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Abstract The major histcompatibility complex (MHC) is a
vital component of the adaptive immune system in all
vertebrates. This study is the first to characterize MHC
class I (MHC-I) in blue tits (Cyanistes caeruleus), and we
use MHC-I exon 3 sequence data from individuals
originating from three locations across Europe: Spain, the
Netherlands to Sweden. Our phylogeny of the 17 blue tit
MHC-I alleles contains one allele cluster with low
nucleotide diversity compared to the remaining more
diverse alleles. We found a significant evidence for

balancing selection in the peptide-binding region in the
diverse allele group only. No separation according to
geographic location was found in the phylogeny of alleles.
Although the number of MHC-I loci of the blue tit is
comparable to that of other passerine species, the nucleotide
diversity of MHC-I appears to be much lower than that of
other passerine species, including the closely related great
tit (Parus major) and the severely inbred Seychelles
warbler (Acrocephalus sechellensis). We believe that this
initial MHC-I characterization in blue tits provides an
important step towards understanding the mechanisms
shaping MHC-I diversity in natural populations.

Keywords MHC class I . Antigen recognition site . Cloning
and sequencing . Blue tit (Cyanistes caeruleus; Parus
caeruleus) . Specific immune system

Introduction

The major histocompatibility complex (MHC) is a gene
complex that encodes molecules of vital importance for the
adaptive immune system of vertebrates (Klein 1986; Goldsby
et al. 2000; Janeway et al. 2008). The MHC is known to be a
remarkably diverse gene complex, containing many loci, a
high level of polymorphism and high nucleotide diversity
(Klein 1986; Nei and Hughes 1991). The high number of
MHC loci is thought to have arisen by gene duplication,
since many MHC genes are very similar in sequence (Beck
et al. 1999; Hess and Edwards 2002). Balancing selection is
thought to maintain MHC diversity and prolong the lifetime
of MHC alleles (Potts and Wakeland 1990; Hedrick 2002).
Several mechanisms of balancing selection have been
proposed (Bodmer 1972; Potts and Wakeland 1990; Nei
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and Hughes 1991; Borghans et al. 2004; Oosterhout
2008), most of which belong to one of two categories:
hypotheses involving pathogen driven selection and those
involving mate choice. The pathogen driven selection
hypotheses are based on the assumption that heterozygous
individuals and/or individuals possessing rare alleles have
increased survival probabilities and are more likely to
produce offspring, e.g. due to unpredictable pathogen
distributions. The mate choice hypotheses assume that
selection is imposed by a female preference for mates with
genotypes that increase the survival probabilities of their
offspring. Selection of males with favourable genotypes
can occur either pre- or post-copulatory (Potts and Wakeland
1990; Zeh and Zeh 1997).

The MHC can be divided into three classes: class I
(MHC-I) and class II (MHC-II) genes are similar in
sequence and are involved in the adaptive immune system,
while class III genes encode molecules involved in the
nonspecific immune response (Goldsby et al. 2000; Janeway
et al. 2008). Class I molecules present peptides that arise
from proteins in the cytoplasm to contiguous structures like
the nucleus (often intracellular pathogens), while class II
molecules present peptides that arise in intracellular vesicles
and extracellular space (often extracellular pathogens).
However, there is also a phenomenon of “cross-presentation”
where, e.g. extracellular material is presented by class I
molecules (Goldsby et al. 2000; Janeway et al. 2008).
Specific regions of the MHC (exons 2 and 3 in MHC-I and
exon 2 in MHC-II) encode the peptide-binding regions
(PBRs) that bind foreign peptides (Goldsby et al. 2000;
Janeway et al. 2008). Since each MHC molecule can
successfully bind a limited number of peptides, greater
polymorphism at the PBRs should increase the number of
pathogens that can be recognized by an individual, resulting
in balancing selection (Hughes and Nei 1988, 1989).

The MHC of the chicken (Gallus domesticus) was the
first to be characterized in a bird. The chicken MHC is
smaller with denser gene regions and smaller introns,
compared to the human MHC, called human leukocyte
antigen complex (HLA). It is also less diverse than the
HLA complex with only two class I and two class II loci.
The chicken is therefore said to have a “minimal essential
MHC” (Kaufman et al. 1995, 1999). Another remarkable
feature of the chicken MHC is that it has two gene
complexes (the classical BLB and non-classical YLB loci)
that both contain MHC-I and II alleles, but these loci
segregate independently (Miller et al. 1994; Hunt et al.
2006). At least one of the YLB loci is known to be
expressed (Hunt et al. 2006). The BLB and YLB loci have
also been reported in the black grouse (Tetrao tetrix) and
the ring-necked pheasant (Phasianus colchicus) (Wittzell
et al. 1995; Strand et al. 2007) and are thought to be a
feature of galliform birds.

In general, the MHC of passerine birds appears to be
more diverse in terms of loci, polymorphism and the
existence of pseudogenes than the MHC of galliform
birds (with the exception of the Japanese quail; Cortunix
japonica; Shiina et al. 1995; Westerdahl et al. 2000;
Westerdahl 2007). In passerines, studies have mainly
focused on MHC-II (i.e. Vincek et al. 1995; Westerdahl
et al. 2000; Edwards et al. 2000; Freeman-Gallant et al.
2002; Jarvi et al. 2004; Miller and Lambert 2004;
Richardson et al. 2005; Aguilar et al. 2006), while
MHC-I has been investigated in only a few species (the
house sparrow, Passer domesticus, Bonneaud et al. 2004,
the Seychelles warbler, Acrocephalus sechellensis,
Richardson and Westerdahl 2003, the great reed warbler,
Acrocephalus arundinaceus, Westerdahl et al. 1999, and
the scarlet rosefinch, Carpodacus erythrinus, Promerová
et al. 2009). Pathogens are, as mentioned above, thought
to maintain the MHC diversity and in the last 10 years,
avian malaria has been investigated extensively in wild
bird populations. There is a wide array of malaria
strains that infect most bird species and they potentially
exert a substantial selection pressure for MHC diversity.
Avian malaria has both extra- and intracellular stages
and hence both MHC-I and MHC-II are likely to be
involved in the adaptive immune response against
malaria parasites (Peirce 1981; Valkiunas 2005; Janeway
et al. 2008).

Here, we investigate the MHC-I of the blue tit
(Cyanistes caeruleus) across three populations in Europe.
In blue tits, several species of intracellular parasites,
including avian malaria, are known to negatively affect
the survival and reproductive success of infected individ-
uals (Merino et al. 2000; Cichon and Dubiec 2005; Tomás
et al. 2007; Arriero et al. 2008; Knowles et al. 2010).
Blue tits typically breed as socially monogamous pairs
(del Hoyo et al. 2007), but studies in numerous populations
revealed that broods often contain offspring sired by males
other than the social partner (extra-pair offspring; Kempenaers
et al. 1997; Leech et al. 2001; Delhey et al. 2003; Brommer
et al. 2006; Magrath et al. 2009). Consequently, the blue tit
is an ideal species for investigating the potential role of
MHC in both pre- and post-copulatory mate choice.
Characterising MHC-I of the blue tit is an important first
step towards future investigation into the role of
pathogen-mediated selection and mate choice in the
maintenance of MHC diversity in passerines.

Specifically, this study aims to: (1) partly characterize
the diversity of the MHC-I genes in blue tits using
individuals from three populations across their range, (2)
compare the blue tit MHC-I diversity with other passerine
species and (3) gain insights into the selection pressures
acting on PBR and non-PBR regions within the blue tit
MHC complex.
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Methods

Study species The blue tit is a common passerine species
with a wide distribution; the Cyanistes caeruleus caeruleus
subspecies extends throughout Europe and Western and
Northern Asia (del Hoyo et al. 2007). We defined birds as
migratory when seasonal migration between breeding and
wintering grounds occurs, since this may be of importance
for the diversity of pathogens encountered during an
individual’s lifetime (Møller and Erritzøe 1998). Non-
migratory individuals may still disperse. According to our
definition, the blue tit is non-migratory across the majority
of its distribution, although large-scale dispersal as well as
partial migration occurs in the northern range of the
distribution (i.e. Sweden; Smith and Nilsson 1987; Cramp
and Perrins 1993).

Sample collection We used DNA samples from populations
in three countries: (1) the Netherlands (NL, the Vosbergen
estate, near Groningen, 53°08′ N, 06°35′ E), (2) Spain (Sp,
Valsain, central Spain, 40°49′ N, 3°56′ E) and (3) Sweden
(Sw, 55°41′ N, 13°26′ E). From the Netherlands, we
sequenced both gDNA and cDNA in three individuals and
only gDNA in an additional three individuals. From Spain
and Sweden, we sequenced seven individuals each (five
gDNA, two cDNA; for practical reasons gDNA and cDNA
samples were taken from different individuals in Spain and
Sweden).

Birds were trapped in nest boxes and blood samples
were collected from the brachial vein. Blood samples for
DNA analysis were stored in 99% ethanol. An ammonium
acetate or phenol/chloroform method was used for DNA
extraction (Richardson et al. 2001; Sambrook et al. 2001).
For RNA collection, 80–100 μL of blood was added to
100 μL K2EDTA (0.2 M) and 500 μL of Trizol-LS was
added immediately after (following Miller and Lambert
2003). All samples were then stored at 4°C.

Restriction fragment length polymorphism To get an
estimate of the numbers of class I loci in the blue tit
genome, a restriction fragment length polymorphism
(RFLP) analysis was performed. A restriction cleavage
and southern blot were performed on 7 μg genomic DNA
using the restriction enzyme Pvu II and a radioactively
labelled class I exon 3 clone (consisting of a purified
215 bp PCR product, see below; for details see Westerdahl
et al. 1999).

Sequencing Initially, several primer combinations were
used for gDNA sequencing [PcaH1-A23H3, PcaH1 grw-
A23H3; Balakrishnan et al. 2010, PcaH2-A23H3 and A21B
(Bonneaud et al. 2004) -A23H3, Table 1 in Supplementary
material]. The primer combination A21B-A23H3 was most

successful and we continued with only this combination
after initial testing. The primers sequenced the major part of
exon 3 (215 bp, primers not included, Fig. 1 in Supple-
mentary material). The following PCR protocol was used
for DNA amplification: 94°C for 2 min, then 35 cycles of
(94°C for 30 s, TA for 30 s, 72°C for 30 s), then 72°C for
10 min and finally 4°C on a thermal cycler before the
samples were stored at 4°C (see Table 1 in Supplementary
material for TA). Reagent concentrations: genomic DNA,
50 ng; primers, 0.5 μM; dNTP, 0.15 mM; 10x buffer;
MgCl2, 1.5 mM, Taq 5U; final volume, 40 μL (AmpliTaq
DNA polymerase with GeneAmp, Applied Biosystems,
USA). A ligation reaction was performed, in which the
PCR products were cloned into a bacterial vector (TOPO—
TA cloning kit, Invitrogen, California, USA). Between 5 and
20 bacterial colonies per individual were amplified (using
primers of the cloning kit, M13fw-M13rv) and sequenced on
a capillary sequencer (ABI prism 3730, Applied Biosystems,
California, USA) according to a standard big dye protocol
(Big Dye Terminator mix V3.1, Applied Biosystems).

We extracted and cleaned the RNA samples using the
RNeasy cleanup kit (Qiagen, Hilden, Germany). A two-
step RT-PCR reaction was then performed using the
Retroscript kit according to protocol (Ambion, Applied
Biosystems) with the A21B-A23H3 primers and finally
the obtained cDNA was amplified, ligated and sequenced
(see above).

Definition of alleles All sequences were blasted against
previously published avian MHC-I sequences (NCBI
GenBank) for confirmation and the MHC-I sequences
were aligned using BioEdit (Hall 2009). Only completely
identical sequences found in two independent PCR events
(from either RNA or DNA) were defined as alleles. We
refer to these alleles as verified, since the same sequence
is unlikely to have arisen twice from independent
amplification errors. Throughout this paper, sequences
are reported without the primers. The word “allele” is used
to indicate a 215 bp exon 3 sequence derived from cDNA
and/or gDNA.

Analysis of sequences A phylogeny of the identified
alleles was derived in PAUP* v.4.0b10 (Ronquist and
Huelsenbeck 2003), the model of nucleotide evolution
was determined according to the Akaike information
criterion with MrModeltest2.3 (Nylander 2004). GTR
was used as the substitution model, while across-site
mutation rates were assumed to be gamma distributed. We
analysed the dataset in MrBayes3.1.2 (Huelsenbeck and
Ronquist 2001, 2003). We ran four Markov chains for
5,000,000 generations in two parallel replicates with
chain heating parameter set to 0.15. Trees were sampled
at intervals of 1,000 generations, and posterior probabil-
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ities were calculated from 2,000 trees after excluding
3,000,000 generations as burn-in. As an outgroup, we
used a great reed warbler (A. arundinaceus) sequence.

The MHC-I sequences of the blue tit previously reported
by Foerster et al. 2006 were added from NCBI GenBank
(accession numbers AM232710-14). These sequences
grouped with our sequences in the phylogenetic tree of
alleles (data not shown).

The amino acids that comprise the PBR were super-
imposed on the blue tit sequences using the great reed
warbler sequences (Westerdahl et al. 1999). To determine
whether the PBR has been under selection, we calculated
values of dN/dS (Hughes and Nei 1989; Page and Holmes
1998) using the Nei-Gojobori method and performed a
codon-based Z test (Nei-Gojobori, Jukes-Cantor) in MEGA
4.1 (Tamura et al. 2007) to determine whether there was
evidence for the occurrence of selection on the PBR vs.
non-PBR regions. Tajima’s D was calculated in Arlequin
(Excoffier et al. 2005; Tamura et al. 2007) as an additional
indication of selection. The value of dN/dS is the ratio of
non-synonymous mutations (i.e. mutations resulting in a
change in the amino acid sequence) to synonymous
mutations (i.e. mutations after which the amino acid
sequence remains intact), while Tajima’s D uses the number
of polymorphic sites to calculate the divergence between
sequences. A dN/dS ratio larger than 1 as well as positive
Tajima’s D values are indicative of balancing selection.

Conserved sites within exon 3 have previously been
described in the chicken (Livant et al. 2004), the

Japanese quail (Shiina et al. 1995), the duck (Anas
platyrhynchos; Mesa et al. 2004), the great reed warbler
(Westerdahl et al. 1999) and the scarlet rosefinch
(Promerová et al. 2009). To investigate whether the same
sites were conserved in the blue tit, the blue tit alleles
were compared to previously published MHC-I sequen-
ces of the above mentioned species. These sequences
were added from NCBI GenBank (for accession numbers
see Fig. 1). Conserved sites were extrapolated following
Kaufman et al. (1994).

Our verified alleles were added to NCBI GenBank
(accession numbers JF742764-80). The blue tit was recently
renamed C. caeruleus, but to name our sequences, we use
Parus caeruleus to ensure consistency with blue tit MHC-I
sequences previously published in NCBI GenBank. To avoid
confusion with blue tit MHC-I sequences previously
published in GenBank, we numbered our alleles Paca
UA*101-Paca UA*117.

Species comparison In order to compare genetic diversity
at MHC-I exon 3 between the different passerine species
studied to date, we calculated nucleotide diversity of the
alleles of each species using Arlequin version 3.11
(Excoffier et al. 2005). Nucleotide sequences were obtained
from NCBI GenBank. In the blue tit, the phylogenetic
tree of alleles revealed a distinct cluster of alleles with very
little sequence diversity. For the species comparison of
nucleotide diversity, only the eight alleles outside this
cluster were used, since these are the alleles with the

Fig. 1 Amino acid sequences of exon 3 of the blue tit MHC-I,
aligned with amino acid sequences of exon 3 of several other bird
species: the chicken (Gallus gallus, Gaga BF*J3, accession number
AY327148, alpha 2 region only, Livant et al. 2004), the Japanese
quail (C. japonica, Coja, D29813Shiina et al. 1995), the duck (A.
platyrhynchos, Anpl, AY294416, Mesa et al. 2004), the great reed
warbler (A. arundinaceus, Acar cN20 exon 3 Westerdahl et al. 1999)

and the Scarlet rosefinch (C. erythrinus, Caer U*01, FJ392762
Promerová et al. 2009), added from NCBI genbank. Asterisks mark
the PBR while shaded areas mark, and numbers below the figure
indicate the conserved sites as named by Kaufman et al. 1994. The
columns on the right indicate whether the alleles were found in
cDNA and gDNA
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highest sequence diversity and most likely to be under
strong selection. This pattern of clustering was not found in
any of the other species included in this analysis and we
randomly selected eight alleles to allow for a comparison of
sequence diversity.

Results

Diversity

Population level A total of 17 MHC-I alleles were verified
in 234 sequences obtained from 20 individuals that
originated from Sweden, Spain and the Netherlands (Fig. 1
in Supplementary material). At least eight of these alleles
were transcribed, as they were found in cDNA (Fig. 1,
Table 2 in Supplementary material) and seven of these eight
transcribed alleles translated into different amino acid
sequences. In total, 13 different amino acid sequences were
found (Fig. 1). Alleles UA*101, UA*110, UA*106 and
UA*113 have identical amino acid sequences, as alleles
UA*105 and UA*115 (Fig. 1) do. No gaps, shifts in
reading frame or non-sense codons were detected. Tran-

scribed alleles were found throughout the phylogenetic tree
(Fig. 2).

Seven amino acid residues that are conserved in exon 3
of MHC-I across bird species have been described (named
Y123, T143, K146, W147, Y159, L160 and Y171 in the
chicken; Kaufman et al. 1994, see also Shum et al. 1999;
Mesa et al. 2004). In the blue tit, five of these sites were
also conserved (Y123, T143, W147, Y159 and Y171).
K146 is polymorphic in the blue tit and has different amino
acids compared to all other bird species, except for the
scarlet rose finch. L160 is polymorphic in the blue tit,
group 2 has the common leucin (L) while group 1 has
glutamine (Q) (Fig. 1).

Individual level There was evidence for at least four class I
loci because we found a maximum of seven alleles (215 bp
sequences) per individual (individual R, Table 2 in
Supplementary material). This finding was further sup-
ported by the RFLP analysis where each individual had
between five and eight RFLP bands (out of a total number
of ten RFLP bands found in the two families), each RFLP
band representing approximately one MHC allele. Four
RFLP bands were non-variable and occurred in all
individuals (band no. 1, 4, 8 and 10, Fig. 3).

Fig. 2 Phylogenetic tree for class I alleles in the blue tit. Numbers in
the tree indicate the posterior probabilities expressed as a percentage
(values below 50 not shown). The alleles of the allelic cluster with low
diversity (group 1 supported by a posterior probability value of 100)

are indicated by white dots, while all other alleles (group 2) have black
dots. Abbreviations indicate from which population the DNA sample
was taken (NL the Netherlands, SW Swedish, SP Spanish)
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Selection

Phylogeny One distinct cluster containing nineMHC-I alleles
was observed in the phylogenetic tree (supported by a
posterior probability value of 100, Fig. 2). These nine alleles
will be referred to as group 1, while the remaining eight
alleles will be referred to as group 2. The clustering of the
alleles in group 2 lacks phylogenetic support. The nucleotide
diversity (π) and the number of segregating sites (S) within
group 1 were significantly lower than in group 2 (group 1,
π=0.017, ±0.011 SD, S=12; group 2, π=0.056, ±0.033 SD,
S=27, Table 1, p<0.05, t test). Five of the segregating sites
contained the same polymorphism in groups 1 and 2. In
addition, four sites were monomorphic within group 1
and monomorphic in group 2 but differed between the
groups (Fig. 1 in Supplementary material). Overall, the

nucleotide diversity was 0.059, while there were 38
segregating sites.

There was no geographical separation of alleles across
the phylogenetic tree, as alleles from all three populations
(Spain, the Netherlands and Sweden) were distributed
across the entire tree and frequently shared between sample
locations (Fig. 2). Six out of the total of 17 alleles were
found in all three locations (UA*101, 103, 104, 105, 108,
112), three that belong to group 1 and three to group 2.
Some alleles were only found in one location (UA*102,
111, 113, 114, 117, Fig. 2). However, these alleles were
highly similar to those found in other locations. Expressed
alleles were found in all parts of the phylogenetic tree and
in both groups 1 and 2. We found evidence for at least
four group 1 loci and two group 2 loci (Table 2 in
Supplementary material).

Selection indices We found significant balancing selection
for the PBR of group 2, (dN/dS=5.488, Z=2.98, p=0.02),
but no evidence of any kind of selection (i.e. balancing or
purifying) acting on the PBR of group 1 (dN/dS=0.338,
Z=−0.50, p=0.62). None of the non-PBR regions were
under selection (group 1, dN/dS=0.179, Z=−1.64, p=0.10;
group 2, dN/dS=0.805, Z=−0.33, p=0.74; Table 2; codon-
based Z test, Nei-Gojobori, Jukes-Cantor).

The high values of Tajima’s D in group 2 (D=1.26, p=
0.82 and D=0.51, p=0.62 for PBR and non-PBR, respec-
tively) indicate that alleles in this group have been
maintained in the population for longer than expected
under neutrality (as the phylogenetic tree indicates, Fig. 2).
This effect was most pronounced in the PBR region. Both
PBR and non-PBR regions of group 1 appear to be under
purifying selection, as indicated by negative values of
Tajima’s D (D=−0.69, p=0.19 and D=−0.94, p=0.15 for
PBR and non-PBR, respectively). None of the Tajima’s D
values provide significant evidence for a deviation from
neutrality however (Table 1).

Fig. 3 RFLP gel of two blue tit families. The top row of numbers
indicates individuals: M1 and F1 are parents of individuals 1–7 (M
male, F female) and M2 and F2 are parents of individuals 8–13. The
second row indicates the total number of bands present for each
individual. A size standard in kilobase is shown on the right. The
position of all RFLP bands found is indicated on the left of the gel. All
RFLP bands were between 2.3 and 6.6 kb in length

Table 1 Indicators of selection on MHC-I

All sequences Group 1 Group 2

All sites PBR Non-PBR All sites PBR Non-PBR All sites PBR Non-PBR

Tajima’s D 0.56 0.62 0.48 −0.92 −0.69 −0.94 0.88 1.26 0.51

Significance D, p = 0.66 0.67 0.64 0.17 0.19 0.15 0.72 0.82 0.62

π 0.06 0.14 0.04 0.02 0.03 0.01 0.06 0.16 0.04

S 38 15 23 12 4 8 27 12 15

Number of sites 215 36 179 215 36 179 215 36 179

ps 0.18 0.42 0.13 0.06 0.11 0.05 0.13 0.33 0.08

Values for Tajima’s D and the significance value of D, π (mean pair wise difference/nucleotide diversity), S (the number of segregating sites), the
number of sites included in the region and ps (the number of segregating sites divided by the total number of sites). The p value of Tajima’s D was
obtained by testing against the assumption of neutrality
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Species comparison

We found that the nucleotide diversity of blue tits was
significantly lower than that of any of the other species,
including the inbred Seychelles warbler (p<0.05). The
great reed warbler had the highest nucleotide diversity
(Table 3).

Discussion

Selection pressures It is reasonable to expect that the
prevalence and composition of pathogens vary between
our three different blue tit populations, from Spain in the
south to Sweden in the north, possibly reflecting climatic
differences (i.e. Bensch and Akesson 2003; Merino and
Møller 2010). Therefore, one may expect different selection
pressures on the MHC resulting in population differentia-
tion in MHC alleles. Our phylogenetic tree of alleles shows
no obvious geographical relationship to the three source
locations. One of the characteristic features of the MHC
genes is that alleles can persist for a long time and that
trans-species polymorphism (MHC alleles or lineages that
are shared between diverged species) is common (Edwards
and Hedrick 1998; Westerdahl 2007). In a phylogeny
containing the MHC alleles of closely related species, it is
uncommon that the alleles will cluster in a species-specific
manner. Most likely, a geographical relationship to the three
source populations in the phylogenetic tree should only be
expected when there are substantial differences in selection
pressures operating. Hence, it may not be so surprising that
we did not find evidence of population differentiation
between our sample locations. In a study of population
differentiation among three Belgian blue tit populations (on
a much smaller spatial scale than our study), Verheyen et al.
(1995) found significant population differentiation using
selectively neutral markers. Ekblom et al. (2007) studied
population differentiation in MHC-II in Scandinavian and
east European populations of the great snipe (Gallinago

media) and found significant geographical differentiation,
but this was reflected in allele frequencies rather than in
phylogeny. Therefore, we may expect to find a geograph-
ical structure in MHC-I when studying allele frequencies.
Unfortunately, our present results do not allow us to test for
differences in allele frequencies, since we sampled a limited
number of individuals in each population.

The theory of pathogen driven selection predicts that
pathogen distributions vary over time and in space and that
selection acts on a species to keep up with its changing
environment (Bodmer 1972; Hedrick 2002). To recognize
novel pathogens, the PBRs of MHC molecules must be able
to adapt rapidly and are expected to be under balancing
selection (Hughes and Nei 1988, 1989). We found that the
dN/dS ratio in the PBR of the alleles in group 2, the diverse
allele group, was significantly higher than 1. Furthermore,
the positive (though non-significant) value of Tajima’s D
also indicated that group 2 has deeper branches than
expected under neutrality. A positive Tajima’s D value
could be caused by demographic events in the population
history (e.g. population expansion) or by the occurrence of
balancing selection. If the demographic history was
responsible for the positive Tajima’s D value in the PBR
of group 2, we would also expect to observe a positive
value for the non-PBR regions, since they are regions
within the same gene locus, but we did not. Therefore,
balancing selection acting on the PBR of group 2 is the
most likely explanation. It should be noted that we
calculated dN/dS and Tajima’s D from sequences derived
from at least four loci, though ideally it should be
calculated within one locus. This may result in an
overestimation of the number of synonymous substitutions
(Hughes and Nei 1989). However, these numbers should be
overestimated in both PBR and non-PBR regions, so it is
safe to conclude that the PBR is under stronger positive
selection than non-PBR regions in group 2.

The MHC-I alleles in group 1 have dN/dS ratios lower
than 1 and negative Tajima’s D values for the PBR as well
as the non-PBR regions. These values are indicative of

Table 2 Overview of the number of non-synonymous (dN) and synonymous (dS) mutations in the PBR and other regions (non-PBR) for class I

Group 1 Group 2

PBR Non-PBR PBR Non-PBR

dN 0.025±0.019 0.005±0.004 0.236±0.090 0.033±0.010

dS 0.074±0.092 0.028±0.013 0.043±0.039 0.041±0.023

dN/dS 0.338 0.179 5.488 0.805

p value 0.62 0.10 0.02 0.74

Z −0.50 −1.64 2.98 −0.33

Value±standard error (bootstrap, n=5,000 replicates); p and Z values were obtained using a codon-based Z test

PBR peptide-binding region
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negative selection on group 1, though the evidence was not
statistically significant. The alleles in group 1 also have
remarkably little sequence variation, which could be
explained by the alleles originating from a bottlenecked
population (while the alleles of group 2 diversified under
selection) or by strong negative selection. A bottleneck has
occurred in the phylogenetic history of the blue tit (Kvist et
al. 2004), but we also found some evidence for negative
selection. Since the bottleneck in the blue tit population was
not very severe, we cannot currently explain the lack of
variation in group 1.

MHC-I compared to other passerines We found evidence
for the existence of four MHC-I loci in the blue tit. MHC-I
has been described for a small number of passerine species:
the Seychelles warbler, great reed warbler (Westerdahl et al.

1999; Richardson and Westerdahl 2003), scarlet rosefinch
(Promerová et al. 2009), house sparrow (Bonneaud et al.
2004) and now the blue tit. These species represent
phylogenetically very different groups within the passer-
ines. Yet, the number of MHC-I loci is very similar in these
species, with the exception of the great reed warbler (five
loci in the house sparrow; Bonneaud et al. 2004; five in the
scarlet rosefinch; Promerová et al. 2009; eight in the great
reed warbler; Westerdahl et al. 1999). Preliminary RFLP
results suggest that the number of MHC-I loci in the
Seychelles warbler also is higher, so the high number of
MHC-I loci in the great reed warbler could be representa-
tive for this taxonomic group (Richardson and Westerdahl
2003).

It has previously been proposed that the MHC should be
more diverse in migratory than in non-migratory species,

Species GenBank accession
numbers

Segregating
sites (S)

Tajima’s D Nucleotide diversity
(π)±standard deviation

Great reed warbler
(A. arundinaceus)

AF449695 64 0.23(p=0.61) 0.121±0.067
AF449696

AF449697

AF449699

AF449700

AF449701

AY306008

AY306009

Seychelles warbler
(A. sechellensis)

AJ557874 49 0.46 (p=0.71) 0.096±0.054
AJ557875

AJ557876

AJ557877

AJ557878

AJ557879

AJ557882

AJ557883

Great tit (P. major) AF346821 50 0.19 (p=0.61) 0.111±0.062
AF346822

AF346823

AF346824

AF346825

AF346828

AF346829

AF346832

Blue tit (C. caeruleus) Group 2 26 0.89 (p=0.86) 0.056±0.032

Scarlet rosefinch
(C. erythrinus)

FJ392763 62 1.47 (p=0.96) 0.149±0.083
FJ392768

FJ392769

FJ392772

FJ392774

FJ392778

FJ392788

FJ392790

Table 3 Measures of genetic
diversity [number of segregating
sites (S), Tajima’s D and the
nucleotide diversity (π; ±SD)] at
the MHC-I for five species of
passerine birds

See “Methods” for the selection
of species and the MHC-I alleles
from GenBank
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since migratory species encounter more pathogen species
and strains (Møller and Erritzøe 1998; Westerdahl et al.
2000). We did not find a consistent pattern when comparing
the number of MHC-I loci or nucleotide diversity between
migratory (great reed warbler, scarlet rosefinch) and non-
migratory (house sparrow, Seychelles warbler, blue tit)
passerines. Genetic diversity within species or populations
may further be reflected in genetic polymorphism, a value
difficult to compare between species, since it is likely to be
correlated to the number of individuals sampled. Our
inability to detect a difference in MHC-I diversity may be
due to the very small number of species we compared.
Hopefully, the characterisation of MHC-I for other passer-
ine species will allow a more robust comparison in the near
future.

The nucleotide diversity and the number of segregating
sites in the blue tit MHC-I alleles were remarkably low
compared to other passerine species, even though only the
variable blue tit alleles in group 2 were taken into account.
The nucleotide diversity and number of segregating sites
are also lower than those of the closely related great tit
(Parus major). One explanation for the low diversity could
be that the blue tit underwent a population bottleneck, after
which the population expanded and spread throughout
Europe (Kvist et al. 2004). Kvist et al. (2004) suggest that
this bottleneck took place during the last ice age, when
birds were left in two refuges, the Iberian Peninsula and the
Balkan, resulting in the C. c. caeruleus and Cyanistes
caeruleus ogliastrae subspecies. Hence, the C. c. caeruleus
subspecies arose from the refuge population in the Balkan
and this bottleneck may explain the low MHC-I nucleotide
diversity that we observed. The population history of the
great tit is thought to be comparable to that of C. c.
caeruleus, although the blue tit diverged more recently than
the great tit (Kvist et al. 1999a, b), which may partly
explain why the nucleotide diversity and number of
segregating sites of the great tit is higher. In a species
comparison of genetic variation among mitochondrial
DNA, Kvist et al. (1999a, b) found that levels of nucleotide
diversity are comparable in the blue tit and the great tit
(Kvist et al. 1999a). Surprisingly, the nucleotide diversity
and number of segregating sites of MHC-I were even lower
in the blue tit than in the Seychelles warbler, a species that
underwent a severe recent (1920– approx. 1968) population
bottleneck (Komdeur and Pels 2005). The bottleneck that
the blue tit population went through is less recent and less
severe than the bottleneck in the Seychelles warbler
population and we would expect more genetic variation in
the blue tit MHC. Another possible explanation for the low
nucleotide diversity and number of segregating sites in the
blue tit is the lack of diversifying selection, which could
occur due to the absence of pathogens. However, there is
evidence that blue tits are commonly infected with several

species of blood parasites (such as avian malaria; Merino et
al. 2000; Cichon and Dubiec 2005; Tomás et al. 2007;
Arriero et al. 2008; Knowles et al. 2010) and we have no
reason to believe that pathogen pressures are lower in blue
tits compared to other passerine species. In case selection
pressures from pathogens had relaxed during a longer
period of the blue tits’ population history, one would expect
this to be reflected by a relatively low number of loci and
loci becoming non-functional.

Our characterisation of MHC-I in the blue tit shows the
existence of one phylogenetic cluster (group 1 versus the
remaining alleles named group 2) with very low sequence
diversity and indications of purifying rather than balancing
selection, while the remaining alleles show the expected
MHC characteristics. A non-variable MHC-I allele cluster
has previously been found in another passerine, the house
sparrow (Bonneaud et al. 2004). For MHC-II, the division
in two allele clusters that differ in nucleotide diversity has
been described in Hawaiian honeycreepers (Drepanidinae)
and Darwin’s finches (Geospizinae) (Jarvi et al. 2004). The
existence of two gene clusters that segregate independently
(the classical BLB and non-classical YLB) is known in
several galliform species (Miller et al. 1994; Wittzell et al.
1995; Hunt et al. 2006; Strand et al. 2007). Purifying
selection is one of the defining characteristics of non-
classical MHC alleles (Janeway et al. 2008) and a possible
explanation for the lack of polymorphism in the alleles in
group 1 could be that these alleles are non-classical in
origin, while the alleles in group 2 are classical. So far, we
have too little background information on the blue tit MHC
to determine whether the alleles we found are classical or
non-classical.

We found evidence (although not statistically significant)
that the alleles in group 1 are under purifying selection,
which could explain the low nucleotide diversity found in
this group of alleles. It seems possible that the molecules
derived from alleles in group 1 perform an essential
function in immune recognition and selection acts to
preserve them. Purifying selection on the alleles essential
for immune recognition could have led to convergent
evolution leading to the existence of a non-variable gene
cluster in several passerine species.

One could argue that the alleles in group 1 may be a
radiation of recently originated alleles. If the alleles in
group 1 were of recent origin, we would expect the values
for dN and dS to be similar, since selection has not yet had a
strong effect. When a phylogeny is drawn including only
synonymous substitutions, the clustering in our phyloge-
netic tree completely disappears (data not shown) and we
conclude that selection must be involved in creating this
gene cluster. One may also argue that more clusters of
highly similar alleles may exist in the blue tit and that the
alleles in group 2 belong to one or more of these clusters,
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but that we simply did not find the alleles in the other
clusters due to a limited sample size. In that case, we would
erronously draw the conclusion that there is a large
difference in diversity between group 1 and group 2, since
we are comparing the group 1 alleles to alleles potentially
belonging to several clusters. For a follow-up project, we
designed primers to specifically amplify the alleles of group
2 (data not shown), but we found no evidence for another
gene cluster with low diversity.

Interestingly, one of the seven amino acid residues that
are conserved in exon 3 of MHC-I across bird species
differed between groups 1 and 2 (L160). Group 1 had the
common leucin (L160) changed to glutamine (Q160).
Leucin and glutamine have different characteristics and
such an amino acid change could therefore indicate
different peptide-binding abilities in the PBR of groups 1
and 2.

An indication that the number of samples we obtained
per individual is limited (for both cDNA and gDNA) may
be that certain alleles were only revealed in the cDNA (and
not in gDNA) in an individual. In order to reveal all alleles
an individual possesses and all existing alleles across all
blue tit populations, a very large number of sequences
would have to be obtained. Importantly, however, it is
unlikely that our main conclusions would be altered by
increasing the sample sizes, since (1) the phylogenetic
relationships would likely be maintained and (2) including
rare alleles in our analysis is unlikely to increase the
maximum number of alleles per individual, since our RFLP
analysis confirmed our estimation of four loci.

Conclusions and future prospects This study is the first to
characterise major histocompatibility complex class I in
the blue tit and is among few published studies that have
characterized MHC-I in passerine species. Besides
providing insight into the structure, diversity and selec-
tion acting on MHC-I, the characterisation of the blue tit
MHC-I is a first step towards the development of high
throughput methods for MHC-I screening. Such methods
will make it feasible to explore the mechanisms imposing
balancing selection on the PBR of MHC-I in natural blue
tit populations. Among other insights, these future
analyses may reveal why the blue tit MHC-I exhibits
such low sequence diversity compared to other passerine
species.
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