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Abstract Alloreactive T cells are core mediators of graft
rejection and are a potent barrier to transplantation tolerance.
It was previously unclear how T cells educated in the recipient
thymus could recognize allogeneic HLA molecules. Recently
it was shown that both naive and memory CD4" and CD8" T
cells are frequently cross-reactive against allogeneic HLA
molecules and that this allorecognition exhibits exquisite
peptide and HLA specificity and is dependent on both public
and private specificities of the T cell receptor. In this review
we highlight new insights gained into the immunogenetics of
allorecognition, with particular emphasis on how viral
infection and vaccination may specifically activate allo-
HLA reactive T cells. We also briefly discuss the potential
for virus-specific T cell infusions to produce GvHD. The
progress made in understanding the molecular basis of
allograft rejection will hopefully be translated into improved
allograft function and/or survival, and eventually tolerance
induction.
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Thymic educated naive T cells are inherently cross-reactive
and commonly allo-HLA reactive

The first phase of T cell development is the production of a
functional T cell receptor (TCR), irrespective of antigen
specificity. Newly rearranged TCR repertoire must be
capable of recognizing all possible HLA molecules as the
T cell repertoire is generated before encountering the actual
autologous HLA molecules present in the thymus. Zerrahn
and colleagues studied MHC reactivity of thymocytes in
MHC class I and II-deficient mice (Zerrahn et al. 1997). A
limiting dilution analysis of CD4" thymocytes was
employed as a means to assess MHC reactivity of the
selected thymocytes. MHC reactivity in the preselection
repertoire was very high, but no higher than in the normal
TCR repertoire. Cross-reactivity of clones with multiple
MHC molecules occurred to a similar extent in the
preselection and MHC-selected repertoires. T cells reacted
promiscuously with several or many MHC molecules with
T cell clones from MHC class I and II-deficient mice
reacting with up to three or four of the eight tested H-2
haplotypes. These results established the high level and
promiscuity of allogeneic MHC reactivity in the germline T
cell repertoire prior to positive and negative selection.

The TCR repertoire that actually exits the thymus is then
the product of “positive” and “negative” selection based on
self-peptide/autologous HLA recognition in the thymus.
Any T cells having receptors that respond with high affinity
to complexes of self-peptide and autologous MHC class I
or II molecules are eliminated, a process termed negative
selection. However this quality control mechanism encom-
passes only HLA isoforms expressed by that individual
(autologous HLA), and not by other HLA isoforms
(allogeneic HLA) (Greisemer et al. 2010; Marrack and
Kappler 1988; Schild et al. 1990). Accordingly T cells that
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can respond to complexes of self-peptide and allogeneic
HLA class I and II molecules are able to exit the thymus as
they are not negatively selected and can be positively
selected by their natural high level of cross-reactivity
(Bankovich and Garcia 2003; Borbulevych et al. 2009;
Colf et al. 2007; Borst et al. 1987; Ely et al. 2008; Marrack
and Kappler 1988). T cells that have survived positive and
negative selection leave the thymus and enter the circula-
tion as mature naive T cells. Allogeneic HLA molecules
with even a single amino acid substitution as compared to
autologous HLA molecules can cause strong alloreactivity
in vivo (Fleischhauer et al. 1994; Herman et al. 1999).
Mature naive T cells exhibit a high frequency (10%) of
cross-reactivity against mismatched allogeneic HLA mole-
cules from one individual to which they have not been
previously exposed (Zerrahn et al. 1997; Macedo et al.
2009; Golshayan et al. 2010).

The role of the thymus in tolerance to specific alloantigens

The rearrangement of TCR germ line DNA sequences and
the pairing of the « and (3 TCR molecules create a
theoretical repertoire diversity of about 10" different T
cells in humans. Each of these newly generated TCRs has a
very high level of inherent specific cross-reactivity (Selin
and Brehm 2007; Mason 1998), including allogeneic HLA
cross-reactivity.

Tissue-specific proteins are expressed in the thymus and T
cells that bind self-peptides presented on self-HLA molecules
are removed in the thymus by negative selection. For
example, the EBV EBNA3A-specific TCR with TRVB6 gene
segment usage is specific for the EBV FLRGRAYGL peptide
presented by HLA-B*08:01 (Burrows et al. 1994; Argaet et
al. 1994). This TCR also binds the EEYLQAFTY self-
peptide from the ABCD3 gene presented on HLA-B*44:02
(Macdonald et al. 2009). In HLA-BS B44 heterozygous
individuals, this TCR is negatively selected in the
thymus to avoid autoimmunity (Burrows et al. 1995), but in
HLA-B8" B44 ™ individuals, this T cell is positively selected
and enters the circulation as a naive T cell which can mount
an immune response against EBV in the setting of EBV
infection and potentially against allo-HLA-B*44:02 mole-
cules in the transplantation setting.

Structural studies show that this single EBV EBNA3A-
specific TCR with Vb6 usage specifically recognizes both
the natural viral ligand on the HLA-B8 molecule and the
alloantigen HLA-B*44:02, in both peptide and HLA-
specific fashion (Gras et al. 2009; Macdonald et al. 2009).
In HLA-B8 B44 heterozygote individuals, the TCR which
recognizes the FLR peptide on HLA-B8 employs an
entirely different Vb segment usage and mode of TCR
docking, which coincides with a polymorphic region
between HLA-B8 and HLA-B44:02 (Gras et al. 2009).
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The markedly contrasting footprints of the two TCRs which
both bind to the same viral peptide on HLA-B8 provide a
portrait of how self-tolerance shapes the T cell clonotypes
selected into the immune repertoire.

Therefore the T cell receptor repertoire for a viral epitope
is diversified by tolerance to background autologous major
histocompatibility complex antigens (Burrows et al. 1995;
Gras et al. 2009), but not alloantigens.

Naive T cells and primary alloresponses

T cell alloimmunity is of extraordinary potency, up to 10%
of recipient T cells may react to donor alloantigens; in
contrast only a very small proportion of T cells respond to
any given pathogen-related epitope. While the dominant
role of T cell alloimmunity in allograft rejection was
previously known, the precise contribution of naive and
memory T cells was only recently clarified. Macedo and
colleagues used a flow cytometry-based method to analyze
alloreactivity from human T cell subsets. CD4" and CD8" T
cells proliferate at comparable levels and contain similar
alloreactive precursor frequencies (Macedo et al. 2009).
Furthermore naive and memory T cells proliferate equally
when stimulated with allogeneic cells in vitro. Proliferation
was alloantigen specific. Similar findings are reported for
direct allorecognition by naive versus memory T cells in
mice (Golshayan et al. 2010).

The high precursor frequency of alloreactive T cells is
likely the result of the inherent bias of prethymic repertoire
towards MHC recognition and the high level of cross-
reactivity inherent to all TCRs (Webb and Sprent 1986).

Memory T cells in primary alloresponses

Alloreactive memory T cells can be generated by previous
transplantation, blood transfusion, pregnancy, or viral
infection. T cell alloresponses against HLA antigens to
which the recipient has already been exposed have already
been extensively studied and the immunological mecha-
nisms of the alloreactivity are understood. However it was
previously unclear why even non-sensitized recipients have
a very high proportion of preexisting alloreactive memory
T cells. Recent studies reveal that the explanation for the
presence of alloreactive memory T cells in non-sensitized
recipients is likely cross-reactive from pathogen-specific
memory T cells generated as a result of previous immuno-
logical (pathogen) exposure (Amir et al. 2010).

While it has been shown that T cells with alloreactive
potential exist equally within the naive and memory T cell
subsets in vitro, it is more likely that memory T cell subsets
are responsible for clinical organ rejection (Welsh et al.
2000; Welsh and Selin 2002; Adams et al. 2003; Brook et
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al. 2006). Memory T cells have lower activation require-
ments and less need for co-stimulation, and are more likely
to express molecules with cytotoxic function (Flynn and
Mullbacher 1996; Burrows et al. 1999; Hamann et al. 1997,
Byrne et al. 1988). Furthermore memory T cells are more
likely a home to sites of active inflammation while naive T
cells remain primarily within central lymphoid organs.
Certain immunosuppressive drugs are also less effective at
suppressing memory T cell responses, versus naive T cell
responses (Pearl et al. 2005).

Viral-specific memory T cells

Allo-HLA cross-reactivity by preexisting viral-specific mem-
ory T cells explains the presence of alloreactive memory T
cells in non-sensitized individuals (Amir et al. 2010; Yang and
Welsh 1986; Yi-qun et al. 1996; Wang et al. 2008; Welsh and
Selin 2002). Alloreactivity by viral-specific memory T cells
is common (Amir et al. 2010). We recently showed that 45%
of viral-specific memory T cells specifically cross-reacted
against at least one allogeneic HLA molecule (see Fig. 1).
Allo-HLA cross-reactivity was shown for both HLA class I
and I molecules, and surprisingly two viral-specific CD8" T
cells were shown to cross-react against allogeneic HLA class
IT molecules, as was also shown by others (Rist et al. 2009).
These allo-HLA cross-reactive responses also showed tissue
specificity depending on presentation of tissue-specific self-
peptides (Amir et al. 2010, 2009, D’Orsogna et al. 2011a, b,
¢). An inventory of human viral-specific memory T cells
reported to give specific allo-HLA cross-reactivity has
recently been published (D’Orsogna et al. 2010).

utologo
cell

% Viral Peptide
Autologous HLA
molecule

Fig. 1 Allo-HLA cross-reactivity by viral-specific memory T cells.
Viral-specific memory T cells target virus-infected autologous cells
presenting viral peptides in a self-HLA restricted fashion. The same

% Viral Specific TCR

O B, Microglobulin

Antiviral T cell responses in individuals with similar
HLA molecules share similarities in epitope hierarchies and
T cell receptor variable gene usage (public specificities)
(Venturi et al. 2008), yet even with the same Vb usage, the
T cell receptor amino acid sequences can differ between
individuals (private specificities). Both public and private
specificities of viral-specific memory T cells are important
to the field of allorecognition and organ rejection as they
give rise to different patterns of allo-HLA cross-reactivity,
which are generally not predictable.

Public and nonpublic TCR responses

EBYV infection in a HLA-B*08:01 individual gives rise to
a public TCR response recognizing the EBV peptide
FLRGRAYGL presented on HLA-B*08:01. Burrows and
colleagues demonstrated that the HLA-B8/FLR restricted
response always gives rise to a public BV6S2 TCR
which cross-reacts against allogeneic HLA-B*44:02, but
not HLA-B*44:03. This finding has been reproduced
independently by multiple groups (Burrows et al. 1994;
D’Orsogna et al. 2009; Macedo et al. 2009; Gaston et al.
1983). Other public viral-specific T cell immune responses
have been reported (Venturi et al. 2008); however, allo-
HLA cross-reactivity from these public TCRs has not been
studied, but could also give rise to predictable allo-HLA
cross-reactivity.

Nonetheless most viral-specific T cell responses do not
give rise to a public TCR or predictable allo-HLA cross-
reactivity. For example, variable allo-HLA cross-reactivity
by T cell clones sorted from the same individual with the

Allogeneic cell

~ Donor Derived Self-peptide
Allogeneic HLA
molecule

viral-specific TCR may cross-react against an allogeneic HLA
molecule presenting a self-peptide. CTL cytotoxic T lymphocyte.
(Figure reproduced with permission from D’Orsogna et al. 2010)
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same specificity, but different TCR Vb usage, has been
reported (Amir et al. 2010). Single cell sorting of T cells
specific for the IE62 protein of VZV from an individual
with VZV infection generated three different clones using
Vb21.3, Vbl4, and an undetermined Vb, which were cross-
reactive against allogeneic HLA-A*02:05, HLA-B*55:01,
and HLA-B*57:01, respectively. Viral-specific memory T
cells with the same specificity but different TCR Vb usage
clearly give different patterns of allo-HLA cross-reactivity
(Amir et al. 2010; Burrows et al. 1997).

Therefore allo-HLA cross-reactivity cannot be predicted
based on viral (environmental) antigen exposure and HLA
mismatching of the donor and recipient alone. Given the
enormous amount of memory T cell diversity generated as
part of a normal immune response, it is likely that a single
viral infection may generate memory T cells with cross-
reactivity against many different allo-HLA molecules, thus
accounting for the lack of association between given viral
environmental exposures and unacceptable HLA mis-
matches. We therefore suggest that approaches aiming to
induce tolerance are most likely to be successful when
pursued on an individual (autologous) basis, as reported by
others (Francis et al. 2011; Jiang et al. 2006; Nagahama et
al. 2007; Feng et al. 2009).

Private specificities

The specific allo-HLA cross-reactivity of a viral-specific
memory T cell is dependent on the specific viral peptide
recognized, the HLA restriction element, and the TCR Vb
usage of the memory T cell (Amir et al. 2010). However allo-
HLA cross-reactivity may also be associated with private
specificities of the TCR. For example, an influenza IMP-
specific T cell clone (HLA-A2/GIL restricted) with TCR
Vb17 usage cross-reacted against allogeneic HLA-B*64:01
(Amir et al. 2010). However another clone with the same
specificity generated from the same individual and with the
same TCR Vb usage did not recognize allogeneic HLA-
B*64:01. These two clones contained private specificities
within the CDR3 region of the TCR which was presumably
responsible for the differing alloreactivity. A similar finding
was also reported for two CMV pp65-specific T cell clones
(HLA-B7/RPH restricted) from the same individual and with
the same TCR VDb usage (Amir et al. 2010).

Brehm and colleagues confirmed that allografts stimulate
cross-reactive virus-specific memory CD8 T cells with
private specificity, in an in vivo mouse transplant model
(Brehm et al. 2010). Cross-reactive CD8 LCM V-specific
memory T cells proliferated in vivo in response to
allografts. CD8 T cells specific to several LCMV epitopes
proliferated in response to alloantigens, with the magnitude
and hierarchy of epitope-specific responses differing with
the private specificities of the host memory T cell
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repertoire. Importantly they also showed that purified
LCMV-specific CD8 T cells rejected skin allografts in
SCID mice using adoptive transfer studies, even in the
absence of B cells, CD4 T cells, and APCs.

Thus viral-specific memory T cells generated within or
between individuals with the same viral antigen specificity
and TCR Vb usage can also give differing patterns of allo-
HLA cross-reactivity, depending on single amino acid differ-
ences within the CDR3 of the TCR (Brehm et al. 2010; Amir
et al. 2010). For this reason allo-HLA cross-reactivity by
viral-specific memory T cells can often not be predicted.

Vaccination-induced alloreactivity

Transplant candidates and recipients are at increased risk of
infectious complications and therefore current guidelines
recommend that transplant candidates complete the full
complement of recommended vaccinations prior to trans-
plantation (Anonymous 2004). However recent evidence
suggests that not only naturally acquired infections but also
vaccinations can augment the alloreactive T cell repertoire.
Danziger-Isakov and colleagues analyzed the humoral and
cellular reactivity in subjects undergoing influenza vaccina-
tion (Danziger-Isakov et al. 2010). Serial blood samples from
healthy subjects and transplant recipients who received
influenza vaccination were taken before and after vaccination
and alloreactive T cell immunity was measured, using IFN-y
ELISPOT. Vaccination specifically and significantly aug-
mented cellular immunity against a panel of allogeneic
stimulators in transplant recipients within 4 weeks of
vaccination. These findings demonstrate that influenza
vaccination can have a significant impact on the potency of
the alloreactive T cell repertoire, although the underlying
immunological mechanism behind the vaccine-induced
alloreactivity and its HLA specificity was not determined.
Recent work by our group suggests that specific allo-
HLA cross-reactivity from de novo vaccine-induced mem-
ory T cells may underlie the increased alloreactivity
observed in the previous study. VZV-specific T cells
generated de novo after varicella vaccination were cloned
and tested for alloreactivity against a panel of allogeneic
cells and proximal tubular epithelial cells present in kidney
grafts (D’Orsogna et al. 2011a, b, ¢). A VZV-specific CD8"
memory T cell (HLA-A2 restricted) generated de novo after
varicella vaccination of a kidney transplantation candidate
specifically cross-reacted against the allogeneic HLA-
B*55:01 molecule only. This VZV vaccine-induced mem-
ory T cell exhibited cytotoxic effector function, not just
cytokine production, against a human HLA-B*55:01
expressing proximal tubular epithelial cell line thus con-
firming the relevance to clinical kidney transplantation.
Therefore vaccination, and not just naturally acquired viral
infection, can induce allo-HLA reactive memory T cells in
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non-sensitized individuals (D’Orsogna et al. 2011a, b, c).
Vaccination may also induce de novo CD4" memory T cells
with specific allogeneic HLA class II cross-reactivity
(Umetsu et al. 1985).

The expression of tissue-specific self-peptide is required
for allorecognition

The recognition of allogeneic HLA molecules by
memory T cells is dependent on presentation of self-
peptide by the allogeneic target cell (Archbold et al.
2006) (see Fig. 1). Our group studied the extensively
described cross-reactivity of the EBV EBNA3A T cell
against allogeneic HLA-B*44:02 (D’Orsogna et al. 2011a,
b, c), as this is the only human viral-specific memory T
cell for which an allopeptide (EEYLQAFTY from ABCD3
gene) has been reported (Macdonald et al. 2009).
Allogeneic HLA-B*44:02 proximal tubular epithelial cells
and human umbilical endothelial cells are poor targets for
EBV EBNA3A-specific memory T cells, in contrast to
HLA-B*44:02 expressing B cells, PHA blasts, spleno-
cytes, and HLA-B*44:02 transfected K562 cell lines
(SALs). HLA-B*44:02 PTECs were specifically lysed by
an EBV EBNA3A-specific T cell clone although lysis was
low as compared to HLA-B*44:02 PHA blasts and SALs,
but lysis was greatly increased by exogenous EEYL-
QAFTY peptide loading. HLA-B*44:02 HUVECs were
not lysed unless exogenously loaded with the EEYL-
QAFTY peptide. Lack of HLA-B*44:02 expression was
excluded as a cause for these results, strongly suggesting
that the lack of recognition of HLA-B*44:02 epithelial
and endothelial cells by the EBV EBNA3A T cells was
due to (tissue specific) lack of EEYLQAFTY peptide
presentation (D’Orsogna et al. 2011a, b, ¢).

Interestingly expression of the ABCD3 gene within the
various HLA-B*44:02 expressing cell lines did not
correlate strongly with allorecognition by the EBV
EBNA3A-specific T cell clone. Therefore differences in
tissue-specific self-peptide processing or tissue-specific
differences in expression of a protein that contains a
peptide capable of competing with the EEYLQAFTY
peptide for the peptide-binding groove of the HLA-
B*44:02 molecule could also cause tissue-specific allor-
eactivity. Alternatively the EEYLQAFTY peptide may not
be the natural ligand for the EBV EBNA3A T cells.
Regardless, studies using EBV EBNA3A T cells clearly
demonstrate that alloreactivity from viral-specific memory
T cells is the result of highly focused, peptide-dependent
structural mimicry.

Tissue-specific allorecognition is extensively described
in humans and mice. As part of our recent work,
allorecognition by viral-specific memory T cells of normal

cell subsets, such as B cells, T cells, PHA blasts,
monocytes, dendritic cells, and fibroblasts, was studied
(Amir et al. 2010). For example, a CMV pp65-specific T
cell clone showed high recognition of HLA-DRB1*08:01"
CD40L activated B cells but low recognition of resting B
cells and fibroblasts. A VZV IE62-specific T cell clone
showed high recognition of HLA-B*55:01 dendritic cells
and PHA blasts but low recognition of monocytes and T
cells. Lack of HLA expression was excluded in all of these
target cells. These results indicate that alloreactivity by
human virus-specific memory T cells against normal cell
subsets is frequently cell type specific.

Human tissue-specific alloreactivity is also suggested by
studies using graft-infiltrating lymphocytes obtained from
renal allografts undergoing rejection (Miltenburg et al.
1989; van der Woude et al. 1990; Deckers et al. 1997,
1998; Yard et al. 1994; Brook et al. 2006). Graft-infiltrating
T cells were shown to exhibit functional activity against
proximal tubular cells grown from the corresponding donor,
but not donor-derived splenocytes or proximal tubular cells
from a third party donor (Miltenburg et al. 1989; van der
Woude et al. 1990). In one study 33% of graft-infiltrating T
cell lines reacted in a tissue-specific fashion to donor
proximal tubular cells but not donor splenocytes (van der
Woude et al. 1990).

Peptide-dependent (tissue-specific) allorecognition is
also extensively described in mice models. For example,
Molina and colleagues found that the expression of tissue-
specific self-peptide is required for allorecognition and
Heath and colleagues found that the cell type-specific
recognition of allogeneic cells by alloreactive cytotoxic T
cells was a consequence of peptide-dependent allorecogni-
tion (Molina and Huber 1990; Heath and Sherman 1991).
The immunological mechanisms underlying peptide and
HLA-specific TCR cross-reactivity are described elsewhere
(Yin and Marluzza 2009; Whitelegg and Barber 2004).
Allorecognition can therefore be tissue specific likely
because of differential allopeptide presentation which may
have important implications for transplantation monitoring
and rejection.

Anti-HLA antibodies and heterologous immunity

The effect of viral infection or vaccination on alloantibody
production is not so clear; however, it is theoretically
possible that antibodies specific for a viral peptide could
cross-react with alloantigens. T cell help for such an
antibody response would simply require a TCR that
recognized the same viral peptide (or another peptide from
the same viral protein) presented by autologous class II
HLA molecules on the B cell with the cross-reactive
antibody specificity.
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A non-allogeneic stimulus can trigger the production of
de novo anti-HLA antibodies in healthy adults (Alberu et
al. 2007). Hepatitis B vaccination was associated with de
novo production of HLA-specific alloantibodies in 9/20
vaccine recipients, but not controls. The alloantibody
production resolved within 3 months of vaccination. De
novo anti-HLA antibody formation was also reported after
pandemic HIN1 and seasonal influenza immunization in
kidney transplant recipients (Katerinis et al. 2011). While
the immunological mechanisms underlying the alloantibody
production were not determined, presumably CD4 T cells
recognized a vaccine peptide presented by autologous HLA
molecules with homology to allogeneic HLA molecules,
thus providing help for an antibody response to the vaccine
peptide that was cross-reactive with allogeneic HLA
molecules.

Anti-HLA antibodies have also been reported in the sera
of non-alloimmunized healthy males and in cord blood
(Morales-Buenrostro et al. 2008; El-Awar et al. 2008), and
it was suggested that these anti-HLA antibodies are
produced to cross-reactive epitopes found in microorgan-
isms, ingested proteins, and allergens making them “natu-
ral” antibodies (Morales-Buenrostro et al. 2008). However
such antibodies may only recognize denatured forms of
HLA or beta-2 microglobulin and may therefore not be
clinically relevant in the transplantation setting (Cai et al.
2009; El-Awar et al. 2008). Furthermore, cytotoxic activity
of natural donor-specific antibody does not correlate with
the antibody level (Cai et al. 2009). The relevance of these
natural HLA antibodies to transplantation is therefore not
yet known; however, even if they are irrelevant to graft
rejection, awareness of these natural anti-HLA antibodies
could prove useful in avoiding unnecessary exclusion of
potential donors.

Therefore non-allogeneic stimuli can trigger the production
of anti-HLA antibodies and some anti-HLA antibodies could
actually be “cross-reactive” pathogen-specific antibodies.
Further clinical studies are clearly warranted as the long-
term clinical significance of anti-HLA antibodies induced
following infection or vaccination remains to be addressed.

Discussion

Adaptive T cell responses to donor antigens are a potent
barrier to successful transplantation. Enormous progress
has been made in the understanding of the nature of
allorecognition and T cell-mediated allograft rejection.
Thymically educated naive T cells are very commonly
allo-HLA cross-reactive and can be activated by patho-
gen exposure to become memory T cells. Memory T cells
are long lived and have lower activation requirements
and less co-stimulation dependence, allowing them to
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commonly recognize allogeneic cells expressing the
allogeneic HLA molecule against which they are cross-
reactive. This cross-reactivity cannot be predicted based
on donor-recipient mismatch and immunological history
alone and is dependent on the original cognate viral
peptide recognized, the HLA restriction and both the
public and private specificities of the TCR.

T cell alloresponses are thought to occur via two main
pathways, direct and indirect allorecognition; however, new
understanding of the immunological mechanisms underly-
ing allorecognition means currently used models of T cell
allorecognition may have to be altered. The direct allor-
ecognition pathway was thought to involve the recognition
of intact allogeneic MHC:peptide complexes on donor
APCs and is thought to only occur early following
transplantation when donor APCs are still present in the
graft. However recent studies show that both naive and
memory T cells can cross-react (directly recognize) alloge-
neic HLA molecules presenting self-peptides on allogeneic
tissue cells (see Fig. 1). Memory T cells in particular are
able to persist and have lower activation and co-stimulation
requirements. We propose that direct recognition of
allogeneic HLA molecule:self-peptide complexes on donor
cells may be a dominant pathway of T cell allorecognition
and may persist for the life of the graft even after donor
APCs are no longer present in the recipient.

Nonetheless direct cross-reactivity of memory T cells
against intact allogeneic HLA molecules presenting a self-
peptide would not result in production of alloantibodies
against the same allo-HLA molecule. For example, in our
recent report (D’Orsogna et al. 2011a, b, c), there is no
immunological mechanism whereby the cross-reactivity of
the VZV 1E62-specific CD8 T cell against allogeneic HLA-
B55 could result in the production of an anti-HLA-BS5S5
antibody. Cross-reactivity of viral-specific CD8 T cells
against allo-HLA molecules would result in T cell-mediated
rejection only.

Indirect allorecognition occurs when a recipient T cell
recognizes peptide fragments of an allogeneic HLA
molecule presented on recipient APCs and is thought to
be the predominant mechanism underlying chronic T cell
allorecognition. It is undoubted that peptide fragments from
allogeneic HLA molecules are presented on autologous
HLA molecules; however, a T cell recognizing allo-HLA
peptide fragments presented by an autologous HLA
molecule would not necessarily be activated to recognize
the intact allo-HLA molecule on the surface of allogeneic
cells. Such a concept is contrary to the basic immunological
principles of T cell structure and function. T cells
specifically recognize the 3D structure of a HLA molecule
and a short peptide fragment, and if the presenting
autologous HLA molecule is not present on the allogeneic
cell then that same T cell could never recognize the
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allogeneic HLA molecule peptide fragment (or the intact
allogeneic HLA molecule). However it is highly likely that
a CD4 T cell recognizing allo-HLA peptide fragments
presented on recipient APCs (dendritic cells, B cells, or
activated T cells) would stimulate an IgG class switched,
high-affinity anti-HLA antibody response from a B cell as
part of a germinal center reaction (see Fig. 2).

Therefore recent advances in the understanding of the
immunogenetics of allorecognition suggest a new model for
allorecognition whereby the majority of T cell alloresponses
may occur via direct recognition (cross-reactivity) by
thymically educated naive and memory T cells against
allogeneic HLA molecules presenting self-peptides (Fig. 1),
and indirect recognition may be a major source of anti-HLA
antibodies (Fig. 2).

While the authors suggest direct allorecognition by naive
and memory T cells is the dominant mechanism leading to
T cell-mediated graft rejection, we acknowledge that much
work remains to be done. Mifsud and colleagues recently
provided the first in vivo quantitative and functional
analysis of human cross-reactive virus-specific CD8 T cells
in a clinical transplantation framework (Mifsud et al. 2010).
EBV EBNA3A-specific CD8" T cells were detectable in the
bronchoalveolar lavage fluid of HLA-B*08:01" recipients
who had received a HLA-B*44 mismatched lung allograft.
These virus-specific T cells exhibited a skewed functional
phenotype towards cytotoxic but not cytokine-producing
capabilities. However the presence of these cells was not

Cytokines

% Viral Specific TCR

molecule

Allogeneic HLA molecule

F Autologous HLA §containing short peptide epitope

associated with poorer clinical outcomes in the absence of
EBYV reactivation and in the setting of immunosuppression
and antiviral prophylaxis. Therefore the clinical relevance
of allo-HLA cross-reactive memory T cells is still unclear,
although we suggest viral reactivation would be highly
likely to activate alloreactive T cells in the solid organ
transplant setting, as also suggested by others (Selin and
Brehm 2007; Welsh and Selin 2002; Adams et al. 2003;
Kleim et al. 2008; Gray and Matzinger 1991).

Infusion of virus-specific T cell lines into bone marrow
transplant recipients or immunodeficient patients could also
result in graft versus host disease. Melenhorst and
colleagues reported that infusion of allogeneic virus-
specific T cells with HLA alloreactivity did not produce
GVHD in 73 human subjects (Melenhorst et al. 2010).
However the hematopoietic stem cell transplantation recip-
ients in this study received infusions of virus-specific cell
lines that were mostly HLA matched, and likely to be fully
HLA-A, -B, and -DR matched. Furthermore virus-specific
lines were not infused if killing of recipient phytohemag-
glutinin blasts was greater than 10% in vitro. We
recommend further studies before off the shelf T cell
therapies across HLA barriers enter routine clinical practice
(D’Orsogna et al. 2011a, b, c).

Future work should focus on the in vivo relevance of
cross-reactivity by viral-specific memory T cells, in both
the solid organ and bone marrow transplantation settings.
Allopeptides relevant for human transplantation should be

Anti-HLA high affinity surface IgG

Anti-HLA high affinity
secreted IgG

Short peptide epitope from

O B, Microglobulin

Fig. 2 B cells with specificity for allogeneic HLA must first be
activated by the combination of antigen and T cell help. Viral-specific
CD4 T cells may cross-react against allogeneic HLA-derived peptides
presented on autologous HLA molecules (indirect allorecognition) by
recipient APCs (Dendritic cells, B cells, or activated T cells). In the

allogeneic HLA molecule

germinal center reaction, such B cells may undergo somatic hyper-
mutation with the development of high-affinity surface IgG with HLA
specificity. Progeny B cells would leave the germinal center and
differentiate into either memory B cells or antibody-producing plasma
cells. APCs antigen presenting cells
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identified, perhaps commencing with tissue-specific targets
of public TCRs. It is clear that pathogen-free mice should
be considered a poor model for the induction of transplan-
tation tolerance, considering the important role of viral
exposure in the alloimmune response. Clinical research
must focus on the effect of viral reactivation, particularly
latent herpes viruses, and the benefits of antiviral prophy-
laxis and/or vaccination.

In conclusion, new insights into the immunological
mechanisms underlying allorecognition may have impor-
tant clinical implications. The role of the thymus is to delete
T cells recognizing self-peptides on autologous HLA
molecules; however, many T cells recognizing self-
peptides presented on allogeneic HLA molecules are not
deleted from the T cell repertoire. These thymically
educated T cells enter the circulation, are commonly and
specifically allo-HLA reactive, and are activated by viral
infection or vaccination to become alloreactive memory T
cells which are a major barrier to successful tolerance
induction (Byrne et al. 1988; Adams et al. 2003; Brook et
al. 2006). Antiviral prophylaxis combined with specific
targeting of these alloreactive memory T cells using
immunosuppressive drugs, monoclonal antibodies, and/or
donor-specific Tregs could also provide a platform for the
induction of donor-specific transplantation tolerance.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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