Skip to main content

Advertisement

Log in

Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer’s elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this paper are available upon request.

References

  • Adu-Gyamfi E, Johnson KA, Fraser ME, Scott JL, Soni SP, Jones KR, Digman MA, Gratton E, Tessier CR (2015) Stahelin, host cell plasma membrane phosphatidylserine regulates the Assembly and budding of Ebola Virus. J Virol 89:9440–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal CM, Bui NN, Khadka NK, Song LK, Pan JJ (2020) The helix 0 of endophilin modifies membrane material properties and induces local curvature. Bba-Biomembranes 1862:183397

    Article  CAS  PubMed  Google Scholar 

  • Aryal CM, Bui NN, Song LK, Pan JJ (2022) The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling. Bba-Biomembranes 1864:183907

    Article  CAS  PubMed  Google Scholar 

  • Barros M, Heinrich F, Datta SAK, Rein A, Karageorgos I, Nanda H, Losche M (2016) Membrane binding of HIV-1 matrix protein: dependence on Bilayer Composition and protein lipidation. J Virol 90:4544–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouamr F, Scarlata S, Carter C (2003) Role of myristylation in HIV-1 gag assembly, Biochemistry-Us. 42:6408–6417

  • Bradley AJ, Maurer-Spurej E, Brooks DE, Devine DV (1999) Unusual electrostatic effects on binding of C1q to anionic liposomes: role of anionic phospholipid domains and their line tension. Biochemistry-Us 38:8112–8123

    Article  CAS  Google Scholar 

  • Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency Virus-1. P Natl Acad Sci USA 87:523–527

    Article  ADS  CAS  Google Scholar 

  • Bukrinskaya A (2007) HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 124:1–11

    Article  CAS  PubMed  Google Scholar 

  • Buser CA, Kim J, Mclaughlin S, Peitzsch RM (1995) Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes. Mol Membr Biol 12:69–75

    Article  CAS  PubMed  Google Scholar 

  • Campbell SM, Crowe SM, Mak J (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22:217–227

    Article  CAS  PubMed  Google Scholar 

  • Cannon PM, Matthews S, Clark N, Byles ED, Iourin O, Hockley DJ, Kingsman SM, Kingsman AJ (1997) Structure-function studies of the human immunodeficiency virus type 1 matrix protein, p17. J Virol 71:3474–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier L, Louet M, Chaloin L, Fuchs P, Martinez J, Muriaux D, Favard C, Floquet N (2014) Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains. Biophys J 106:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chukkapalli V, Hogue IB, Boyko V, Hu WS, Ono A (2008) Interaction between the human immunodeficiency virus type 1 gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol 82:2405–2417

    Article  CAS  PubMed  Google Scholar 

  • Dalton AK, Murray PS, Murray D, Vogt VM (2005) Biochemical characterization of Rous sarcoma virus MA protein interaction with membranes. J Virol 79:6227–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton AK, Ako-Adjei D, Murray PS, Murray D, Vogt VM (2007) Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 gag MA domain. J Virol 81:6434–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick RA, Vogt VM (2014) Membrane interaction of retroviral gag proteins. Front Microbiol 5:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick RA, Goh SL, Feigenson GW, Vogt VM (2012) HIV-1 gag protein can sense the cholesterol and acyl chain environment in model membranes. P Natl Acad Sci USA 109:18761–18766

    Article  ADS  CAS  Google Scholar 

  • Eells R, Barros M, Scott KM, Karageorgos I, Heinrich F, Losche M (2017) Structural characterization of membrane-bound human immunodeficiency virus-1 gag matrix with neutron reflectometry. Biointerphases 12:02D408

    Article  PubMed  PubMed Central  Google Scholar 

  • Facke M, Janetzko A, Shoeman RL, Krausslich HG (1993) A large deletion in the Matrix Domain of the human-immunodeficiency-virus gag gene redirects Virus Particle Assembly from the plasma-membrane to the endoplasmic-reticulum. J Virol 67:4972–4980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favard C, Chojnacki J, Merida P, Yandrapalli N, Mak J, Eggeling C, Muriaux D (2019) HIV-1 gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly. Sci Adv 5:eaaw8651

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentini S, Giagulli C, Caccuri F, Magiera AK, Caruso A (2010) HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Therapeut 128:433–444

    Article  CAS  Google Scholar 

  • Fouchier RAM, Meyer BE, Simon JHM, Fischer U, Malim MH (1997) HIV-1 Infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for gag processing but not for post-entry nuclear import. Embo J 16:4531–4539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freed EO (2015) HIV-1 assembly, release and maturation. Nat Rev Microbiol 13:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanam RH, Samal AB, Fernandez TF, Saad JS (2012) Role of the HIV-1 matrix protein in Gag intracellular trafficking and targeting to the plasma membrane for virus assembly. Front Microbiol 3:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui D, Gupta S, Xu J, Zandi R, Gill S, Huang IC, Rao ALN, Mohideen U (2015) A novel minimal in vitro system for analyzing HIV-1 gag-mediated budding. J Biol Phys 41:135–149

    Article  CAS  PubMed  Google Scholar 

  • Hearps AC, Jans DA (2007) Regulating the functions of the HIV-1 matrix protein. Aids Res Hum Retrov 23:341–346

    Article  CAS  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P-3 and PI(4,5)P-2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermida-Matsumoto L, Resh MD (2000) Localization of human immunodeficiency virus type 1 gag and env at the plasma membrane by confocal imaging. J Virol 74:8670–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. P Natl Acad Sci USA 93:3099–3104

    Article  ADS  CAS  Google Scholar 

  • Ho CS, Khadka NK, Pan JJ (2016a) Sub-ten-nanometer heterogeneity of solid supported lipid membranes determined by solution atomic force microscopy. Bba-Biomembranes 1858:181–188

    Article  CAS  PubMed  Google Scholar 

  • Ho CS, Khadka NK, She FY, Cai JF, Pan JJ (2016b) Influenza M2 transmembrane domain senses membrane heterogeneity and enhances membrane curvature. Langmuir 32:6730–6738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CS, Khadka NK, She FY, Cai JF, Pan JJ (2016c) Polyglutamine aggregates impair lipid membrane integrity and enhance lipid membrane rigidity. Bba-Biomembranes 1858:661–670

    Article  CAS  PubMed  Google Scholar 

  • Hung WC, Lee MT, Chen FY, Huang HW (2007) The condensing effect of cholesterol in lipid bilayers. Biophys J 92:3960–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inlora J, Chukkapalli V, Derse D, Ono A (2011) Gag localization and Virus-Like particle release mediated by the Matrix Domain of Human T-Lymphotropic Virus Type 1 Gag are less dependent on Phosphatidylinositol-(4,5)-Bisphosphate than those mediated by the Matrix Domain of HIV-1 gag. J Virol 85:3802–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerviel A, Thomas A, Chaloin L, Favard C, Muriaux D (2013) Virus assembly and plasma membrane domains: which came first? Virus Res 171:332–340

    Article  CAS  PubMed  Google Scholar 

  • Khadka NK, Ho CS, Pan JJ (2015) Macroscopic and nanoscopic heterogeneous structures in a three-component lipid bilayer mixtures determined by Atomic Force Microscopy. Langmuir 31:12417–12425

    Article  CAS  PubMed  Google Scholar 

  • Khadka NK, Teng P, Cai JF, Pan JJ (2017) Modulation of lipid membrane structural and mechanical properties by a peptidomimetic derived from reduced amide scaffold. Bba-Biomembranes 1859:734–744

    Article  CAS  PubMed  Google Scholar 

  • Khadka NK, Aryal CM, Pan JJ (2018) Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic Lipopeptide Colistin. Acs Omega 3:17828–17834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Mosior M, Chung LA, Wu H, Mclaughlin S (1991) Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J 60:135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladokhin AS, White SH (2001) Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 309:543–552

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn GN, Grover JR, Olety B, Ono A (2013) HIV-1 Gag associates with specific Uropod-Directed microdomains in a Manner Dependent on its MA highly Basic Region. J Virol 87:6441–6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May S, Harries D, Ben-Shaul A (2000) Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. Biophys J 79:1747–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbamala EC, Ben-Shaul A, May S (2005) Domain formation induced by the adsorption of charged proteins on mixed lipid membranes. Biophys J 88:1702–1714

    Article  CAS  PubMed  Google Scholar 

  • Mercredi PY, Bucca N, Loeliger B, Gaines CR, Mehta M, Bhargava P, Tedbury PR, Charlier L, Floquet N, Muriaux D, Favard C, Sanders CR, Freed EO, Marchant J (2016) Summers, structural and molecular determinants of membrane binding by the HIV-1 matrix protein. J Mol Biol 428:1637–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkel R, Sackmann E, Evans E (1989) Molecular Friction and Epitactic Coupling between monolayers in supported bilayers. J Phys-Paris 50:1535–1555

    CAS  Google Scholar 

  • Monje-Galvan V, Voth GA (2020) Binding mechanism of the matrix domain of HIV-1 gag on lipid membranes. Elife 9:e58621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulgrew-Nesbitt A, Diraviyam K, Wang JY, Singh S, Murray P, Li ZH, Rogers L, Mirkovic N, Murray D (2006) The role of electrostatics in protein-membrane interactions. Bba-Mol Cell Biol L 1761:812–826

    CAS  Google Scholar 

  • Murphy RE, Samal AB, Vlach J, Mas V, Prevelige PE, Saad JS (2019) Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly. J Biol Chem 294:18600–18612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda H, Datta SAK, Heinrich F, Losche M, Rein A, Krueger S, Curtis JE (2010) Electrostatic interactions and binding orientation of HIV-1 Matrix studied by Neutron Reflectivity. Biophys J 99:2516–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil L, Andenoro K, Pagano I, Carroll L, Langer L, Dell Z, Perera D, Treece BW, Heinrich F, Losche M, Nagle JF (2016) Tristram-Nagle, HIV-1 matrix-31 membrane binding peptide interacts differently with membranes containing PS vs. PI(4,5)P-2. Bba-Biomembranes 1858:3071–3081

    Article  PubMed  Google Scholar 

  • Olety B, Ono A (2014) Roles played by acidic lipids in HIV-1 gag membrane binding. Virus Res 193:108–115

    Article  CAS  PubMed  Google Scholar 

  • Ono A (2010) Relationships between plasma membrane microdomains and HIV-1 assembly. Biol Cell 102:335–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono A, Orenstein JM, Freed EO (2000) Role of the gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J Virol 74:2855–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 gag targeting to the plasma membrane. P Natl Acad Sci USA 101:14889–14894

    Article  ADS  CAS  Google Scholar 

  • Ono A, Waheed AA, Freed EO (2007) Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 gag. Virology 360:27–35

    Article  CAS  PubMed  Google Scholar 

  • Pan JJ, Khadka NK (2016) Kinetic defects Induced by Melittin in Model lipid membranes: a Solution Atomic Force Microscopy Study. J Phys Chem B 120:4625–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JJ, Mills TT, Tristram-Nagle S, Nagle JF (2008) Cholesterol perturbs lipid bilayers nonuniversally. Phys Rev Lett 100:198103

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Pan JJ, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai JF, Gutierrez HR, Song LK (2017) Membrane disruption mechanism of a prion peptide (106–126) investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 121:5058–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JJ, Dalzini A, Khadka NK, Aryal CM, Song LK (2018) Lipid extraction by alpha-synuclein generates Semi-transmembrane defects and Lipoprotein Nanoparticles. Acs Omega 3:9586–9597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JJ, Dalzini A, Song LK (2019) Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. Bba-Biomembranes 1861:201–209

    Article  CAS  PubMed  Google Scholar 

  • Qu K, Ke ZL, Zila V, Anders-Osswein M, Glass B, Mucksch F, Muller R, Schultz C, Muller B, Krausslich HG, Briggs JAG (2021) Maturation of the matrix and viral membrane of HIV-1. Science 373:700–704

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Ordering effects of cholesterol and its analogues. Bba-Biomembranes 1788:97–121

    Article  CAS  PubMed  Google Scholar 

  • Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF (2006) Structural basis for targeting HIV-1 gag proteins to the plasma membrane for virus assembly. P Natl Acad Sci USA 103:11364–11369

    Article  ADS  CAS  Google Scholar 

  • Scheidt HA, Klingler J, Huster D, Keller S (2015) Structural thermodynamics of myr-Src(2–19) binding to phospholipid membranes. Biophys J 109:586–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvius JR, Bhagatji P, Leventis R, Terrone D (2006) K-ras4B and prenylated proteins lacking second signals associate dynamically with cellular membranes. Mol Biol Cell 17:192–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Socas LBP, Ambroggio EE (2020) The influence of myristoylation, liposome surface charge and nucleic acid interaction in the partition properties of HIV-1 Gag-N-terminal peptides to membranes. Bba-Biomembranes 1862:183421

    Article  Google Scholar 

  • Spearman P, Horton R, Ratner L, KuliZade I (1997) Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 71:6582–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlach J, Saad JS (2013) Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. P Natl Acad Sci USA 110:3525–3530

    Article  ADS  CAS  Google Scholar 

  • Vlach J, Saad JS (2015) Structural and molecular determinants of HIV-1 gag binding to the plasma membrane. Front Microbiol 6:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Waheed AA, Freed EO (2009) Lipids and membrane microdomains in HIV-1 replication. Virus Res 143:162–176

    Article  CAS  PubMed  Google Scholar 

  • Waheed AA, Freed EO (2010) The Role of Lipids in Retrovirus Replication, Viruses-Basel, 2 1146–1180

  • Wang JY, Gambhir A, McLaughlin S, Murray D (2004) A computational model for the electrostatic sequestration of PI(4,5)P-2 by membrane-adsorbed basic peptides. Biophys J 86:1969–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Feigenson GW, Vogt VM, Dick RA (2020) Mechanisms of PI(4,5)P2 Enrichment in HIV-1 viral membranes. J Mol Biol 432:5343–5364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yandrapalli N, Muriaux D, Favard C (2014) Lipid domains in HIV-1 assembly. Front Microbiol 5:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Yandrapalli N, Lubart Q, Tanwar HS, Picart C, Mak J, Muriaux D, Favard C (2016) Self assembly of HIV-1 gag protein on lipid membranes generates PI(4,5)P-2/Cholesterol nanoclusters. Sci Rep-Uk 6:39332

    Article  ADS  CAS  Google Scholar 

  • Yuan X, Yu XF, Lee TH, Essex M (1993) Mutations in the N-Terminal region of human-immunodeficiency-virus Type-1 matrix protein Block Intracellular-Transport of the Gag Precursor. J Virol 67:6387–6394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachowski A (1993) Phospholipids in animal eukaryotic membranes - transverse asymmetry and Movement. Biochem J 294:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou WJ, Parent LJ, Wills JW, Resh MD (1994) Identification of a membrane-binding domain within the amino-terminal region of human-immunodeficiency-virus Type-1 gag protein which interacts with acidic phospholipids. J Virol 68:2556–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Institutes of Health Award Number 1R03NS135210-01 to J.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Pan.

Ethics declarations

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, C.M., Pan, J. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy. Eur Biophys J 53, 57–67 (2024). https://doi.org/10.1007/s00249-023-01697-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01697-2

Keywords

Navigation