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Abstract Several computational methods for the prediction
of major histocompatibility complex (MHC) class II binding
peptides embodying different strengths and weaknesses have
been developed. To provide reliable prediction, it is important
to design a system that enables the integration of outcomes
from various predictors. The construction of a meta-predictor
of this type based on a probabilistic approach is introduced in
this paper. The design permits the easy incorporation of results
obtained from any number of individual predictors. It is
demonstrated that this integrated method outperforms six
state-of-the-art individual predictors based on computational
studies using MHC class II peptides from 13 HLA alleles and
three mouse MHC alleles obtained from the Immune Epitope
Database and Analysis Resource. It is concluded that this
integrative approach provides a clearly enhanced reliability of
prediction. Moreover, this computational framework can be
directly extended to MHC class I binding predictions.
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Introduction

The identification of antigen peptides that bind to major
histocompatibility complex (MHC) molecules plays a crucial
role in understanding the mechanisms of both humoral and
adaptive immunity as well as in developing epitope-based
vaccines. Two major types of MHCmolecules are involved in
the peptide-binding process. MHC class I molecules present
endogenous antigens to CD8+ cytotoxic T cells. MHC class II
molecules, on the other hand, present exogenously derived
proteins through antigen-presenting cells to CD4+ helper T
cells (Parham 2005). Generally, antigen peptides that bind to
MHC class I molecules are approximately nine amino acid
residues long (Bleek and Nathenson 1991). However, the
peptide-binding groove of a MHC class II molecule is open
at both ends, a property that makes it capable of accommo-
dating longer peptides consisting of 10–30 residues
(Castellino et al. 1997; Max et al. 1993; Sette et al. 1989).

Experimental determinations of the binding affinities of
peptides to MHC molecules are time consuming and ex-
pensive. Therefore, considerable effort has been made on
the development of computational tools for the identifica-
tion of MHC-binding peptides (De Groot and Berzofsky
2004; Doytchinova et al. 2003; Flower 2004; Flower and
Doytchinova 2002; Flower et al. 2002; Martin et al. 2003;
Schirle et al. 2001). A host of computational methods has
been developed for MHC class I prediction over the last two
decades (De Groot et al. 2002; Flower et al. 2003; Martin
et al. 2003; Nussbaum et al. 2003; Reche et al. 2002; Schirle
et al. 2001). A comprehensive list of references can be found
in a recent paper (Peters et al. 2006). The number of alleles
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covered by these methods is large, and the level of accuracy
is relatively high.

Conversely, the situation for the prediction of MHC class
II binding peptides is quite different. The variability in the
peptide length complicates the prediction of peptide–MHC
class II binding. The analyses of the binding motif and the
structure of peptide–MHC class II complexes have suggested
that a core of nine residues within a peptide is essential for
peptide–MHC binding. Computational methods for MHC
class II binding prediction include simple binding motifs
(Borras-Cuesta et al. 2000; Rammensee et al. 1999; Singh
and Raghava 2001), quantitative matrices (Bui et al. 2005;
Peters and Sette 2005; Sturniolo et al. 1999), hidden Markov
models (Kato et al. 2003; Noguchi et al. 2002), artificial
neural networks (Brusic et al. 1998; Burden and Winkler
2005; Nielsen et al. 2003), iterative discriminant analysis
(Mallios 1998, 2001), support vector machines/regression
(Bhasin and Raghava 2004; Donnes and Elofsson 2002;
Donnes and Kohlbacher 2006; Liu et al. 2006; Salomon and
Flower 2006), the Gibbs sampler and its extension (Nielsen
et al. 2007, 2004), partial least squares (Chang et al. 2006;
Doytchinova and Flower 2003; Hattotuwagama et al. 2006),
and other methods (Altiparmak et al. 2006; Chang et al.
2007; Cui et al. 2006, 2007; Doytchinova and Flower 2001;
Hertz and Yanover 2006; Karpenko et al. 2005; Murugan
and Dai 2005; Takahashi and Honda 2006; Tong et al. 2006;
Wan et al. 2006). Because each method has its own strengths
and weaknesses, it is hard for an immunologist to select a
single method from the pool of existing predictors. There-
fore, a system that produces reliable prediction through the
integration of outcomes from major predictors is in clear
need.

A consensus strategy for combining three human leuko-
cyte antigen (HLA)-DR binding algorithms—SYFPEITHI
(Rammensee et al. 1999), ProPred (Singh and Raghava
2001), and the iterative stepwise discriminant analysis meta-
algorithm (Mallios 2001)—has been shown to be consistent-
ly best or second best (Mallios 2003) using sets of binding
peptides in DRB1*0101 and DRB1*0401. In another
integrative system, MULTIPRED (Zhang et al. 2005), the
individual predictive engines implemented are hiddenMarkov
models (HMMs) and artificial neural networks (ANNs). The
system covers predictions of HLA protein binding peptides
belonging to supertypes A2 and A3 (HLA class I) as well as
DR (HLA class II). Users can choose either HMMs or ANNs
as individual predictors. In addition, the system provides a
mechanism that makes consensus prediction by combining the
results from the two prediction methods. Significantly, recent
work (Moise and De Groot 2006; Moutaftsi et al. 2006) has
demonstrated the promise of an integrative approach for the
computational identification of peptides with immunogenic-
ity through the prediction of binding affinity to MHC class I
molecules. Specifically, the computational prediction re-

duced the number of possible overlapping peptides by more
than 85-fold, accelerating the discovery of 49 epitopes that
account for ~95% of the immunome in a mouse model for
vaccine development. The key step in their approach is a
consensus prediction that combines four matrix-based
epitope prediction algorithms (BIMAS: http://thr.cit.nih.gov/
molbio/hla_ bind/; Bui et al. 2005; Peters and Sette 2005;
Udaka et al. 2000). Another recent integrative method for the
MHC class I binding prediction uses the sum of the weighted
votes from each individual predictor as a combined score for
a peptide to make an improved prediction (Trost et al. 2007).

In the present work, a meta-predictive (called proba-
bilistic meta-predictor or PM predictor thereafter) system
based on a probabilistic approach is described. This method
improves significantly our earlier work of a Naïve Bayesian
meta-predictor (Huang et al. 2006, 2007) to achieve fast
training and higher performance through a consensus
score that combines predictive scores from each individual
predictor. Like the previous integrative predictors (Huang
et al. 2006, 2007; Trost et al. 2007), the framework pre-
sented in this work has the flexibility to incorporate an
arbitrary number of predictors that provide predictions
based on computed score correlated with the binding
affinity.

To illustrate the basic framework of our PM predictor,
the MHC class II binding prediction was taken as an
example, although this approach can also be applied to the
MHC class I. Six individual predictors of MHC class II
binding predictions were selected based on their availability
from the Internet. They are SVRMHC (Wan et al. 2006),
ARB (Bui et al. 2005), RANKPEP (Reche et al. 2004),
ProPred (Singh and Raghava 2001), Gibbs Sampler
(Nielsen et al. 2004), and the LP model (Murugan and
Dai 2005). The output from each of the first three methods
for a peptide is a predictive score of binding affinity. Each
of the latter three methods provides an allele-restricted
position-specific scoring matrix (PSSM) that can be used
to compute scores of the overlapping 9-mers of a peptide.
The maximum score over these 9-mers is considered as
the score of the peptide. Taking these scores of training
peptides for a specific allele as inputs, we first estimate
the probability distributions of the scores for both binding
and nonbinding peptides in the training set for each in-
dividual predictor. Then, we combine these distributions a
probabilistic model to obtain the integrative predictor. The
effectiveness of our model is examined with the use of
MHC class II peptides from 13 HLA alleles and three
mouse MHC alleles obtained from the Immune Epitope
Database and Analysis Resource (IEDB; Peters et al.
2005). The computational analysis shows that the PM
predictor uniformly produces stable prediction and in
general achieves statistically improved results in compar-
ison with any individual predictor.
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Materials and methods

Data set

The computational experiments were conducted using the
data set available from the IEDB database (Peters et al.
2005). This data set comprises peptide data with IC50
binding affinities for the 13 HLA (human MHC) and three
mouse MHC class II alleles. This data set was also used in
the recent study (Nielsen et al. 2007) for quantitative
prediction of MHC class II peptide binding. The details of
the data set are provided in Table 1.

Choosing individual predictors

Any predictor that is capable of assigning a predictive score
to a peptide sequence can be employed as an individual
predictor in our system. The six methods listed below were
selected in this study. The coverage of their predictions is
summarized in Table 2.

ARB predictions

The ARB predictions were obtained using a default parameter
setting for the ARB web server (http://tools.immuneepitope.
org/tools/matrix/iedb_input?matrixClass=II). Each peptide is
assigned a predictive score.

SVRMHC predictions

The SVRMHC (Wan et al. 2006) predictions were obtained
using a default parameter setting for the SVRMHC web
server (http://svrmhc.umn.edu/SVRMHCdb). This is a sup-
port vector machine regression-based method that makes
predictions of the exact binding affinity of the peptide. The
server returns pIC50 prediction scores for each 9-mer within
the query peptide, and the maximum score was assigned as
the binding pIC50 prediction value for the query peptide.

RANKPEP predictions

The RANKPEP (Reche et al. 2004) predictions were made by
submitting peptides to the web server (http://bio.dfci.harvard.
edu/Tools/rankpep.html) with default parameters. This meth-
od predicts binding peptides based on the scores calculated
from a PSSM. The PSSMs are not available publicly, but the
server returns a predictive score for each peptide.

Gibbs Sampler predictions

The PSSMs were obtained by submitting the binding peptides
with default parameter settings to the web server (http://www.
cbs.dtu.dk/biotools/EasyGibbs/). Gibbs Sampler (Nielsen
et al. 2004) is an advanced motif sampler method based on
the Gibbs sampling technique, which efficiently samples the
possible alignment space of binder sequences. For each
alignment, a log-odds weight matrix is calculated for the
identified binding core subsequences. This matrix serves as
the PSSM for the computation of a score for a 9-mer. It
should be noted that Gibbs Sampler requires only binding
peptides (with IC50<500 nM) for the construction of PSSMs.

ProPred predictions

The PSSMs of ProPred (Singh and Raghava 2001) were
obtained from its website (http://www.imtech.res.in/
raghava/propred/page4.html). This predictor uses the quan-
titative matrices from 51 HLA-DR alleles for the prediction
of MHC class II binding peptides. These matrices were
generated from a pocket profile database previously
described (Sturniolo et al. 1999) and covered the majority
of human HLA-DR specificity. The matrices are the same
as the ones in TEPITOPE (Sturniolo et al. 1999).

LP-top2 predictors

The LP method (Murugan and Dai 2005) was motivated by
a text mining model. This LP-based iterative learning
model enables the use of both binding and nonbinding
peptides for the detection of the binding cores from a set of
putative binding cores and for the construction of the

Table 1 The data set used in this study. Peptide data for the 13 HLA-
DR and 3 mouse H2-IA alleles are downloaded from http://www.cbs.
dtu.dk/suppl/immunology/NetMHCII/php

Alleles IEDB Number of
binders

Number of
nonbinders

DRB1*0101 1,203 921 282
DRB1*0301 474 67 407
DRB1*0401 457 210 247
DRB1*0404 168 74 94
DRB1*0405 171 88 83
DRB1*0701 310 127 183
DRB1*0802 174 58 116
DRB1*0901 117 47 70
DRB1*1101 359 95 264
DRB1*1302 179 101 78
DRB1*1501 365 188 177
DRB4*0101 181 74 107
DRB5*0101 343 113 230
H2-IAb 76 43 33
H2-IAd 342 56 286
H2-IAs 126 35 91

These peptides are extracted from the IEDB database in November
2006. Binding peptides were identified with IC50 binding threshold of
500 nM.
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predictor simultaneously. The outcome of this predictor is a
PSSM that can be used to score a 9-mer. The PSSMs were
obtained by training the binding and non-binding peptides
of each allele with the algorithm (Murugan and Dai 2005).
Binding peptides were identified with IC50 binding
threshold of 500 nM. The LP-top2 was selected for this
study among several variants of the LP method because of
its superior performance.

In summary, each of the former three predictors discussed
above returns a predictive score that corresponds to the actual
binding affinity for a peptide, while each of the three latter
predictors returns a PSSM of size 20 by 9 for a set of training
peptides of a specific allele. This PSSM will be used to
calculate the score of each amino acid at each position of a 9-
mer. The final score of a peptide is the maximum score over
all overlapping 9-mers in the peptide. The scores derived from
the latter three methods are not the actual binding affinity of a
peptide; however, their magnitudes should correlate with the
strength of the binding.

Several online predictors were not included in our study
for various reasons. The current version of SVMHC (Donnes
and Elofsson 2002; Donnes and Kohlbacher 2006) also
makes MHC class II binding predictions. However, it uses
the same matrices published in TEPITOPE (Sturniolo et al.
1999). Because those matrices were also used in ProPred,
SVMHC was not selected. MHCPred (Doytchinova and
Flower 2003) has an online prediction service; however,
it covers only three alleles in our data set. Therefore,
it was not included. The web server of MULTIPRED
(Zhang et al. 2005) predicts eight HLA-DR variants.
Because it only covers five alleles in our data set, it was
not selected. For the other methods mentioned in the
“Introduction,” the exclusion from this study was mainly
due to lack of access to either the online predictors or the
programs.

Recently, a new online MHC class II binding predictor
was released (Nielsen et al. 2007). This method uses a
novel stabilization matrix alignment method that allows for
direct prediction of binding affinity. Comprehensive com-
putational study has shown that it outperformed the other
state-of-art MHC class II quantitative prediction methods.
Ideally, it would be better to include this method as an
individual predictor in our current study. However, because
the goal of this work is the demonstration of the effec-
tiveness of the integrative system and is not aimed at the
best individual predictor, the exclusion of the above
predictor does not affect the main results from this study.

The PM predictor

The PM predictor is based on a probabilistic model that
combines prediction scores of a peptide from each predictor
into a consensus score. The consensus score depends on the
probability distribution of scores. A threshold has to be
determined so that peptides with consensus scores above
this threshold are predicted as binding and peptides with
consensus scores below this threshold are correspondingly
predicted as nonbinding. Figure 1 illustrates the framework
of the PM predictor method. The details of this predictor
are described as follows.

Calculation of the consensus score

Given a peptide, predictive scores are assigned by each of
the m predictors. If there are n peptides in a test set, then the
total number of scores from all individual predictors is
nm. To consolidate the results from the m predictors, a
consensus score is defined for a peptide. This consensus
score provides the likelihood of a peptide to be classified
into the binding class or the nonbinding class according to

Table 2 The coverage of
predictions for the six methods

The empty entry means that the
method cannot make prediction
for the particular allele.

Alleles ARB SVRMHC RANKPEP ProPred Gibbs Sampler LP-top2

DRB1*0101 * * * * * *
DRB1*0301 * * * * *
DRB1*0401 * * * * * *
DRB1*0404 * * * * *
DRB1*0405 * * * * * *
DRB1*0701 * * * * *
DRB1*0802 * * * *
DRB1*0901 * * * *
DRB1*1101 * * * * *
DRB1*1302 * * * * *
DRB1*1501 * * * * * *
DRB4*0101 * * * *
DRB5*0101 * * * * * *
H2-IAb * * * *
H2-IAd * * * *
H2-IAs * *
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the information obtained from the probability distribution
of scores for each individual predictor. The consensus score
over all predictors is defined as the product of the
likelihoods. If the estimations of the probability distribu-
tions of the scores for binding and nonbinding peptides are
accurate, then the consensus scores of the binding peptides
and nonbinding peptides should be grouped into two
distinct intervals. This grouping would allow for a simple
prediction by using a prescribed threshold of the consensus
score. The details of the calculation of the consensus scores
are presented in the Appendix.

Estimating distributions of scores

In this study, an important assumption was made about the
distributions of scores obtained from each predictor: Scores

from binding peptides and nonbinding peptides, respective-
ly, follow normal distributions, respectively, with distinct
means. The lowest and the highest 2.5% of the binder and
nonbinder scores were dropped to exclude the influence of
outliers on the estimation of the distribution parameters.
Only the remaining 95% of the scores was used in the rest
of the training procedure. With this assumption on the
distributions, the estimate of the distribution parameters is
straightforward. For each individual predictor, we calculat-
ed: (1) the mean and the standard deviation of scores for the
binding peptides and (2) the mean and the standard
deviation of scores for the nonbinding peptides. These
parameters characterize the score distributions for each
individual predictor.

The area under the receiver operating characteristic
curve (Aroc; Swets 1988) over five different training and

Fig. 1 Illustration of the framework for building the PM predictor
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test sets (Nielsen et al. 2007) was used for the evaluation
of the PM predictor. More specifically, the probabilities
were first determined from peptides in the training set, and
then the consensus score was computed for each peptide in
the test set. The Aroc value was subsequently calculated for
the test set. This procedure was iterated through all five
different training and test sets, and the average Aroc value
was computed.

The majority voting algorithm

To compare the performance of different meta-predictors,
the Majority Voting algorithm was also implemented. If a
peptide is scored above a specified threshold σi by the ith
predictor, the predictor casts a vote for that peptide to be
binding; otherwise, the peptide is voted to be nonbinding.
Once all m votes have been cast, the prediction is decided
by the majority of the votes. Obviously, if m is even, a rule
for breaking the tie is needed.

The Majority Voting algorithm utilized percentiles of
peptides’ scores in the training fold as thresholds for
individual predictors for testing. For each of the m
predictors, the scores of peptides in the four training folds
were sorted. The percentiles of the sorted scores were then
used as the thresholds. Each of the top zth percentile
vectors, s ¼ ðs1; :::; smÞyielded predictions for peptides in
the test fold based on the majority votes. By varying z, an
Aroc value can be calculated for the test fold. The average

Aroc value calculated from the different five training and
test folds was reported.

The determinations of the best thresholds for δ in the
PM-model and the zth percentile vectors s ¼ ðs1; :::; smÞin
the Majority Voting algorithm depend on the selected cri-
terion. When an appropriate criterion is chosen, they can be
optimized through a cross-validation procedure. For example,
one may prefer a threshold that produces approximately equal
sensitivity and specificity.

Results and discussion

The performance of the PM predictor was compared to
those of the Majority Voting algorithm and the six
individual predictors using the data set described above.
We conducted 1,000 bootstrapping experiments for the
Majority Voting algorithm and the PM predictor.

Table 3 summarizes the results obtained. In all cases, the
performance was evaluated in terms of the Aroc value. The
PM predictor demonstrated a higher accuracy than that of
the Majority Voting algorithm for 14 out of 16 alleles used
in the computational experiments. The only exceptions
were the two mouse alleles H2-IAd and H2-IAs, for which
the accuracies of the PM predictor are slightly lower than
those of the Majority Voting algorithm. The average Aroc
value (0.949) of the PM predictor over all tested alleles is
slightly higher than that (0.936) given by the Majority

Table 3 Summary of the Aroc values for the six individual predictors and the two integrative methods

MHC allele ARB SVRMHC RANKPEP ProPred Gibbs Samplera LP-top2a Majority Voting PM predictor

DRB1*0101 0.660 0.613 0.620 0.648 0.657 0.781 0.824 (0.009) 0.836 (0.007)
DRB1*0301 0.787 0.755 0.723 0.825 0.893 0.947 (0.009) 0.955 (0.007)
DRB1*0401 0.740 0.739 0.723 0.754 0.834 0.778 0.924 (.008) 0.948 (0.006)
DRB1*0404 0.786 0.640 0.827 0.898 0.994 0.976 (0.009) 0.991 (0.005)
DRB1*0405 0.724 0.685 0.661 0.788 0.803 0.935 0.940 (0.013) 0.968 (0.008)
DRB1*0701 0.742 0.672 0.761 0.826 0.862 0.923 (0.010) 0.943 (0.007)
DRB1*0802 0.802 0.768 0.922 0.986 0.977 (0.018) 0.990 (0.008)
DRB1*0901 0.710 0.690 0.921 0.941 0.947 (0.018) 0.957 (0.008)
DRB1*1101 0.728 0.650 0.708 0.885 0.878 0.932 (0.010) 0.941 (0.007)
DRB1*1302 0.916 0.577 0.720 0.851 0.962 0.961 (0.010) 0.972 (0.007)
DRB1*1501 0.792 0.735 0.641 0.724 0.810 0.868 0.921 (0.010) 0.950 (0.006)
DRB4*0101 0.803 0.523 0.911 0.975 0.945 (0.012) 0.970 (0.007)
DRB5*0101 0.681 0.620 0.639 0.660 0.805 0.913 0.882 (0.011) 0.921 (0.008)
H2-IAb 0.663 0.902 0.933 0.945 0.971 (0.019) 0.976 (0.011)
H2-IAd 0.818 0.618 0.846 0.942 0.943 (0.012) 0.910 (0.009)
H2-IAs 0.889 0.956 0.957 (0.012) 0.956 (0.007)
Average 0.757 0.678 0.665 0.735 0.851 0.913 0.936 (0.012) 0.949 (0.074)

The Aroc values for the Majority Voting algorithm and the PM predictor are the average of Aroc values computed from the 1,000 bootstrapping
experiments. The standard deviations are provided in parentheses. The italicized numbers represent the better performance between the two
methods: the Majority Voting and the PM predictor.
Aroc The area under the receiver operating characteristic curve, PSSM position-specific scoring matrix
a The Arocs for the Gibbs Sampler and LP-top2 were calculated from the PSSMs trained by using the entire training set.
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Voting algorithm (p value 0.002 for the one-tailed t test).
The average standard deviation (0.007) of the Arocs values
in the 1,000 bootstrapping experiments for the PM
predictor, over all tested alleles, was lower than that
(0.011) of the Majority Voting algorithm (p value 3.00×
10−6 for the one-tailed t test), indicating a greater robust-
ness in the prediction of the former.

The PM predictor outperformed every individual predic-
tor for 12 out of 16 alleles. For the two alleles DRB1*0404
and DRB4*0101, the Aroc values of the PM predictor are
comparable with those of LP-top2 (0.991 vs 0.994 and
0.970 vs 0.975, respectively); for H2-IAd, the Aroc value is
lower that that of LP-top2 (0.910 vs 0.945), and for H2-
IAs, the Aroc value is identical with that of the LP-top2.

The average Aroc value (0.949) of the PM predictor over all
tested alleles is higher than those of the individual predictors:
ARB (0.757, p value 1.75×10−9), SVRMHC (0.678, p value
1.00×10−4), RANKPEP (0.665, p value 1.57×10−9), ProPred
(0.735, p value 8.09×10−10), Gibbs Sampler (0.851, p value
2.19×10−5), and LP-top2 (0.913, p value 3.47×10−2). All p
values were derived from one-tailed t tests.

Because most of the online predictors do not allow for
training of a new model based on training data submitted by
the users, we did not obtain the Aroc values for individual
predictors in a cross-validated fashion. The PSSMs of Gibbs
Sampler and LP-top2 were obtained by training the entire
data set only once. Therefore, the Aroc values of the Gibbs
Sampler and the LP-top2 actually represent the training
performance. Similarly, the ARB models (Bui et al. 2005)

were trained using the quantitative binding data contained
within the IEDB database. For this reason, higher Aroc
values for the Gibbs Sampler, LP-top2, and ARB predictions
were obtained. On the other hand, SVRMHC was trained on
relatively small sets of quantitative peptide binding data
contained within the AntiJen database (Toseland et al. 2005),
and the performance could probably be improved, if it were
retrained on the data used here. The PSSMs for ProPred and
the predictions of RANKPEP were obtained directly from the
websites. The peptides used for training are not available.
Therefore, the performance presented in the current study for
the individual predictors should not be compared. The
rigorous comparison for the state-of-art methods can be
found elsewhere (Nielsen et al. 2007).

As the goal for our study is the construction of an
integrative system that outperforms individual predictors, we
accordingly compare first the outcome of an underperformed
predictor to the integrative system. The MHC-BPS (Cui
et al. 2006, 2007) was not included as an individual
predictor in our system because of its low performance.
However, we used this predictor to investigate how such a
predictor would affect the performance of the integrative
systems. The results were summarized in Table 4. The web
server MHC-BPS (http://bidd.cz3.nus.edu.sg/mhc/) covers
DRB1*0101, DRB1*0404, DRB1*0701, DRB1*0901,
DRB1*1101, DRB1*1501, and DRB5*0101. The Aroc
values are 0.470, 0.550, 0.555, 0.617, 0.562, 0.617, and
0.594, respectively, which yields an average Aroc value
0.566, a fairly low figure compared to other predictors

Table 4 Summary of the Aroc values for the seven individual predictors and the two integrative methods

MHC allele ARB SVRMHC MHC-BPS RANKPEP ProPred Gibbs Samplera LP-top2a Majority Voting PM predictor

DRB1*0101 0.660 0.613 0.470 0.620 0.648 0.657 0.781 0.769 (0.009) 0.808 (0.007)
DRB1*0301 0.787 0.755 0.723 0.825 0.893 0.947 (0.009) 0.955 (0.007)
DRB1*0401 0.740 0.739 0.723 0.754 0.834 0.778 0.924 (0.008) 0.948 (0.006)
DRB1*0404 0.786 0.550 0.640 0.827 0.898 0.994 0.962 (0.011) 0.990 (0.005)
DRB1*0405 0.724 0.685 0.661 0.788 0.803 0.935 0.939 (0.013) 0.968 (0.008)
DRB1*0701 0.742 0.555 0.672 0.761 0.826 0.862 0.915 (0.010) 0.930 (0.008)
DRB1*0802 0.802 0.768 0.922 0.986 0.977 (0.018) 0.990 (0.009)
DRB1*0901 0.710 0.617 0.690 0.921 0.941 0.940 (0.018) 0.940 (0.009)
DRB1*1101 0.728 0.562 0.650 0.708 0.885 0.878 0.920 (0.011) 0.916 (0.008)
DRB1*1302 0.916 0.577 0.720 0.851 0.962 0.961 (0.010) 0.972 (0.007)
DRB1*1501 0.792 0.735 0.617 0.641 0.724 0.810 0.868 0.924 (0.009) 0.949 (0.006)
DRB4*0101 0.803 0.523 0.911 0.975 0.945 (0.012) 0.970 (0.007)
DRB5*0101 0.681 0.620 0.594 0.639 0.660 0.805 0.913 0.887 (0.011) 0.914 (0.008)
H2-IAb 0.663 0.902 0.933 0.945 0.971 (0.019) 0.976 (0.011)
H2-IAd 0.818 0.618 0.846 0.942 0.943 (0.012) 0.910 (0.009)
H2-IAs 0.889 0.956 0.957 (0.012) 0.956 (0.007)
Average 0.757 0.678 0.566 0.665 0.735 0.851 0.913 0.930 (0.012) 0.943 (0.008)

The Aroc values for the Majority Voting algorithm and the PM predictor are the average of Aroc values computed from the 1,000 bootstrapping
experiments. The standard deviations are provided in parentheses. The italicized numbers represent the better performance between the two
methods: the Majority Voting and the PM predictor. The Arocs for Gibbs Sampler and LP-top2 were calculated from the PSSMs trained by using
the entire training set.
Aroc The area under the receiver operating characteristic curve, PSSM position-specific scoring matrix
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used in this work. The addition of MHC-BPS to the
existing six predictors included in the integrative systems
resulted in the Aroc values 0.930 and 0.943 for the
Majority Voting algorithm and the PM predictor, respec-
tively, which are moderately smaller than the
corresponding Aroc values 0.936 and 0.949 for the same
two integrative predictors without the use of MHC-BPS.

This result implies that the performance of the integrative
systems may not be affected drastically by an individual
predictor with a relatively low performance. Similar behavior
is also observed in Tables 5 and 6, when the Gibbs Sampler
and LP-top2 were removed from the system.

We now investigate whether the improved performances
of the two integrative predictors were driven by the

Table 5 Summary of the Aroc values for the five individual predictors and the two integrative methods

MHC allele ARB SVRMHC MHC-BPS RANKPEP ProPred Majority Voting PM predictor

DRB1*0101 0.660 0.613 0.470 0.620 0.648 0.676 (0.009) 0.700 (0.007)
DRB1*0301 0.787 0.755 0.723 0.846 (0.013) 0.850 (0.010)
DRB1*0401 0.740 0.739 0.723 0.754 0.849 (0.010) 0.877 (0.008)
DRB1*0404 0.786 0.550 0.640 0.827 0.828 (0.019) 0.815 (0.015)
DRB1*0405 0.724 0.685 0.661 0.788 0.821 (0.019) 0.863 (0.014)
DRB1*0701 0.742 0.555 0.672 0.761 0.791 (0.013) 0.809 (0.010)
DRB1*0802 0.802 0.768 0.819 (0.015) 0.832 (0.011)
DRB1*0901 0.710 0.617 0.690 0.659 (0.029) 0.782 (0.019)
DRB1*1101 0.728 0.562 0.650 0.708 0.778 (0.015) 0.729 (0.010)
DRB1*1302 0.916 0.577 0.720 0.841 (0.017) 0.784 (0.015)
DRB1*1501 0.792 0.735 0.617 0.641 0.724 0.836 (0.012) 0.848 (0.010)
DRB4*0101 0.803 0.523 0.655 (0.015) 0.652 (0.012)
DRB5*0101 0.681 0.620 0.594 0.639 0.660 0.740 (0.014) 0.762 (0.012)
H2-IAb 0.663 0.902 0.758 (0.030) 0.900 (0.017)
H2-IAd 0.818 0.618 0.481 (0.011) 0.712 (0.009)
Average 0.757 0.678 0.566 0.665 0.735 0.759 0.794

The Aroc values for the Majority Voting algorithm and the PM-predictor are the average of Aroc values computed from the 1,000 bootstrapping
experiments. The standard deviations are provided in parentheses. The italicized numbers represent the better performance between the two
methods: the Majority Voting and the PM predictor. The Arocs for Gibbs Sampler and LP-top2 were calculated from the PSSMs trained by using
the entire training set.
Aroc The area under the receiver operating characteristic curve, PSSM position-specific scoring matrix

Table 6 Summary of the Aroc values for the four individual predictors and the two integrative methods

MHC allele ARB SVRMHC RANKPEP ProPred Majority Voting PM predictor

DRB1*0101 0.660 0.613 0.620 0.648 0.743 (0.010) 0.735 (0.007)
DRB1*0301 0.787 0.755 0.723 0.846 (0.014) 0.851 (0.009)
DRB1*0401 0.740 0.739 0.723 0.754 0.849 (0.010) 0.877 (0.008)
DRB1*0404 0.786 0.640 0.827 0.851 (0.017) 0.841 (0.013)
DRB1*0405 0.724 0.685 0.661 0.788 0.820 (0.019) 0.862 (0.014))
DRB1*0701 0.742 0.672 0.761 0.813 (0.013) 0.833 (0.010)
DRB1*0802 0.802 0.768 0.820 (0.015) 0.832 (0.011)
DRB1*0901 0.710 0.690 0.625 (0.022) 0.747 (0.016)
DRB1*1101 0.728 0.650 0.708 0.779 (0.013) 0.761 (0.009)
DRB1*1302 0.916 0.577 0.720 0.841 (0.018) 0.784 (0.014)
DRB1*1501 0.792 0.735 0.641 0.724 0.815 (0.012) 0.840 (0.010)
DRB4*0101 0.803 0.523 0.657 (0.015) 0.652 (0.012)
DRB5*0101 0.681 0.620 0.639 0.660 0.723 (0.014) 0.757 (0.011)
H2-IAb 0.663 0.902 0.757 (0.033) 0.900 (0.017)
H2-IAd 0.818 0.618 0.480 (0.010) 0.712 (0.009)
Average 0.757 0.678 0.665 0.735 0.761 0.799

The Aroc values for the Majority Voting algorithm and the PM predictor are the average of Aroc values computed from the 1,000 bootstrapping
experiments. The standard deviations are provided in parentheses. The italicized numbers represent the better performance between the two
methods: the Majority Voting and the PM predictor. The Arocs for Gibbs Sampler and LP-top2 were calculated from the PSSMs trained by using
the entire training set.
Aroc The area under the receiver operating characteristic curve, PSSM position-specific scoring matrix
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overfitted Gibbs Sampler and LP-top2. Accordingly, we
excluded these two predictors and evaluate the performances
of the Majority Voting algorithm and the PM predictor.
Similarly, we considered two cases: with and without
including MHC-BPS in the integrative systems. The results
are summarized in Tables 5 and 6. The average Aroc value
(0.799) of the PM predictor is slightly higher than that
(0.761) of the Majority Voting algorithm with a p value of
0.128. The average Aroc value (0.799) of the PM predictor
is higher than those of ARB (0.757 with p value 5.3×10−2),
SVRMHC (0.678 with p value 2.9×10−3), RANKPEP
(0.665 with p value 6.9×10−5), and ProPed (0.735 with p
value 6.93×10−3). With the inclusion of MHC-BPS, the
Aroc values for both of the integrative systems went very
slightly down, from 0.799 to 0.794 for the PM predictor
and from 0.761 to 0.759 for the Majority Voting algorithm.
However, we still observed a higher average Aroc value for
the PM predictor compared to those of the individual
predictors. More precisely, the average Aroc value (0.794)
of the PM predictor is higher than those of ARB (0.757
with p value 7.6×10−2), SVRMHC (0.678 with p value
3.8×10−3), MHC-BPS (0.566 with p value 1.2×10−7),
RANKPEP (0.665 with p value 1.2×10−4), and ProPed
(0.735 with p value 1.2×10−2). Therefore, we conclude,
from the results in Tables 3 to 6, that the PM predictor is
reliable and consistently performs better than every indi-
vidual predictor included in the system. Although the
Majority Voting algorithm has a slightly lower performance
than that of the PM predictor, a similar conclusion holds.

Comparison of the meta-prediction method proposed
recently by our group (Huang et al. 2006, 2007) was not
included in this study. The reason for that is the demanding
training time required for the method when a relatively large
number of individual methods are considered. However, a
preliminary study using the three methods of ProPred, Gibbs
Sampler, and LP-top2 has indicated an inferior performance
compared to the PM predictor. Therefore, we conclude that
the previous meta-predictor is not as competitive as the PM
predictor when a large number of predictors are used in the
system. As mentioned above, there are two algorithms
(Mallios 2003; Zhang et al. 2005) making consensus
predictions for MHC class II binding. However, the Maillios
algorithm is not available, and the prediction provided by the
website of Zhang el al. only covers six HLA-DR alleles.
Accordingly, we did not compare our model with these two
algorithms. In addition, we also did not include in this study
the recently published method NetMHCII (Nielsen et al.
2007). It is not hard to speculate that this inclusion will
improve the performance of both integrative predictors, as
NetMHCII was shown to outperform the other state-of-the-
art MHC class II prediction methods.

When building the PM predictor, we made the assumption
of a normal distribution for the scores obtained from the
individual predictors. This assumption greatly simplified the
estimate of the parameters of the probability distributions of
the predicted scores. However, this assumption may not be
valid for the scores of some alleles. In such cases, the PM
predictor may exhibit diminished performance. This limita-

Fig. 2 Relationship between sample distributions and accuracy. The
figure illustrates the distributions of scores of two classes: negative
(class1) and positive (class2) samples; cdf1(;) and cdf2(;) are the
corresponding cumulative distribution functions. The threshold si

separates true negatives (TN) from false positives (FP) in case of
class1 and false negatives (FN) from true positives (TP) in case of
class2. N and P are the number of negatives and positives, respectively
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tion can be overcome by incorporating appropriate distribu-
tions in the framework of the PM predictor.

Although the efficacy of the integrated framework has
only been demonstrated through an application on the MHC
class II binding predictions, this method can be readily
extended to the MHC class I binding prediction. Similarly,
the framework of the integrative system proposed recently
for MHC class I binding (Trost et al. 2007) can be used for
the MHC class II binding prediction. The performance
comparison of these two systems on both MHC class I and
class II binding predictions may lead to the construction of
further improved prediction systems.

Conclusions

A new probabilistic meta-predictor (PM predictor) for MHC
class II binding peptides has been developed that is based on
the integration of predictions obtained from different
methods. Using six state-of-the-art predictors, consistently
enhanced performance of the PM predictor has been
demonstrated in comparison with the individual methods
using a data set including peptides from 13 HLA-DR and
three mouse alleles from the IEDB database. The results also
indicate that future improvement can be made through the
incorporation of a more accurate probability estimate for the
scores obtained from each individual predictor.

Acknowledgments This research is supported in part by the NIH
under Grant 1 R03 AI069391-01.

Appendix

Calculation of the consensus scores

Suppose that a test peptide received a score si from
predictor i, i=1,…,m. We define two probability values:

xi ¼ Pib S > Sið Þ; 1e i e m and ð1Þ

yi ¼ Pinb S � sið Þ; 1 � i � m; ð2Þ

where S is the random variable representing scores
obtained from predictor i. The probabilities Pib S > Sið Þ
and PinbðS � siÞ for binding peptides and nonbinding
peptides can be easily calculated once the estimations of score
distributions are made from the training peptides. That is,
PibðS > SiÞ ¼ 1� Pib SSið Þ ¼ 1� cdfi;binding si; Θi;binding

� �
; and

Pinb S � sið Þ ¼ cdfi;nonbinding si; Θi;nonbinding

� �
; where cdfi;binding

�; Θi;binding

� �
and cdfi;nonbinding �; Θi;nonbinding

� �
are, respec-

tively, the cumulative distribution functions for scores of

binding and nonbinding peptides; Θi;binding and Θi;nonbinding

are, respectively, parameters of the distributions of scores
made by the predictor i.

Next, we define the consensus score δ for a peptide by

d xi; yið Þ ¼
Ym

i¼1

1

2

1� xi
xi

þ yi
1� yi

� �
: ð3Þ

Note that this score depends on si when the probability
distributions of the scores are given. One could consider
that the goal of this function is to map the 2m probabilities
values ðxi; yiÞassociated with a peptide onto the one-
dimensional space of the consensus scores. Such a mapping
should efficiently separate the consensus scores of the
peptides from the binding and nonbinding classes into two
distinct one-dimensional clusters.It is interesting to observe
the following relations:

Pib S � sið Þ ¼ 1� sensitivityi sið Þ ¼ 1� xi; ð4Þ

Pib S > Sið Þ ¼ sensitivityi sið Þ ¼ xi; ð5Þ

Pinb S � Sið Þ ¼ specificityi sið Þ ¼ yi; ð6Þ

Pinb S > Sið Þ ¼ 1� specificityi sið Þ ¼ 1� yi: ð7Þ
In these relations, sensitivityi(si) and specificityi(si) are,

respectively, sensitivity and specificity determined for the
corresponding predictor i with a threshold value that is
equal to si. Figure 2 explains such relationships between the
distributions and classification accuracy.

This mapping possesses the following properties:

– It is defined and continuous for 8xi; yi 2 ð0; 1Þ; 1 �
i � m

– For any xi ! 0oryi ! 1, the consensus score is d !
þ1

– For any xi ! 1oryi ! 0, d ! 0
– For 8xi ! 0:5 and 8yi ! 0:5, the consensus score is

d ! 1

Intuitively, if a higher specificity of the PM predictor is
preferred, then the threshold of δ has to be greater than 1 for
the binary prediction. Conversely, if a higher sensitivity of
the PM predictor is preferred, then the threshold of δ has to
be smaller than 1.
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