Skip to main content
Log in

Observation of magnet-induced star-like radiation of a plasma created from cancer cells in a laser trap

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We present a new phenomenon resulting from the interaction of magnetic beads with cancer cells in a laser trap formed on a slide containing a depression 16.5 mm in diameter and 0.78 mm of maximum depth. This phenomenon includes the apparent formation and expansion of a dark bubble that attracts and incinerates surrounding matter when it explodes, which leads to a plasma emitting intense radiation that has the appearance of a star on a microscopic scale. We have observed the star-like phenomenon for more than 4 years, and the intensity depends on the laser’s power. Measuring the laser power of the dark bubble shows the entrapment of electromagnetic energy as it expands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. Further details and access conditions can be provided upon direct inquiry.

References

  • Ashkin A (1970a) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  • Ashkin A (1970b) Atomic-beam deflection by resonance-radiation pressure. Phys Rev Lett 25:1321–1324

    Article  CAS  Google Scholar 

  • Ashkin (1980) Applications of laser radiation pressure. Science 210:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM (1989) Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci USA 86:7914–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A, Schutze K, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346–348

    Article  CAS  PubMed  Google Scholar 

  • Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374–378

    Article  CAS  PubMed  Google Scholar 

  • Chu S, Bjorkholm JE, Ashkin A, Cable A (1986) Experimental observation of optically trapped atoms. Phys Rev Lett 57:314–317

    Article  CAS  PubMed  Google Scholar 

  • Essiambre RJ (2021) Arthur Ashkin: Father of the optical tweezers. Proc Natl Acad Sci 118(7):e2026827118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre-Bulle AI, Stilgoe AB, Scott EK, Rubinsztein-Dunlop H (2019) Optical trapping in vivo: theory, practice, and applications. Nanophotonics 8(6):1023–1040

    Article  CAS  Google Scholar 

  • Nobel Foundation, The Nobel Prize. https://www.nobelprize.org/prizes/physics/2018/ashkin/facts/ Accessed 6 Dec 2020

  • Furdyna JK, Goettig S, Mycielski J, Trzeciakowski W (1985) Magnetoplasma oscillations in a small conducting sphere. Phys Rev B 31(12):7714

    Article  CAS  Google Scholar 

  • Gaensler B (2012) How hot is the hottest star? Scientific American. Munn & Co., New York

    Google Scholar 

  • Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816

    Article  CAS  PubMed  Google Scholar 

  • Heller I, Hoekstra TP, King GA, Peterman EJ, Wuite GJ (2014) Optical tweezers analysis of DNA-protein complexes. Chem Rev 114:3087–3119

    Article  CAS  PubMed  Google Scholar 

  • Jain V, Gieseler J, Moritz C, Dellago C, Quidant R, Novotny L (2016) Direct measurement of photon recoil from a levitated nanoparticle. Phys Rev Lett 116(24):243601

    Article  PubMed  Google Scholar 

  • Jingang L, Chen Z, Liu Y, Kollipara PS, Feng Y, Zhang Z, Zheng Y (2021) Opto-refrigerative tweezers. Sci Adv 7(26):eabh1101

    Article  Google Scholar 

  • Kelley M, Gao Y, Erenso D (2016) Single cell ionization by a laser trap: a preliminary study in measuring radiation dose and charge in BT20 breast carcinoma cells. Biomed Opt Express 7(9):3438–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley M, Cooper J, Devito D, Mushi R, del Pilar Aguinaga M, Erenso DB (2018) Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation. J Biomed Opt 23(5):055005

    Article  Google Scholar 

  • LaFratta CN (2013) Optical tweezers for medical diagnostics. Anal Bioanal Chem 405(17):5671–5677. https://doi.org/10.1007/s00216-013-6919-9

    Article  CAS  PubMed  Google Scholar 

  • Li X, Arnoldus HF (2012) Propagation of electric dipole radiation through a medium. Int Scholar Res Notices. https://doi.org/10.5402/2012/856748

    Article  Google Scholar 

  • Monico C, Capitanio M, Belcastro G, Vanzi F, Pavone FS (2013) Optical methods to study protein-DNA interactions in vitro and in living cells at the single-molecule level. Int J Mol Sci 14:3961–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammed E, Chen L, Gao Y, Erenso D (2019) Chemo-treated 4T1 breast cancer cells radiation response measured by single and multiple cell ionization using infrared laser trap. Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Muhammed E, Cooper J, Devito D, Mushi R, del Pilar Aguinaga M, Erenso D, Crogman H (2021) Elastic property of sickle cell anemia and sickle cell trait red blood cells. J Biomed Opt 26(9):096502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  PubMed  Google Scholar 

  • Pasquerilla M, Kelley M, Mushi R, Aguinaga MDP, Erenso D (2018) Laser trapping ionization of single human red blood cell. Biomed Phys Eng Express 4:045020

    Article  Google Scholar 

  • Pellizzaro A, Welker G, Scott D, Solomon R, Cooper J, Farone A, Farone M, Mushi RS, del Pilar-Aguinaga M, Erenso D (2012) Direct laser trapping for measuring the behavior of transfused erythrocytes in a sickle cell anemia patient. Biomed Opt Express 3(9):2190–2199. https://doi.org/10.1364/BOE.3.002190

    Article  PubMed  PubMed Central  Google Scholar 

  • Priel N, Fieguth A, Blakemore CP, Hough E, Kawasaki A, Martin M, Venugopalan G, Gratta G (2021) A background-free optically levitated charge sensor. arXiv preprint arXiv:2112.10383

  • Schakenraad K, Biebricher AS, Sebregts M, ten Bensel B, Peterman EJG, Wuite GJL, Heller I, Storm C, van der Schoot P (2017) Hyperstretching DNA. Nat Commun 8:2197

    Article  PubMed  PubMed Central  Google Scholar 

  • Serenelli A, Rohrmann RD, Fukugita M (2019) Nature of blackbody stars. Astronomy Astro-Phys 623:A177

    Article  CAS  Google Scholar 

  • Shan X, Wang F, Wang D, Wen S, Chen C, Di X, Nie P, Liao J, Liu Y, Ding L, Reece PJ (2021) Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat Nanotechnol 16(5):531–537. https://doi.org/10.1038/s41565-021-00852-0

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Masataka F (2018) Blackbody stars. Astron J 156(5):219

    Article  CAS  Google Scholar 

  • Yn ZQ, Li T, Zhang X, Duan LM (2018) Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys Rev A 88(3):033614

    Article  Google Scholar 

  • Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5(24):671–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our heartfelt thanks to Dr. Ying Gao for providing the BT20 breast cancer cells critical to our study. Our appreciation also goes out to all the former students of Dr. Daniel Erenso since 2003, whose invaluable contributions have indirectly shaped the outcomes of this research. We acknowledge the unwavering support and resources provided by the Department of Physics and Astronomy, which have been foundational to the continuation of our project. Further gratitude is directed towards the Office of Research and Sponsored Programs at MTSU for awarding the Undergraduate Research Experience and Creative Activity (URECA) grant, thereby enabling the participation of undergraduate students in this significant research endeavor. Our sincere thanks are offered to Dr. William Robertson for his thorough review and insightful feedback on our manuscript, and to Dr. Sharon Felton for her expert editing services.We also thank the College of Natural and Behavioral Science at CSUDH for its contributions to our project.

Funding

This research received support from multiple sources, including grants from the Department of Education Minority Science and Engineering Improvement program (Funding # P120A210055), the Department of Defense's HBCU/MI Basic Research Program (Funding # W911NF-22-S-0010), and the Office of Research and Sponsored Programs (URECA) and  Department of Physics and Astronomy at MTSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Erenso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 48452 KB)

Supplementary file2 (MP4 38612 KB)

Supplementary file3 (MP4 59718 KB)

Supplementary file4 (MP4 52723 KB)

Supplementary file5 (MP4 45152 KB)

Supplementary file6 (MP4 31225 KB)

Supplementary file7 (MP4 55032 KB)

Supplementary file8 (MP4 26246 KB)

Supplementary file9 (MP4 46347 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erenso, D., Tran, L., Abualrob, I. et al. Observation of magnet-induced star-like radiation of a plasma created from cancer cells in a laser trap. Eur Biophys J 53, 123–131 (2024). https://doi.org/10.1007/s00249-024-01701-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-024-01701-3

Keywords

Navigation