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Abstract Rhesus and pigtail macaques have proven to be
valuable animal models for several important human dis-
eases, including HIV, where they exhibit similar pathology
and disease progression. Because rhesus macaques have
been extensively characterized in terms of their major his-
tocompatibility complex (MHC) class I alleles, their de-
mand has soared, making them increasingly difficult to
obtain for research purposes. This problem has been exac-
erbated by a continued export ban in place since 1978.
Pigtail macaques represent a potential alternative animal

model. However, because their MHC class I alleles have not
been characterized in detail, their use has been hindered. To
address this, in the present study, we have characterized the
peptide binding specificity of the pigtail macaque class I allele
Mane-A1*082:01 (formerly known as Mane A*0301), repre-
sentative of the second most common MHC class I antigen
detected across several cohorts. The motif was defined on the
basis of binding studies utilizing purified MHC protein and
panels of single amino acid substitution analog peptides, as
well as sequences of peptide ligands eluted from Mane-
A1*082:01. Based on these analyses, Mane-A1*082:01 was
found to recognize a motif with H in position 2 and the
aromatic residues F and Y, or the hydrophobic/aliphatic resi-
due M, at the C-terminus. Finally, analysis of the binding of a
combinatorial peptide library allowed the generation of a
detailed quantitative motif that proved effective in the predic-
tion of a set of high-affinity binders derived from chimeric
SIV/HIV, an important model virus for studying HIV infection
in humans.
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The simian immunodeficiency virus (SIV) or chimeric SIV/
HIV (SHIV)-infected rhesus (Macaca mulatta) and pigtail
(Macaca nemistrina) macaques are common animal models
in the field of HIV/AIDS research. SIV and HIV type 1 are
not only similar in genomic structure but also in the immu-
nopathology they induce in their respective hosts (Liska et
al. 1999). SIV and SHIV infection of macaques results in
similar CD4+ T cell exhaustion and disease progression to
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immunodeficiency as found in HIV-1-infected humans
(Balamurali et al. 2010; Boberg et al. 2008; Henning et al.
2011; Kearney et al. 2011; Klatt et al. 2011; Reece et al.
2010; Smith et al. 1999).

The control of both acute and chronic HIV and SIV infec-
tions has been linked to CD8+ T cell responses that are MHC
class I restricted (De Rose et al. 2008; Hatziioannou et al.
2009; Loffredo et al. 2004; Mankowski et al. 2008; Miller et
al. 1991; Smith et al. 2005). Rhesus macaques have been
extensively characterized in terms of their major histocompat-
ibility complex (MHC) class I alleles, and the detailed char-
acterization of the peptide-binding specificity of several
rhesus macaque MHC class I molecules (Mamu) has proven
to be a useful tool to facilitate the identification of SIV
epitopes recognized in infected animals (Allen et al. 2001;
Allen et al. 1998; Hickman-Miller et al. 2005; Loffredo et al.

2009; Loffredo et al. 2005; Loffredo et al. 2004; Mothe et al.
2002; Peters et al. 2005; Sette et al. 2005; Sidney et al. 2000;
Solomon et al. 2010; Southwood et al. 2011; Walsh et al.
2009). As a result, they have proven to represent very valuable
animal models for use in HIV vaccine and pathogenesis
studies, as well as for studies for several other human diseases
such as influenza, hepatitis, and smallpox (Gardner and Luciw
2008). Unfortunately, because rhesus macaques are in high
demand for such studies, they are becoming increasingly
harder to obtain for research purposes—a situation exacerbat-
ed by the continued export ban placed on them in 1978
(Hatziioannou et al. 2009; Smith et al. 2005).

Pigtail macaques represent a potential alternative animal
model to shoulder the research burden caused by the scarcity
of available rhesus macaques. Despite the initial identification
of their MHC class I alleles (Mane) (Lafont et al. 2003; Lafont

Table 1 SAAS-derived matrix describing 9-mer binding to Mane-A1*082:01

Position

Residue 1 2 3 4 5 6 7 8 9

A 0.034 0.033 0.371 0.348 0.014 0.368 0.017 0.273 0.006

C 0.169 0.005 0.110 0.448 0.001 0.295 0.143 0.160 0.047

D 0.144 0.005 0.025 0.344 0.005 0.037 0.018 0.161 0.004

E 0.038 0.010 0.013 1.000 0.019 0.131 0.004 0.253 0.001

F 0.206 0.002 0.703 0.586 1.000 0.271 1.000 1.000 1.000

G 0.064 0.002 0.094 0.979 0.031 0.362 0.009 0.132 0.000

H 0.177 1.000 0.330 0.631 0.041 0.110 0.055 0.151 0.006

I 0.207 0.003 0.993 0.041 0.051 0.266 0.040 0.288 0.022

K 0.012 0.001 0.046 0.790 0.018 0.427 0.005 0.149 0.005

L 0.036 0.000 1.000 0.851 0.046 0.024 0.081 0.203 0.089

M 0.264 0.005 0.844 0.729 0.039 0.562 0.060 0.194 0.158

N 0.093 0.000 0.546 0.109 0.033 0.091 0.016 0.025 0.010

P 0.038 0.001 0.020 0.321 0.022 0.590 0.021 0.217 0.001

Q 0.120 0.020 0.318 0.181 0.024 1.000 0.028 0.311 0.001

R 0.070 0.006 0.034 0.253 0.013 0.291 0.016 0.126 0.011

S 0.276 0.000 0.255 0.359 0.008 0.286 0.011 0.171 0.004

T 0.160 0.000 0.233 0.182 0.022 0.238 0.009 0.268 0.006

V 0.324 0.000 0.705 0.089 0.044 0.249 0.013 0.139 0.048

W 1.000 0.000 0.496 0.117 0.061 0.438 0.175 0.799 0.013

Y 0.226 0.000 0.796 0.136 0.105 0.334 0.287 0.388 0.232

Geomean 0.12 0.00 0.21 0.31 0.03 0.24 0.03 0.21 0.01

SD 2.8 7.6 4.2 2.5 4.1 2.5 4.1 2.1 7.8

SF 0.51 24.05 0.28 0.19 2.27 0.25 1.87 0.28 5.26

50-fold 1 17 2 0 7 0 10 0 13

The SAAS panel was tested for binding, the data analyzed, and primary and secondary anchor positions defined, as described in the text. Values
shown represent the average relative binding (ARB) of the corresponding singe substitution analog peptide relative to other analogs with a
substitution at the same position. Values have been normalized to the optimal residue at the corresponding position. SD indicates the standard
deviation between the ARB of analogs at the same position. SF is the specificity factor, calculated as described in the text, and represents the ratio of
the average binding of the entire panel to the average of analogs at the indicated position. At the primary anchor positions (SF>5), the most
preferred residues, associated with an ARB >0.1 are highlighted by bold font. Fiftyfold indicates the number of substitutions associated with a 50-
fold decrease in binding capacity. The panel average binding for Mane-A1*082:01 was 58 nM.
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et al. 2007; Smith et al. 2005), the characteristics of their
peptide binding properties are largely unknown and, as a
result, their use in similar types of studies has been hindered.
With the eventual goal of creating vaccines for SIVand HIV, it
is crucial that more is known about the cellular immune
responses of this increasingly important animal model.

The pigtail macaque class I type Mane-A1*082:01, for-
merly known as Mane A*0301, is the second most common
pigtail macaque MHC allele, with a frequency of approxi-
mately 23% across several cohorts (Pratt et al. 2006), mak-
ing it an attractive target for characterization. The B pocket
primary structure of Mane-A1*082:01 is very similar to that
of the HLA class I allele B*2705, which has been associated
with long-term disease non-progression in HIV-infected
individuals (Carrington and O'Brien 2003), thus making
Mane-A1*082:01 all the more interesting in the context of
HIV vaccine development studies. Characterization of the

peptide binding specificity of Mane-A1*082:01 would al-
low researchers to expand the usefulness of these animals in
future HIV/SIV studies, as well as several other potential
disease indications.

As an initial step to characterize the Mane-A1*082:01 bind-
ing specificity, we developed an in vitro MHC-peptide binding
assay utilizing purified MHC molecules. The assay was devel-
oped utilizing published methodologies (Sidney et al. 2008a;
Sidney et al. 2001), and Mane-A1*082:01 molecules were
purified from a 721.221 cell line stably transfected with the
allele (Allen et al. 1998; Loffredo et al. 2009; Shimizu and
DeMars 1989). As the radiolabeled probe, an analog (peptide
3263.0005; sequence DHQAAFQYI) of the SHIV Gag-
derived Mane-A1*082:01-restricted T cell epitope (Lafont et
al., manuscript in preparation) was designed to incorporate a
tyrosine residue (I8 to Y) to allow for radiolabeling and to
replace the endogenous methionine (M6 to F) to increase

Table 2 Frequency of amino acid residues in eluted peptide ligands and respective positions

Peptide position

Residue 1 2 3 4 5 6 7 8 C-term

A – – 0.043 0.087 0.087 0.022 0.043 0.065 –

C – – – – – – – – –

D 0.087 – – 0.087 0.065 0.043 0.022 0.022 –

E – – 0.087 0.130 0.130 0.065 0.109 0.087 0.022

F 0.022 – 0.065 0.043 0.109 0.022 0.022 0.043 0.152

G 0.022 0.022 – 0.087 0.022 0.043 – 0.022 –

H 0.152 0.717 0.065 0.043 0.022 – 0.043 0.087 –

I – – 0.130 0.065 0.087 0.130 0.109 – –

K 0.022 0.022 0.065 0.087 0.022 0.130 0.130 0.152 –

L 0.022 0.022 0.065 0.043 0.109 0.022 0.130 0.087 0.022

M 0.022 – 0.043 – – – – 0.022 0.130

N 0.457 – 0.065 0.022 0.065 0.043 0.065 0.043 –

P – – – 0.087 0.087 0.065 – – –

Q 0.022 0.152 0.130 0.022 0.087 0.109 0.065 – –

R 0.022 0.065 0.043 0.022 0.022 0.109 0.022 0.109 –

S 0.043 – 0.087 0.065 0.043 0.022 – 0.109 –

T 0.022 – – 0.022 0.022 – 0.022 0.043 –

V 0.065 – 0.065 0.043 – 0.087 0.130 0.065 –

W – – – 0.022 0.022 0.043 – – –

Y 0.022 – 0.043 0.022 – 0.043 0.087 0.043 0.674

Median 0.022 – 0.054 0.043 0.033 0.043 0.033 0.043 –

Deleterious 6 14 6 2 4 4 6 5 15

Values represent the fraction of peptides containing the corresponding residue at the specified position. Deleterious indicates the number of residues
never seen in any of the eluted ligands at the indicated position. Peptide ligands endogenously bound to Mane-A1*082:01 molecules purified from
single allele transfected 721.221 cells were eluted by acid-boil, then analyzed by reverse-phase nanoflow-HPLC/microelectrospray ionization
eluted directly into a Thermo Fisher Scientific Orbitrap Velos mass spectrometer equipped with a commercial ETD source as described previously
(Udeshi et al. 2008). The instrument was operated in a data-dependent mode where a full-scan mass spectrum was acquired with the high-resolution
mass analyzer and this was then followed by sequential acquisition of CAD and ETD MS/MS. Data from MS/MS experiments were searched
against the SwissProt human database using the Open Mass Spectrometry Search Algorithm (OMSSA) software to generate a list of candidate
peptide sequences. Select database assignments were confirmed by manual interpretation of the corresponding MS/MS spectra
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stability. In direct binding assays with 3263.0005, a signal-to-
noise ratio of about 5 could be detected with as little as 10 nM
of purifiedMHC (data not shown). Inhibition assays to validate
binding specificity and sensitivity revealed that the binding of
3263.0005 could be inhibited by unlabeled peptide in a dose-
dependent manor, with an IC50 of 8.2 nM.

Development of a sensitive binding assay allowed us to
probe the specificity of Mane-A1*082:01 in detail. A panel of
individual single amino acid substitution (SAAS) analogs,
corresponding to substitution with each of the 20 naturally
occurring amino acids at each position of peptide 3263.0005,
was tested for its capacity to bindMane-A1*082:01. To derive
a detailed binding motif, the data were analyzed essentially as
described previously (Sidney et al. 2008a). Briefly, the IC50
(in nanomoles) values for each single substituted peptide were
standardized as a ratio to the geometric IC50 (in nanomoles)
value of the entire panel of 172 analog peptides, and then
normalized at each position so that the value associated with
optimal binding at each position corresponds to 1. For each
position, an average (geometric) relative binding affinity
(ARB) was calculated. The ratio of the ARB values for each
position to the entire SAAS panel is denominated as the
specificity factor (SF). For SAAS panels, primary anchor
positions are then defined as those with an SF ≥5. This
criterion identifies positions where the majority of residues
are associated with significant decreases in binding capacity,

signifying position-specific stringency. The binding data are
summarized in Table 1.

As shown in Table 1, position 2 and the C-terminus were
defined as the main anchor positions, with SF of 24 and 5.3,
respectively. At position 2, histidine (H) was clearly the
most dominant residue. Substitution with any other residue
resulted in a 30-fold or more decrease in binding capacity,
relative to the (wild-type) peptide with H in position 2, and
in total 17 amino acids were associated with reductions
greater than 50-fold. At the C-terminus, the aromatic residue
phenylalanine (F) was the most preferred. The aromatic
residue tyrosine (Y) was the second most preferred, with
an ARB of 0.232, followed by M (ARB00.158). A few
other residues (R, L, C, and I) were tolerated at the C-
terminus, with ARBs in the 0.02–0.1 range, but the remain-
ing 13 amino acids were associated with 50-fold or greater
reductions in binding capacity.

Secondary influences on peptide binding were most
prominent in positions 5 and 7, where 7 and 10 substitu-
tions, respectively, were associated with 50-fold or greater
reductions in binding capacity, relative to the optimal resi-
due. These positions, also associated with the next highest
SFs (2.27 and 1.87, respectively), have been identified as
secondary anchor positions for several HLA class I mole-
cules (see, e.g., (Ruppert et al. 1993; Sidney et al. 2008a)).
Influences at other positions were relatively minor.

Table 3 PSCL scoring matrix
for prediction of Mane-
A1*082:01 binding peptides

Values represent the log of the
normalized ARB value for the
corresponding PSCL mixture.
The prediction score for a pep-
tide represents the sum of the log
values of the corresponding
amino acid residue at each posi-
tion. Each SHIV peptide was
scored and then ranked against
all other SHIV peptides of the
same size. For the SHIV 9-mers,
the top 1% is equivalent to a
score ≥2.2. By comparison, in a
set of over 58,000 9-mers de-
rived from vaccinia, the 1%
threshold corresponded to a
score of 2.52

Position

Residue 1 2 3 4 5 6 7 8 9

A −0.29 −0.09 0.02 −0.03 0.09 0.09 0.22 0.20 −0.04

C 0.25 −0.03 −0.26 0.13 0.00 −0.03 −0.06 −0.26 −0.38

D −0.01 −0.54 −0.03 0.09 −0.12 −0.05 −0.15 −0.21 −0.32

E −0.23 −0.65 −0.59 −0.30 −0.31 −0.04 −0.21 −0.18 −0.58

F −0.08 0.03 0.34 0.04 0.14 0.25 −0.12 0.30 1.52

G −0.08 −0.18 −0.11 −0.13 −0.03 −0.19 −0.17 0.04 −0.23

H 0.79 0.56 0.12 −0.05 −0.17 0.16 0.07 −0.13 −0.26

I 0.03 0.15 0.22 −0.19 0.00 0.18 0.21 0.15 0.48

K −0.23 −0.27 −0.15 −0.34 −0.32 −0.15 −0.50 −0.02 −0.79

L −0.23 0.21 0.10 −0.09 0.19 0.17 0.18 0.20 0.67

M 0.15 0.43 0.27 −0.03 0.16 −0.40 0.19 0.11 1.03

N 0.38 −0.03 0.07 0.05 −0.05 −0.10 0.09 −0.14 −0.33

P −0.32 0.20 −0.02 0.11 −0.08 −0.07 0.09 −0.24 −0.93

Q −0.04 0.52 0.04 −0.01 −0.22 0.07 0.06 0.05 −0.72

R −0.07 0.38 −0.20 0.09 −0.28 −0.10 −0.19 −0.01 −0.86

S 0.00 0.09 0.10 0.23 0.29 0.03 0.10 −0.02 −0.53

T −0.06 −0.32 −0.02 0.06 −0.14 −0.04 0.13 0.11 −0.36

V −0.09 −0.07 0.08 0.15 0.25 0.10 0.10 0.14 0.39

W 0.07 −0.25 0.04 0.13 0.43 0.07 −0.12 −0.32 0.27

Y 0.06 −0.14 −0.02 0.10 0.19 0.03 0.09 0.23 1.97
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The initial motif was defined on the basis of analogs of a
single ligand. To verify that this motif was generally appli-
cable to Mane-A1*082:01 ligands, and to determine the
optimal ligand size for Mane-A1*082:01 molecules, we
utilized previously described methodologies (Bairoch and
Apweiler 2000; Geer et al. 2004; Udeshi et al. 2008) to
elute, and then analyze by tandem mass spectrometry (MS/
MS), ligands endogenously bound to purified Mane-
A1*082:01 molecules. Data from the MS/MS experiments
were searched against the SwissProt human database using
the open mass spectrometry search algorithm (OMSSA)
software to generate a list of candidate peptide sequences
(ESM Table 1). Among the 46 peptides identified, 20
(43.5%) were nine residues in length. Longer peptides of
10 and 11 residues in length were also relatively common,
being represented by 7 (15.2%) and 11 (23.9%) sequences,
respectively. Only two 8-mer peptides (4.3%) were identi-
fied, suggesting that peptides shorter than nine residues are
less well tolerated by Mane-A1*082:01. Similarly, while
peptides longer than 11 residues were identified, these lon-
ger peptides collectively only represented less than 15% of
all eluted ligands.

Next, the sequences of the eluted peptides were analyzed
to determine the absolute number and relative fraction of
occurrence for each individual amino acid, at each position
(ESM Table 2 and Table 2, respectively). To do this, all of
the peptides were aligned beginning at their N-terminus as
shown in ESM Table 2, and the corresponding amino acid
frequencies were determined for positions 1 through 8, and
then for the C-terminal residue. Utilizing the fraction of
occurrence data (Table 2), we defined main anchor positions
as those where the median fraction of occurrence of any
amino acid is 0, indicating that only a limited range of
residues is found and implying that these positions are
associated with the most severe specificity. Accordingly,
and in agreement with the SAAS data, position 2 and the
C-terminus were identified as main anchors, and at both of
these positions there was a striking dominant preference for
a single residue. More specifically, histidine was found at
position 2 in 33 (72%) of the 46 sequenced peptides, and
tyrosine was found at the C-terminus in 31 peptides (67%). At
these positions, 14 and 15 different amino acids, respectively,
were never seen in any of the eluted ligands. A dominant
presence of asparagine (N) was also noted in position 1,
although a number of other residues were also tolerated,
suggesting that this is a secondary anchor position.

When compared to the SAAS data, the hierarchy of pref-
erences at the C-terminus identified in the eluted peptides was
a bit surprising. Specifically, the aromatic residue Y was
clearly the most dominant residue among the eluted ligands,
being present with about a fourfold higher frequency than F,
whereas the SAAS analysis identified a fourfold higher pref-
erence for F. However, it should be noted that the SAAS data

directly reflect molecular binding affinity, generated in vitro
using purified reagents, whereas preferences determined on
the basis of the elution data may be attenuated by factors
inherent in the in vivo cellular environment, such as protein
expression patterns, endogenous protein amino acid compo-
sition, and the preferences and/or limitations of protein pro-
cessing mechanisms.

Finally, to develop a general prediction method for iden-
tifying candidate Mane-A1*082:01 epitopes, we determined
the Mane-A1*082:01 binding capacity of a combinatorial
peptide library (PSCL). Quantitative matrices developed
using this approach have previously been shown effective
for the prediction of peptide binders (Lauemoller et al. 2001;
Peters et al. 2006; Sidney et al. 2008a; Sidney et al. 2007;
Stryhn et al. 1996; Udaka et al. 2000; Udaka et al. 1995).
Accordingly, the PSCL data were analyzed as previously
described, and a scoring matrix derived (Table 3) (Sidney et
al. 2008a).
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Fig. 1 Efficacy of PSCL prediction of Mane-A1*082:01 binders.
SHIV peptides were scored using the PSCL matrix. The top 1%
scoring peptides were synthesized and tested in competitive binding
assays utilizing purified MHC, as previously described (Loffredo et al.
2009; Sidney et al. 2008a; Sidney et al. 2001), and their IC50 (nano-
moles) affinities determined. Binders were defined as those with an
affinity of 500 nM, or better. a Percent binders as a function of the
percentile score range; b cumulative number of Mane-A1*082:01
binders by percentile score in a complete set of peptides derived from
SHIV scoring in the top 4 percentile range by PSCL matrix prediction
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To evaluate the efficacy of the PSCL matrix for predicting
Mane-A1*082:01 binders, we selected all possible 9-mer
peptides derived from the SHIV DH12R clone 7 sequence
(Sadjadpour et al. 2004). Similar to what was done previously
for other MHC class I alleles (Loffredo et al. 2009; Sidney et
al. 2008a; Sidney et al. 2007), each peptide was assigned a
score representing the sum of the (log) matrix value for the
corresponding residue at each position. The top 4% scoring
peptides (n0124) were then selected, synthesized, and tested
for their capacity to bind Mane-A1*082:01 in competition
assays utilizing purified MHC, as previously described
(Loffredo et al. 2009; Sidney et al. 2008a; Sidney et al.
2001). A control set of over 200 peptides, selected to cover
the 4–100% range, was also tested. As shown in Fig. 1a, the
algorithm demonstrated specificity, with over 30% of the
peptides scoring in the top 2 percentile range binding Mane-
A1*082:01 with an affinity of 500 nM or better. By contrast,
only 7.6% of the peptides in the second to tenth percentile
range, and 3.4% in the 10th to 25th percentile range, were
binders. None of the 72 peptides at the 25th or worse percen-
tile bound Mane-A1*082:01. Figure 1b details the prediction
efficacy of peptides scoring in the top 4%, demonstrating that
effective saturation is achieved at about the second percentile
(AUC00.79). The PSCL matrix was also adapted to predict
binders of 8, 10, and 11 residues in length. Synthesis and
testing of the top 1% scoring peptides of each size demon-
strated a similar prediction performance to that seen when
predicting 9-mers, with between 23% and 35% of the peptides
binding with an affinity of 500 nM or better. All peptides
identified in the present study with Mane-A1*082:01 binding
affinities of 500 nM, or better, represent candidates for T cell
epitopes, and are listed in ESM Table 3.

In the context of most human and non-human primate
MHC class I alleles studied to date, it has been shown that
an appreciable fraction of high-affinity binders, and T cell
epitopes, do not strictly adhere to canonical, elution-based,
motifs (Kast et al. 1994; Kubo et al. 1994; Ruppert et al.
1993; Sette et al. 1994). The PSCL predictions demonstrate
that this also appears to be true for Mane-A1*082:01.
Specifically, while 53% (20/38) of the high-affinity peptides
(IC50 <100 nM) identified had H in position 2, and 76%
(29/38) had F or Y at the C-terminus, only 29% conformed
to the canonical motif at both main anchor positions (ESM
Table 3). These observations underline the value of the
detailed motif defined herein.

In the present study we have utilized MHC elution anal-
yses and panels of single amino acid substitution analog
peptides to probe the binding specificity of Mane-
A1*082:01, one of the most frequent MHC class I alleles
expressed in captive bred pigtail macaques. Based on these
analyses, Mane-A1*082:01 was found to recognize a motif
with a preference for H in position 2 and the aromatic
residues F and Y, or the hydrophobic/aliphatic residue M,

at the C-terminus. The development of a sensitive MHC-
peptide binding assay utilizing purified MHC allowed the
derivation of a detailed quantitative motif that was proven
effective in predicting high-affinity binders from SHIV, an
important model virus for studying HIV infection in humans.
Future studies will address recognition of SHIV peptides in
the context ofMane-A1*082:01monkeys infected with SHIV,
as well as potential binding cross-reactivity between Mane-
A1*082:01 and Mamu A1*007:01, a rhesus macaque allele
that recognizes a nearly identical primary anchor binding
motif (Reed et al. 2011), and that has been associated with
SIV elite controllers. Additional work will explore cross-
reactivity with HLA alleles, such as those in the HLA B27
supertype (Sidney et al. 2008b), that recognize a similar
peptide binding motif.
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