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Abstract The utility of the rhesus macaque as an animal
model in both HIV vaccine development and pathogenesis
studies necessitates the development of accurate and
efficient major histocompatibility complex (MHC) geno-
typing technologies. In this paper, we describe the
development and application of allele-specific polymerase
chain reaction (PCR) amplification for the simultaneous
detection of eight MHC class I alleles from the rhesus
macaque (Macaca mulatta) of Indian descent. These alleles
were selected, as they have been implicated in the
restriction of CD8" T cell epitopes of simian immunodefi-
ciency virus (SIV). Molecular typing of Mamu-A*01,
Mamu-A*02, Mamu-A*08, Mamu-A*11, Mamu-B*01,
Mamu-B*03, Mamu-B*04, and Mamu-B*17 was conducted
in a high throughput fashion using genomic DNA. Our
amplification strategy included a conserved internal control

Electronic supplementary material The online version of this article
(doi:10.1007/s00251-007-0233-7) contains supplementary material,
which is available to authorized users.

M. Kaizu * G. J. Borchardt * C. E. Glidden - D. L. Fisk -
J. T. Loffredo * D. 1. Watkins

Wisconsin National Primate Research Center,
University of Wisconsin,

Madison, WI 53715, USA

M. Kaizu - D. 1. Watkins - W. M. Rehrauer
Department of Pathology and Laboratory Medicine,
University of Wisconsin,

Madison, WI 53706, USA

W. M. Rehrauer (P<)

University of Wisconsin Hospital and Clinics,

600 Highland Avenue, Clinical Sciences Center D4/207c,
Madison, WI 53792-2472, USA

e-mail: wmrehrauer@wisc.edu

target to minimize false negative results and can be
completed in less than 5 h. We have genotyped over
4,000 animals to establish allele frequencies from colonies
all over the western hemisphere. The ability to identify
MHC-defined rhesus macaques will greatly enhance inves-
tigation of the immune responses, which are responsible for
the control of viral replication. Furthermore, application of
this technically simple and accurate typing method should
facilitate selection, utilization, and breeding of rhesus
macaques for AIDS virus pathogenesis and vaccine studies.

Keywords Rhesus macaque - SIV- MHC - Genotyping

Introduction

With the number of individuals globally infected with human
immunodeficiency virus (HIV) at greater than 40 million and
rising (UNAIDS/WHO AIDS Epidemic Update, December
2006), few biomedical priorities are more urgent than the
effort to produce an effective AIDS vaccine. Induction of
vaccine-induced broadly reactive neutralizing antibody re-
sponse has proven very difficult due primarily to the diversity
of the viral envelope protein (Burton et al. 2004; Gilbert et al.
2005). Consequently, current vaccine initiatives are focused
on engendering potent cellular immune responses capable of
controlling viral replication (Koff et al. 2006).

Certain major histocompatibility complex (MHC) class I
alleles have been associated with control of HIV replication
(Kaslow et al. 1996; McNeil et al. 1996; Carrington et al.
1999; Migueles et al. 2000; Carrington and O’Brien 2003;
Kiepiela et al. 2004). However, the diversity of HIV and the
dramatic polymorphism in the human MHC class I loci
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make it very difficult to define those immune responses
which are beneficial. Simian immunodeficiency virus (SIV)
infection of macaques is the best available animal model for
defining those MHC-restricted immune responses critical to
control of HIV pathogenesis (Nathanson et al. 1999; Hirsch
and Lifson 2000; Sibal and Samson 2001).

As the genomic organization of the MHC is similar in
rhesus macaques (Macaca mulatta) and humans (Kelley et
al. 2005; Bontrop 2006), the rhesus macaque has been used
extensively in biomedical research. While rhesus macaques
express orthologues of MHC class I loci homologous to the
HLA-A and HLA-B loci (Miller et al. 1991; Boyson et al.
1996), phylogenetic analysis clearly indicates that the great
majority of rhesus classical MHC class 1 alleles cluster
outside of and do not appear to be related to any of the
classical human class I lineages (Boyson et al. 1996).
Moreover, in contrast to the limited three highly poly-
morphic HLA-A, HLA-B, and HLA-C loci per haplotype in
humans, any given rhesus chromosome can contain from 4
up to 14 functional class I loci (Daza-Vamenta et al. 2004;
Otting et al. 2005; Shiina et al. 2006). Presently, there is no
evidence for a locus similar to HLA-C in the rhesus
macaque, suggesting that the HLA-C locus is of a fairly
recent origin in humans (Watkins et al. 1988; Boyson et al.
1996). While much is yet to be elucidated about the MHC
of the rhesus macaque relative to the human, it appears that
each species has evolved different, yet effective, strategies
to ensure that the critical function of the MHC is
maintained in the face of numerous pathogens (Otting et
al. 2005). Humans display extensive class I allelic polymor-
phism, whereas the rhesus macaque relies on many config-
urations with regard to the number and combination of loci.

To support the most efficient utilization of animal
resources and to maximize the understanding of immune
responses in SIV vaccine and viral pathogenesis studies,
MHC typing technologies must be developed. To that end,
we have directed our initial development efforts in MHC
typing to those class 1 alleles that have been shown to
functionally present viral epitopes. The Supplemental Table
lists the eight MHC class I molecules of the rhesus
macaque, Mamu-A*01, Mamu-A*02, Mamu-A*08,
Mamu-A*11, Mamu-B*01, Mamu-B*03, Mamu-B*04,
and Mamu-B*17, and summarizes information regarding
the CD8" T cell epitopes derived from various SIV and
SIV/HIV (SHIV) strains reported to be presented by these
molecules. These restricted epitopes are derived from
amino acid sequences encompassing the Gag, Pol, Env,
Tat, Nef, Vif, Vpx, and Vpr proteins of these STV and SHIV
strains. In this present study, we describe a molecular
genotyping method that simultaneously and specifically
identifies Mamu-A*01, Mamu-A*02, Mamu-A*08, Mamu-
A*11, Mamu-B*01, Mamu-B*03, Mamu-B*04, and Mamu-
B*17 from rhesus macaques of Indian descent. This allele-
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specific polymerase chain reaction (PCR) amplification is
accurate, efficient, cost effective, and relatively straightfor-
ward, facilitating its adoption in other laboratories. This
typing methodology has permitted the determination of
frequencies for these eight MHC class I alleles from a
significant number of rhesus animals from multiple cohorts
around the western hemisphere. This technique will
facilitate a greater understanding of the immune responses
engendered by SIV infection during vaccine and viral
pathogenesis studies, along with the better selection,
utilization, and breeding of Indian rhesus macaques.

Materials and methods
Animals and samples

Animals were maintained at the Wisconsin National
Primate Research Center (University of Wisconsin—Madi-
son, Madison, WI), an Association for Assessment and
Accreditation of Laboratory Animal Care International
(AAALACI) accredited facility. The animals were cared
for according to the US animal welfare regulations and
guidelines of the University of Wisconsin—Madison Insti-
tutional Animal Care and Use Committee.

Animals from all other institutions for which cell or blood
samples were sent with requests for MHC class I typing were
maintained and cared for according to the regulations and
guidelines established at their respective facilities.

DNA extraction

Genomic DNA was isolated from a maximum of 3.0x 10°
peripheral blood mononuclear cells or 500 pl ethyl-
enediaminetetraacetic acid (EDTA) anti-coagulated whole
blood or buffy coat using the MagNA Pure LC system
(Roche Applied Science, Indianapolis, IN) and the
MagNA Pure LC DNA Isolation—Large Volume protocol
(version 3.0) according to manufacturers guidelines. The
elution volume of extracted DNA was 200 ul of MagNA
Pure LC DNA Isolation—Large Volume elution buffer.
DNA concentrations (ng/ptl) and Abs 260 nm/Abs 280 nm
ratios were determined using a NanoDrop UV Spectro-
photometer (NanoDrop Technologies, Wilmington, DE).
Extracted genomic DNA with Abs 260 nm/Abs280 nm
ratios ranging from 1.7-2.1 were diluted tol5 ng/ul in a
40-pl volume using DNAse-, RNAse-free water (Invitro-
gen, Carlsbad, CA) for genotyping.

MHC genotyping by allele-specific amplification

All PCR primers were synthesized and provided salt-free by
Operon Biotechnologies (Huntsville, AL). Allele-specific
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primer sequences and their location within the complemen-
tary DNA (cDNA) sequences of Mamu-A*01, Mamu-A*02,
Mamu-A*08, Mamu-A*11, Mamu-B*01, Mamu-B*03,
Mamu-B*04, and Mamu-B*17 are noted in Table 1; primer
locations within the cDNA sequences were determined by
aligning Mamu-A*02, Mamu-A*08, Mamu-A*11 to Mamu-
A*01 and Mamu-B*03, Mamu-B*04, Mamu-B*17 to Mamu-
B*01. Primers targeting highly conserved sequences of
Mamu-DRB exon 2 (forward: 5 GCC TCG AGT GTC
CCC CCA GCA CGT TTC 3'; reverse: 5" GCA AGC TTT
CAC CTC GCC GCT G 3), yielding a ~300-base-pair
amplification product, were included as an internal control in
all typing reactions (Knapp et al. 1997a, b). Working stocks
of primer mixes specific for the individual rhesus class I
alleles and the Mamu-DRB internal control, at the concen-
trations listed in Table 1, were pre-aliquoted in a volume of
12 ul into Low Profile 96 well polycarbonate trays
(Continental Lab Products, San Diego, California). Working
primer mixes for Mamu-A*02 and Mamu-A*11 with the

Mamu-DRB internal control primers also contained 500 mM
of molecular grade betaine (Sigma-Aldrich, St. Louis, MO).
Typing trays containing working primer mixes were sealed
with SilverSeal I foil plate seals (Continental Lab Products)
and stored at 4°C for up to 2 weeks.

A 5% PCR reaction buffer at pH 9.5 consisting of
300 mM TRIS hydrochloride, 10 mM magnesium chloride,
and 75 mM ammonium sulfate was prepared with molec-
ular grade reagents (Fisher Scientific, Pittsburgh, PA) and
DNAse-, RNAse-free Water (Invitrogen). Once in solution,
5% PCR reaction buffer was filter sterilized, divided into
8 ml aliquots in sterile 15 ml Corning conical tubes (Fisher
Scientific) and stored at —20°C for up to 12 months. The 5x
PCR reaction buffer was thawed at 50-60°C with vigorous
vortexing. A PCR master mix was made by combining an
8.0-ml aliquot of thawed 5x PCR reaction buffer with
1,640 pl of DNAse-, RNAse-free Water (Invitrogen),
2.0 ml of glycerol (Sigma-Aldrich), 320 pl of 25-mM
deoxynucleotide triphosphates (Promega, Madison, WI),

Table 1 Allele-specific PCR amplification primers for genotyping of Mamu-A*01, Mamu-A*02, Mamu-A*08, Mamu-A* 11, Mamu-B*01, Mamu-
B*03, Mamu-B*04, and Mamu-B*17 alleles from the Indian rhesus macaque

MHC GenBank Forward primer sequence Reverse primer sequence  Concentration of Concentration of Theoretical
class I accession allele-specific internal control product size
allele number primers (M) primers (LM) (bp)
A*01 U50836 5" GGG CGG GCT CTC 5" TCC GCC GCC TCC 0.75 0.30 706
ACT CCATGA A 3’ CAC TTG 3’ (512-495)
(56-77)
A*02 U50837 5" GGG GCC CTG GCC 5" CTC GCC CTC CAG  0.50 0.50 1,018
CTG ACT 3’ (31-48) GTA GGT 3’ (549-532)
A*08 AF243179 5" TTG GGA CCG GAA 5 TGC GCT GGG TGT  0.10 0.30 509
CAC ACG GAT CTA 3’ TCT GAG CA 3’
(237-260) (496-477)
A*11 AF199357 5" CGG GGA GCC CCG 5" CTC GCC CTC CAG  0.25 0.80 688
CTT CTT CA 3’ GTA GGT 3’ (549-532)
(111-130)
B*01 U42837 5" CAG CGA CGC CGA 5 CCG CGG CGG TCC 030 0.30 548
GAG TCG 3’ (206-223) AGG AGT 3’ (504-487)
B*03 U41825 5" TTC GTG CGG TTC 5" GTT CCATCT CCT 0.75 0.30 1,445
GAC AGT 3’ (192-209) CCT GGC CTA 3’
(814-794)
B*04 U41826 5" GCG CGA AAC GCC 5" CTG GAC GCA GCC 1.0 0.30 1,368
CAA AGA CAG 3 TGA GAG TAG 3'
(637-657) (1,082-1,062)
B*17 AF199358 5" GCC GGC TCG CAC 5" GCG CGC TGC AGC  0.50 0.30 797
TCC ATG AA 3’ GTC TCC 3’ (640-623)
(93-112)

Accession numbers of the GenBank sequences corresponding to Mamu-A*01, Mamu-A*02, Mamu-A*08, Mamu-A*11, Mamu-B*01, Mamu-
B*03, Mamu-B*04, and Mamu-B*17 alleles are listed. Both forward and reverse primers used for allele-specific PCR amplification are defined.
Beneath the primer sequence are the locations of the primer in the GenBank cDNA sequence for each of the alleles; these locations are relative
and were determined by aligning Mamu-A*02, Mamu-A*08, and Mamu-A*11 to Mamu-A*01 sequence and Mamu-B*03, Mamu-B*04, Mamu-
B*17 relative to the Mamu-B*01 sequence. The working concentrations of allele-specific and internal control primers listed represent
concentrations before the addition of an equivalent volume of the mixture of PCR reaction buffer, Platinum 7ag DNA polymerase and diluted
genomic DNA. The sizes of the amplification products were calculated from the locations of primers within the allele cDNA sequences and the
addition of 250, 250, 573, 100, and 250 bp for the standard size of each intron between exons 1-2, 2-3, 3—4, 4-5, and 5-6 respectively.
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and 40 pl of 10 mg/ml cresol red (Sigma-Aldrich). For each
set of eight rthesus MHC class I allele typing reactions to be
conducted for a given sample, 40 pl of extracted genomic
DNA diluted to 15 ng/ul was added with gentle mixing to
64 pl PCR master mix to which 10 U of Platinum T7ag
DNA polymerase (5 U/ul; Invitrogen) had been added.
Twelve microliters of PCR master mix with Platinum Tag
DNA polymerase, and diluted genomic DNA was added to
each primer mix pre-aliquoted into a Low Profile 96 well
polycarbonate trays (Continental Lab Products). Trays were
covered and sealed with SilverSeal I foil plate seals
(Continental Lab Products) before thermal cycling.

Thermal cycling was conducted on a Tetrad™ thermal
cycler (BioRad, Hercules, CA; formerly MJ Research,
Cambridge, MA) under the following conditions: an initial
I-min denaturation at 96.0°C, followed by six cycles of
96.0°C denaturation for 25 s, 67.9°C annealing for 50 s and
45 s of elongation at 72.0°C; six cycles of 96.0°C
denaturation for 25 s, 66.4°C annealing for 50 s and a 45-s
elongation at 72.0°C; five cycles of 96.0°C denaturation for
25 s, 66.0°C annealing for 60 s (during which the annealing
temperature was decreased 1.0°C for each of the five cycles)
and a 45-s extension at 72.0°C; and finally 16 cycles of
96.0°C denaturation for 25 s, 63.0°C annealing for 50 s and
45 s of elongation at 72.0°C, followed by a final extension at
72.0°C for 10 min and a terminal hold at 25.0°C.

Subsequently, products resulting from PCR amplifica-
tion were electrophoresed on 2.0% agarose (low EEO,
molecular grade, Fisher Scientific) gels containing ethidium
bromide (molecular grade, Fisher Scientific) on Owl
Centipede separation systems (Fisher Scientific) at a
constant voltage (230 V) for 17 min in 0.5% sodium borate
buffer (Brody and Kern 2004). Gels were visualized and
electronically documented using a fluorescent imaging
system (Alpha Innotech, San Leandro, CA). Amplification
products detected after electrophoresis were analyzed
relative to a 100-bp DNA ladder (Invitrogen) for the
presence of Mamu-A*01, Mamu-A*02, Mamu-A*08,
Mamu-A*11, Mamu-B*01, Mamu-B*03, Mamu-B*(04, and
Mamu-B*17 allele-specific amplicons (sizes are listed in
Table 1). In addition to allele-specific amplicons, genotyp-
ing reactions were considered valid by the presence of the
required internal control product. Additionally, known
positive control DNA was included for each allele-specificity
with each batch of genotyping reactions.

Results

PCR amplification utilizing sequence-specific priming
(PCR-SSP) is currently the method of choice for interme-
diate (specificity for multiple alleles sharing primer targeted
polymorphisms) or high (allele level) resolution HLA
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typing in many clinical histocompatibility laboratories
(Olerup and Zetterquist 1991, 1992). This allele-specific
PCR amplification methodology involves designing at least
one or preferably both primers so that they will permit
amplification based on the 3’-mismatch principle (Welsh
and Bunce 1999). A single mismatch at the 3’ terminus of a
primer will prevent enzymatic extension by DNA polymer-
ase. We have aligned MHC class I ¢cDNA sequences
derived from the rhesus macaque of Indian descent
submitted to GenBank (alignments not shown; see restrict-
ing allele accession numbers referenced in Table 1). Using
these MHC class I allele alignments, primers targeting
polymorphisms that are unique to and would provide
specific amplification of the Mamu-A*01, Mamu-A*02,
Mamu-A*08, Mamu-A*11, Mamu-B*01, Mamu-B*03,
Mamu-B*04, and Mamu-B*17 alleles were designed and
are listed in Table 1. The DNA sequences targeted by the
forward and reverse primers are located in exons 2, 3, or 4
because these exons contain highly variable regions capable
of discriminating among class I alleles of the rhesus
macaque. Whenever possible, the 3’ terminal region of
each primer targets a specific nucleotide polymorphism
unique to the MHC class I allele to maximize the specificity
of the reaction. Furthermore, DNA sequences targeted by
allele-specific primers were deliberately selected to amplify
a broad range of intervening sequence. This strategy
facilitates verification of allele-specificity by DNA se-
quencing of amplification products and allows for the
detection of new alleles. In addition, the allele-specific
product size minimizes any potential conflict in interpreta-
tion of these amplification products relative to non-specific
products.

To maximize the throughput and efficiency of MHC
genotyping, PCR-SSP typing reactions for the Mamu-A*01,
Mamu-A*02, Mamu-A*08, Mamu-A*11, Mamu-B*01,
Mamu-B*03, Mamu-B*04, and Mamu-B*17 alleles were
conducted under one set of universal thermal cycling
parameters. These were optimized collectively under
parallel reaction conditions such as buffer pH, magnesium
ion concentration, concentrations of allele-specific and
internal control primers, amount of input genomic DNA,
and amount of 7ag DNA polymerase (data not shown).
PCR-SSP genotyping of these eight alleles has been
authenticated by the production and sequencing of cDNA
libraries and the direct sequencing of various allele-specific
amplicons from a representative variety of both related and
unrelated animals. Although not all allele-specific genotyp-
ing reactions are equally robust, amplification of these eight
alleles has been optimized to provide specific and definitive
results under these universal conditions (Fig. 1a—d). Each of
the pedigrees in this representative genotyping includes
multiple family members from three successive genera-
tions. In Fig. la, the segregation of haplotypes containing
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Fig. 1 a—d Representative MHC
genotyping by allele-specific
PCR amplification of multiple
members of four unrelated fami-
lies across three generations that
collectively have the Mamu-
A*01, Mamu-A*02, Mamu-A*08,
Mamu-A*11, Mamu-B*01,
Mamu-B*03, Mamu-B* 04,

and Mamu-B*17 alleles. Positive
genotyping results are shown
under each animal ID. The
internal control amplification
product is present in each typing
reaction, and each gel image
contains a standard DNA
molecular weight marker (std)

std AD1 AO2 AO8 A11 BO1 BO3 B04 B17

std AO1 AO2 AOB A11 BO1 BO3 B0O4 B17

A'02+, B*17+

std AO1 AO2 AOB A11 BO1 BO3 BO4 B17

rhAJ76
A02+, B*17+

r05001
A*02+, A'08+, B*17+

—————— A'01+, A"08+,B*17+

rhv29
A'01+

b

std AD1 AO2 AO8 A11 BO1 BO3 BD4 B17

std AO1AD2 A0S A11 BO1 B03 B04 B17

rhAN39
B*01+, B*17+

r98002
A*01+, B*01+

std A01AD2 AOB A11 BO1B03 B04 B17

A071+, A'08+

r04152

No DNA available A‘07+, B'0T+

rh1876
Presumed A*071+

r89163
:———---——_ A01+,B01+

rhAA56
B*01+
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Fig. 1 (continued)
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Cc

std AO1 AD2 AO8 A11 BO1 BO3 B04 B17

std AO1A02 AOB A11 BO1BO3 B04 B17

rh1899
B'03+, B'04+

r95012

Aty A'08+, B"03+, B'04+
std AD1 AO2 AO8 A11 BO1 BO3 BO4 B17

r06008
A'08+, B'03+, B'04+

rhAO39
A’08+

d

std AD1 AO2 AD8 A11 BO1 BO3 B04 B17

std AD1 AO2 AOD8 A11 BO1 BO3 B04 B17

r89139
A'11+,B"01+, B*17+

r01012
A08+, A*11+,B*17+

std AO1AO2 A0S A11 BO1 BO3 BO4 B17

rhAO87
A*08+

A1+, B"17+

rh1952
A'07+

r99022
Negative for these alleles

r81051
Negative for these alleles
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Mamu-A*01, Mamu-A*08/Mamu-B*17, and Mamu-A*02/
Mamu-B*17 is demonstrated. Similarly, the inheritances
of Mamu-A*01 and Mamu-B*01, Mamu-A*08, and Mamu-
B*03/Mamu-B*04, and Mamu-A*11/Mamu-B*17 are illus-
trated in Fig. 1b—d, respectively. The sizes of each of the
allele-specific amplification products (Fig. la—d) corre-
spond to that predicted based on the location of primers
(Table 1). A set of primers yielding a ~300-bp product
corresponding to conserved sequences of the rhesus DRB
class II alleles was present in all PCR-SSP reactions as an
internal control to detect the presence of an inhibitor of
PCR amplification, minimizing the potential for false
negative results.

As summarized in Fig. 2, we have typed for Mamu-
A*01, Mamu-A*02, Mamu-A*08, Mamu-A*11, Mamu-
B*01, Mamu-B*03, Mamu-B*04, and Mamu-B*17 using
allele-specific PCR amplification and established allele
frequencies for Indian rhesus macaques from a variety of
cohorts around the western hemisphere. Interestingly, while
similarities among these different populations were appar-
ent, disparities in allele frequencies both within and among
colonies were also evident. Mamu-A*01, Mamu-A*02,
Mamu-A*08, and Mamu-B*01 were all detected at a high
frequency, having an average frequency ranging from 20—
30% across all the cohorts. However, there were some
exceptions to these observations. The frequencies of Mamu-
A*01 at the Ohio State facility and Mamu-B*(01 at the
Caribbean facility were approximately twofold lower than

the average. At the California National Primate Research
Center, the Mamu-A*08 frequency was threefold below the
average of all colonies at only 9%. In general, Mamu-A*11
and Mamu-B*17 were present at only moderate levels with
means of 4.0 and 11.3%, respectively. It is interesting to
note that in the case of both Mamu-A*11 and Mamu-B*17,
the Caribbean frequency falls to less than 2%. Moreover,
the frequency of Mamu-B*17 was at least twofold higher
at the Oregon National Primate Center relative to the
average (11.3%) of all the groups. In all cases, Mamu-
B*03 and Mamu-B*04 allele frequencies were consistently
low, at 3% or less.

Discussion

Elucidation of the role of cytotoxic T-lymphocytes in
controlling HIV and SIV requires the definition of MHC
class I molecules and the HIV and SIV peptides that they
bind. The significance of MHC matching to transplantation
has also promoted the development of HLA typing
methodologies. Unfortunately, genotyping techniques for
the MHC of the rhesus macaque have lagged far behind
HLA typing in humans. In contrast to the almost 1,600
alleles described for the human class I HLA-A, HLA-B, and
HLA-C loci as of December 2006 (Robinson et al. 2006),
currently GenBank contains sequences for only about 130
macaque MHC class 1 alleles, primarily derived from

0 P —
- 29.8% B WNPRC (n=1308)
(] 40- 27.2% {3 Carib PRC (n=1035)
5 = ONPRC (n=282)
g_ o O NIH/NCI (n=332)
) CNPRC (n=124)
9 30 20.2% :: [ Ohio State (n=106)
w 221% B - d T 11.3%
L = S T 5 =
Q = = | =l 2 =
— = =2 = . =
= 20- = = | E =
7 = = | =N & =
-_— L 7 = 7 = | |- =R78 =
E =N’ =N = || = - =
7} = = = | [| 4.0% = v = 7
=N = = || 7 =N B =R
S 10gS’ | BE | B2, 72 BE =
O = 7 = 7 = g 7 = 0 =
=N = 7 = 7 =8 = U = |
© 1RBE 7 = 7 = 7 =N = 0 2 =
o =N = = = = ) 0.8% =
= = =7 08 =7 07% =y
o/ RE7 | KE 7 S 57| RE ] il r=N

A*01 A*02

Fig. 2 Frequencies of the Mamu-A*01, Mamu-A*02, Mamu-A*08,
Mamu-A*11, Mamu-B*01, Mamu-B*03, Mamu-B*04, and Mamu-
B*17 alleles based on allele-specific amplification from genomic
DNA of Indian rhesus macaques from various colonies. The
institutions included are as follows; Wisconsin National Primate
Research Center (WNPRC), Caribbean Primate Research Center

A*08 A*11
Alleles

B*01 * B*04 B*17

(Carib PRC), Oregon National Primate Research Center (ONPRC),
National Institutes of Health and National Cancer Institute (N/H/NCI),
California National Primate Research Center (CNPRC), and The Ohio
State University (Ohio State). Average frequency for each of the
Indian rhesus class I alleles across all six institutions is shown above
the bar graphs
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captive-bred animals of Indian origin. Given the broad
significance of the rhesus animal model and the fundamental
role of the MHC in the immune response, it is not surprising
that molecular-based typing assays using allele-specific
amplification (Knapp et al. 1997a; Lobashevsky and Thomas
2000; Muhl et al. 2002) and reference strand conformational
analysis (Tanaka-Takahashi et al. 2007) for various rhesus
class I alleles have been previously described.

In this study, we described the development of unified
thermal cycling conditions for the simultaneous PCR-SSP-
based genotyping of eight MHC class I alleles, Mamu-A*01,
Mamu-A*02, Mamu-A*08, Mamu-A*11, Mamu-B*01,
Mamu-B*03, Mamu-B*04, and Mamu-B*17, from the
rhesus macaque of Indian descent. All of these alleles have
been implicated in the restriction of SIV CD8+ T cell
epitopes. We previously reported primer sequences for
these eight alleles (Horton et al. 2001; Schramm et al. 2002;
Vogel et al. 2002; Loffredo et al. 2005). To improve the
original PCR-SSP for Mamu-A*01 (Knapp et al. 1997b),
primers were redesigned in a subsequent study (Schramm
et al. 2002), followed by modification of the forward primer
here to further increase amplification efficiency. However,
it should be noted that these new primers have occasionally
exhibited cross reactivity in amplifying the non-classical
Mamu-AG*01. Mamu-A*01 is easily distinguished from
Mamu-AG*01 by differences in product size. Elevated
frequencies of Mamu-B*03 have caused us to redesign the
reverse primer here to minimize false positive results. As
demonstrated in our current genotyping design (Fig. 1a—d),
this platform is specific, robust, and straightforward.
Additionally, PCR-SSP enables high throughput analysis
for all the eight or any combination of these alleles, requires
inexpensive equipment, is cost effective, and is less tech-
nically demanding and labor intensive than other molecular
methods. Our standard procedure using PCR-SSP amplifi-
cation for the detection of these eight alleles requires little
input genomic DNA (approximately 70 ng). In fact,
depending on the allele-specificity, lower amounts of
high-quality input genomic DNA (down to approximately
25 ng per reaction) yielded valid genotyping results (data
not shown). Over the last 5 years, using these allele-specific
PCR primers, we have performed over 60,000 reactions and
have provided MHC class I typing to more than 60 different
investigators at over 30 public and private institutions
around the western hemisphere.

The cellular immune responses restricted by certain MHC
class I molecules, specifically HLA-B*27 and HLA-B*57,
have been associated with a protective benefit and control of
HIV replication (Kaslow et al. 1996; McNeil et al. 1996;
Migueles et al. 2000; Carrington and O’Brien 2003; Kiepiela
et al. 2004). The MHC-defined Indian rhesus macaque
infected with SIV provides an excellent model for under-
standing the influence of MHC class I alleles on the
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replication of this pathogenic virus. Infection of Indian
rhesus macaques with SIVmac239, a molecularly cloned
AIDS virus, has been the most widely evaluated animal
model for HIV pathogenesis and vaccine studies (Bontrop
and Watkins 2005). MHC typing of macaques is critical in
identifying class I alleles, which restrict epitopes that
engender cytotoxic T-cell lymphocytes (CTL) and in
facilitating analyses of CTL responses after vaccination
and/or during the course of SIV pathogenesis. With the
exception of Mamu-B*17 at the Caribbean Primate Research
Center, Mamu-A*01, Mamu-A*02, and Mamu-B*17 alleles
were all present at moderate to high (10-27.5%) frequencies
across various colonies (Fig. 2). The ability to type for these
alleles has been beneficial to numerous studies. Mamu-4*01
was the first MHC class I allele described in rhesus
macaques (Miller et al. 1991) and was subsequently found
to be associated with moderate control of SIV replication
(Zhang et al. 2002; Mothe et al. 2003). Mamu-A*01 SIV-
derived epitopes have been thoroughly investigated
(Allen et al. 1998, 2001). Among these epitopes,
Gagg1_189CM9 and Tat,g 35SL8 are of particular interest.
The immunodominant CTL response against Tatyg 35SL8
selects for rapid escape mutants of SIV during the acute
phase, while CTL against Gag;g;_159CM9 select for
mutants during the chronic phase (Allen et al. 2000).
Presentation of epitopes by Mamu-A*02 has been thor-
oughly elucidated (Vogel et al. 2002; Loffredo et al.
2004), with Nefi59_147YY9 and Gag;,_79GY9 having a
similar relationship with Tat,g_35SL8 and Gag;g_139CM9
respectively, in terms of selection for rapidly or slowly
escaping SIV mutants (Vogel et al. 2002). While Mamu-
A*08 and Mamu-B*01 are also expressed at relatively
high frequencies (Fig. 2), their role in SIV vaccination and
pathogenesis studies remains unclear. Knowledge of
epitope presentation by Mamu-A*08 has been limited
thus far to a single epitope derived from envelope in
SHIV, a chimeric SIV that contains the envelope of
HIVuxscr (Voss and Letvin 1996). Although Mamu-
B*01-restricted epitopes were initially reported (Yasutomi
et al. 1995; Su et al. 2005), it has been difficult to make
tetramers for these previously reported epitopes (CJ
Miller, personal communication), and no immunogenic
SIV-derived epitopes were identified for Mamu-B*01 in a
subsequent analysis (Loffredo et al. 2005). Collectively,
these observations suggest that Mamu-B*01 does not bind
SIV-derived epitopes and has no effect on SIV disease
progression. Mamu-A*11 and Mamu-B*17 both occur at
average frequencies two- to fivefold lower than Mamu-
A*01, Mamu-A*02, Mamu-A*08, and Mamu-B*01
(Fig. 2). Mamu-B*17 is associated with control of SIV
replication (O’Connor et al. 2003; Yant et al. 2006),
although inheritance of Mamu-B*17-containing haplo-
types does not predict control of SIV (Wojcechowskyj
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et al. 2007). Mamu-A*11-presented epitopes have been
defined systematically with three of them being cross-
reactive with the mouse H-2 class I molecule Kk (Sette et
al. 2005). Mamu-B*03 and Mamu-B*(04 were linked to a
small number of slow progressors (Evans et al. 1999a).
The low frequency of Mamu-A*11, Mamu-B*03, and
Mamu-B*04 may preclude them from being practical in
future SIV studies.

While MHC-defined macaques are useful in vaccine
development and pathogenesis studies, MHC genotyping
may also provide some very valuable information in
additional arenas. MHC typing will facilitate colony
management, selective inbreeding of animals, in vitro
fertilization programs, production of monozygotic twins,
and selected full- or half-siblings. These developments will
enhance and expand rhesus macaque resources for critical
vaccine studies so that the correlates of immunity can be
dissected.
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