172855, but has been published as KKCCTYQGFP (Dascher et al. 1999)
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expansion of other family members are observed when con-
temporary animal species are compared. With its many dupli-
cations, deletions, and pseudogenes, the CD1 loci seem to
follow this pattern. Although MR1 genes have been subject
to inactivation in the carnivores, extensive gene family expan-
sion and diversification were not observed in any of the spe-
cies studied. The lack of functional diversification of MR1
genes is hard to explain but may be related to its seemingly
exclusive interaction with the highly specialized MAIT cells.

Even though mammals vary widely in the numbers of CD1
genes they have, some general observations can be made and
help understand the function of the different CD1 isoforms. The
skin seems to be a preferred site for CD1a expression across
species. While CD1a genes have undergone extensive multipli-
cation in some species, even more so than CD1b and CD1c,
none of the currently described CD1a proteins contains any
known signal for endosomal location. Multiplication and diver-
sification of genes may have occurred in response to changes in
the environment, including pathogenic and non-pathogenic mi-
crobes, to which evolving mammals were exposed.
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