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Abstract
Transmembrane protease serine 2 (TMPRSS2) is an important drug target due to its role in the infection mechanism of 
coronaviruses including SARS-CoV-2. Current understanding regarding the molecular mechanisms of known inhibitors and 
insights required for inhibitor design are limited. This study investigates the effect of inhibitor binding on the intramolecular 
backbone hydrogen bonds (BHBs) of TMPRSS2 using the concept of hydrogen bond wrapping, which is the phenomenon of 
stabilization of a hydrogen bond in a solvent environment as a result of being surrounded by non-polar groups. A molecular 
descriptor which quantifies the extent of wrapping around BHBs is introduced for this. First, virtual screening for TMPRSS2 
inhibitors is performed by molecular docking using the program DOCK 6 with a Generalized Born surface area (GBSA) scor-
ing function. The docking results are then analyzed using this descriptor and its relationship to the solvent-accessible surface 
area term ΔGsa of the GBSA score is demonstrated with machine learning regression and principal component analysis. The 
effect of binding of the inhibitors camostat, nafamostat, and 4-guanidinobenzoic acid (GBA) on the wrapping of important 
BHBs in TMPRSS2 is also studied using molecular dynamics. For BHBs with a large increase in wrapping groups due to 
these inhibitors, the radial distribution function of water revealed that certain residues involved in these BHBs, like Gln438, 
Asp440, and Ser441, undergo preferential desolvation. The findings offer valuable insights into the mechanisms of these 
inhibitors and may prove useful in the design of new inhibitors.
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Introduction

Structure-based in silico methods are ubiquitous in drug dis-
covery (Gorostiola González et al. 2022; Gupta et al. 2023; 
Opo et al. 2021; Sabe et al. 2021; Wang et al. 2020). Tech-
niques like molecular dynamics (MD) simulation allow us to 
design new drug molecules by studying protein–ligand inter-
actions of existing drugs or to screen a library of potential 
lead compounds by predicting their binding affinity to the 
target protein (Adelusi et al. 2022; Varela-Rial et al. 2022; 
Wu et al. 2022). However, techniques with higher accuracy 
are computation intensive. For instance, the cost of calculat-
ing non-bonded interactions in an all-atom MD simulation 
scales by O(n2), where n is the total number of particles 
in the system (Jung et al. 2019). This makes simulating 

biological systems for any useful length of time prohibitively 
expensive. Hence, approximate techniques such as molecular 
docking, which can be used for binding affinity prediction, 
and pharmacophore modeling, which helps in identifying 
key protein–ligand interactions, play a crucial role in the 
initial stages of drug discovery (Blanes-Mira et al. 2022; 
Giordano et al. 2022; Varela-Rial et al. 2022). They are espe-
cially helpful in situations that require urgent response such 
as the recent COVID-19 pandemic.

The severe acute respiratory syndrome coronavirus 2 
(SARS-Cov-2) which causes the respiratory infectious dis-
ease COVID-19 emerged in Wuhan, Hubei province, China, 
in December 2019 (Huang et al. 2020; Zhou et al. 2020). 
The ensuing rapid global spread and severity of the disease 
prompted the World Health Organization (WHO) to declare 
the disease a pandemic on March 11, 2020 (Cucinotta and 
Vanelli 2020). The magnitude of its impact on human health 
and virtually all life aspects urged the scientific and medi-
cal communities to develop treatments, resulting in the dis-
covery of vaccines for the original SARS-Cov-2 in record 

 * Suraj Ugrani 
 sugrani@purdue.edu

1 Purdue University, West Lafayette, IN 47907, USA

http://orcid.org/0000-0002-4377-8168
http://crossmark.crossref.org/dialog/?doi=10.1007/s00249-023-01695-4&domain=pdf


28 European Biophysics Journal (2024) 53:27–46

1 3

time (Polack et al. 2020; Tanne 2020). The Pfizer-BioNTech 
(BNT162b2) and Oxford-AstraZeneca (ChAdOx1) vaccines 
were among the first to exhibit promising results in terms of 
safety and efficacy (Voysey et al. 2021; Wallace et al. 2021). 
Recently, a bivalent booster vaccine (mRNA-1273.214) 
containing messenger RNAs encoding the Omicron vari-
ant spike protein was developed by Moderna which shows 
a superior response compared to the original mRNA-1273 
against Omicron (Chalkias et al. 2022).

Even with the effectiveness of vaccines, the situation 
continues to evolve rapidly with the frequent emergence of 
newer subvariants more resistant to vaccine-elicited antibod-
ies (Chatterjee et al. 2023; Cox et al. 2023). This is because 
as the virus circulates among populations, mutations accu-
mulate in viral proteins. These mutations may alter their 
epitopes, lowering the effectiveness of antibodies, or result 
in increased transmissibility due to stronger binding to host 
proteins. For instance, the SARS-CoV-2 Omicron variant 
is characterized by more than 30 mutations in the spike 
protein, with 15 of them occurring in the receptor binding 
domain (RBD) (Hoffmann et al. 2021b; Planas et al. 2022). 
The recent recombinant Omicron subvariant XBB.1.5 dis-
plays enhanced transmissibility and greater antibody eva-
sion compared to its predecessors (Uriu et al. 2023; Yue 
et al. 2023). One possibility to circumvent this obstacle is 
the inhibition of host cell proteases that are employed by the 
virus for cell entry (Chitalia and Munawar 2020; Hoffmann 
et al. 2021a; Zabiegala et al. 2023).

The cell entry of SARS-CoV-2 involves several host 
proteins; receptors like angiotensin-converting enzyme 2 

(ACE2), coreceptors like neuropilin-1, and cofactors like 
furin and transmembrane serine protease 2 (TMPRSS2) 
(Alipoor and Mirsaeidi 2022; Daly et al. 2020; Jackson et al. 
2022). The entry may occur via either the endocytosis or 
the membrane fusion pathways, the details of which have 
been discussed in several articles (Hoffmann et al. 2020a, 
b; Jackson et al. 2022; Peng et al. 2021; Shang et al. 2020; 
Zabiegala et al. 2023). The viral spike protein (S) consists 
of sub-units S1 and S2, where S1 enables the virus to bind 
to ACE2 receptors on the host cell surface. In the membrane 
fusion pathway, host proteases such as TMPRSS2 prime the 
bound S by cleavage at sites S1/S2 followed by S2’. This 
then initiates the fusion of the S2 sub-unit with the host cell 
membrane and enables cell entry. While other proteases such 
as cathepsin B and L can also prime the spike protein, inhib-
iting TMPRSS2 in certain cell lines such as human lung 
cells proves highly effective in blocking SARS-CoV-2 infec-
tion, making it a valuable target (Hoffmann et al. 2020a, b; 
Peng et al. 2021). Additionally, TMPRSS2 is also implicated 
in the entry mechanism of other coronaviruses including 
SARS and MERS (Middle Eastern Respiratory Syndrome), 
making TMPRSS2 inhibitors potential broad-spectrum anti-
virals (Shen et al. 2017).

Despite its importance, relatively few approved drugs 
such as camostat and nafamostat have been demonstrably 
identified as TMPRSS2 inhibitors (Hoffmann et al. 2021a; 
Hoffmann et al. 2020a, b). Figure 1 shows the molecular 
structures of these inhibitors and their common metabolite 
4-guanidinobenzoic acid (GBA). Additionally, strategies 
for the design of new inhibitors remain largely unexplored. 

Fig. 1  Two-dimensional structure of TMPRSS2 inhibitors a camostat, b nafamostat, and c 4-guanidinobenzoic acid
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While the inhibition mechanisms of these drugs and impor-
tant interactions such as van der Waals and hydrogen bond-
ing between inhibitors and TMPRSS2 have been examined 
recently in several virtual screening studies (Chikhale et al. 
2020; Fraser et al. 2022; Hempel et al. 2021; Idris et al. 
2020; Shakya et al. 2021; Sonawane et al. 2021; Tachoua 
et al. 2023), the focus of this work is the effect of inhibi-
tor binding on the intramolecular backbone hydrogen bonds 
(BHBs) of TMPRSS2. Here, molecular docking and MD 
simulations are performed, followed by an analysis of 
the results to identify important intramolecular BHBs in 
TMPRSS2, which could be instrumental in inhibitor design.

Theoretical background

Wrapping of hydrogen bonds

It is known that the presence of nearby hydrophobic groups 
enhances dielectric-dependent pairwise interactions such 
as hydrogen bonds by shielding them from water (Bissantz 
et al. 2010; Fernández and Stephen Berry 2002; Grdadolnik 
et al. 2017). The concept of hydrogen bond wrapping in pro-
teins describes the surrounding of electrostatic interactions 
like preformed amide-carbonyl backbone hydrogen bonds 
(BHBs) by hydrophobic groups, which results in desolvation 
of the region, thereby strengthening the interaction (Cramer 
et al. 2020; Fernández and Scott 2003a, b). It has been 
experimentally estimated in different studies that intramo-
lecular hydrogen bonds in proteins may be up to 1–1.2 kcal/
mol stronger in a well-wrapped hydrophobic microenviron-
ment as opposed to being solvent-exposed (Fernández and 
Scott 2003a; Gao et al. 2009). Since the solvent environment 
of a protein significantly affects its intramolecular energy, 
the thermodynamic benefit of such water expulsion plays a 
key role in stabilizing the conformations of a protein and 
its association with ligands or other proteins (Dahanayake 
and Mitchell-Koch 2018; Fernández and Scott 2003b; Piet-
rosemoli et al. 2007; Pradhan et al. 2016).

The binding of an inhibitor results from favorable inter-
actions of the protein’s polar and non-polar regions with 
the ligand’s corresponding complementary moieties. It also 
involves the displacement of water molecules surrounding 
insufficiently dehydrated BHBs located near the binding 
pocket (Chen et al. 2023; Fernández and Scheraga 2003). 
Hence, inhibitor design can be guided by knowledge of 
BHBs in the protein which are dehydration-sensitive i.e., 
have the greatest propensity for dehydration (Fernández 
2005; Fernández et al. 2007; Irwin et al. 2019). Modify-
ing a ligand such that it contributes one or more wrapping 
groups to BHBs that would gain the most stability on water 
removal can improve not only its binding affinity to the tar-
get (Cramer et al. 2020; Magarkar et al. 2019), but also its 

specificity (Fernández 2005). This has been demonstrated 
for the kinase inhibitor imatinib in a study where its specific-
ity toward a particular target C-Kit was enhanced by such a 
modification (Fernández et al. 2007).

It has been shown that the number of non-polar groups 
wrapping a BHB can be used as an approximate measure of 
the extent of its dehydration (Fernández and Scott 2003a; 
Fernández and Stephen Berry 2002). However, identifying 
dehydration-sensitive BHBs is not trivial due to the presence 
of several interdependent interactions (Said and Hangauer 
2015). With the help of molecular docking, machine learn-
ing, and molecular dynamics (MD) simulations, this work 
aims to identify and study dehydration-sensitive BHBs in 
TMPRSS2 using a simple descriptor. This descriptor is cal-
culated for a BHB by merely counting the number of specific 
non-polar groups (carbonaceous groups  CHn, with n = 1, 2, 
3) within a ‘desolvation region’ surrounding it and is defined 
in the Methods section.

MM‑GBSA

MM-GBSA is an end-point implicit solvent method to esti-
mate the free energy of binding for a protein–ligand (PL) 
complex. It applies molecular mechanics (MM) force fields 
to calculate bonded and non-bonded interactions, while the 
effect of solvent is calculated using a combination of the 
generalized Born (GB) model and the solvent accessible sur-
face area (SA) model for electrostatic and non-electrostatic 
contributions, respectively (Genheden and Ryde 2015; Wang 
et al. 2019). The binding free energy is calculated by finding 
the difference in free energy between the PL complex, and 
the two uncomplexed species:

where the free energy G for any of the three species is 
decomposed into separate interactions as

where the MM term EMM comprises the sum of all bonded 
interactions like angle and dihedral energies (Ebnd), as well 
as the electrostatic (Eel) and van der Waals (EvdW) inter-
actions in the gas phase. The solvation term GGBSA is cal-
culated as the sum of the electrostatic (Ggb) and non-elec-
trostatic (Gsa) interactions due to solvent. T and S are the 
temperature and entropy, respectively. Hence,

Typically, ΔGbind is calculated with the ensemble average 
of terms as denoted by <  > in Eq. (1) using frames from MD 

(1)ΔGbind = ⟨GPL⟩ − ⟨GP⟩ − ⟨GL⟩

(2)G = EMM + GGBSA − TS

(3)G = Ebnd + Eel + EvdW + Ggb + Gsa − TS

(4)
∴ΔGbind = ΔEbnd + ΔEel + ΔEvdW + ΔGgb + ΔGsa − TΔS
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simulations of the protein, the ligand, and the complex. The 
current work utilizes the DOCK scoring function ‘Hawk-
ins GB/SA’ for analysis, which is based on the GB solva-
tion model proposed by Hawkins and co-workers (Hawkins 
et al. 1995, 1996). It assumes ΔEbnd to be 0 and neglects the 
entropy term and is defined as follows:

The ΔGsa term accounts for the formation of the solute 
cavity and the short-range van der Waals forces and is asso-
ciated with the solute’s interaction with the so-called first 
solvation shell (Hawkins et al. 1996; Wang et al. 2019). 
This term is taken to be proportional to the solute’s solvent-
accessible surface area.

Since the wrapping of BHBs and the ΔGsa term are both 
related to the stability of solute-adjacent solvent, we hypoth-
esize that the effect of inhibitor binding on the solvent envi-
ronment of BHBs could be studied using information about 
their wrapping. In the current study, this hypothesis is tested 
for the protein TMPRSS2 using molecular docking, machine 
learning, and MD simulation.

Methods

Ligands preparation

A list of 1174 small molecule protease inhibitors with molec-
ular weights less than 1000 g/mol and greater than 100 g/
mol was obtained from the MEROPS protease database 
(Rawlings et al. 2018). The molecules were limited to those 
containing C, H, O, N, S, Cl, Br, I, and F. The PubChem 
CID numbers and InChI format representations of the mol-
ecules were obtained with the help of PubChemPy. The 3D 
structures for these molecules were then generated with the 
RDKit module (https:// www. rdkit. org) of Python using the 
MMFF94s force field. Using UCSF Chimera (Pettersen et al. 
2004), the molecules were then assigned protonation states 
reasonable at physiological pH and Gasteiger–Marsili partial 
atomic charges, and finally subjected to energy minimiza-
tion. A similar procedure was followed to prepare the inhibi-
tors nafamostat and camostat, along with their metabolite 
4-guanidinobenzoic acid (GBA), for docking.

Receptor preparation

The crystal structure of the TMPRSS2 serine protease 
domain in its bioactive form was obtained from the Pro-
tein Data Bank (PDB ID: 7MEQ) (Fraser et al. 2022). The 
ligand and water molecules were removed and only atoms 
of the protein were retained. The residue Ser441 which is 
covalently bonded to the ligand was returned to its original 

(5)
HawkinsGB∕SAscore = ΔEel + ΔEvdW + ΔGgb + ΔGsa

form. The DockPrep tool in Chimera was then used to add 
hydrogens and partial atomic charges from the AMBER 
ff14SB force field and optimize the receptor.

Preparation for molecular docking

The program UCSF DOCK 6 (Allen et al. 2015) was used 
for molecular docking. The following preprocessing was 
performed using Chimera and DOCK’s accessory programs: 
first, the molecular surface of the receptor without hydrogens 
was calculated using the ‘DMS’ tool available in Chimera. 
Next, the spheres which characterize the ligand binding site 
were generated using the accessory sphgen with a probe 
radius of 1.4 Å. Only spheres within 8 Å of the original 
ligand’s position were retained. A box was then created 
around the spheres maintaining a margin of 5 Å using the 
accessory program showbox. Finally, the scoring grid used 
to calculate the interaction between ligand and receptor was 
generated within the box with a resolution of 0.3 Å. The 
grid uses a 6–12 Lennard Jones potential for modeling the 
van der Waals interactions, with 6 and 12 being the attrac-
tive and repulsive exponents respectively, and a Coulombic 
potential for electrostatic interactions. DOCK’s default scor-
ing function called the grid-based score is the sum of these 
two terms.

Molecular docking

Docking was carried out in two steps. First, the molecules 
were docked to the receptor structure, allowing for ligand 
flexibility, and scored with DOCK’s grid-based scoring 
function using the generated grid. This initial docking was 
followed by a rescoring step using the more involved Hawk-
ins GB/SA scoring function. Starting with the pose from the 
first docking step, a 1000-step energy minimization was per-
formed to allow each ligand to reach a minima with respect 
to the new score. This involves the optimization of the ligand 
interactions by translating, rotating, and refinement of tor-
sion angles. The total Hawkins GB/SA score was then cal-
culated for each minimized ligand along with contributions 
of the individual terms including ΔGsa.

Descriptor calculation

The descriptors or the ‘nonpolar wrapping groups count’ for 
the complex of a particular ligand with the receptor were 
calculated from its final docking pose. It is defined for a 
backbone hydrogen bond (BHB), as the number of non-polar 
groups  (CHn, with n = 1, 2, 3) not attached to a polar atom in 
its surrounding desolvation region. This region is taken to 
be two spheres of radii 0.65 nm centered at the alpha-carbon 
of each residue involved in the BHB. This definition is simi-
lar to the one that appears in the original work (Fernández 

https://www.rdkit.org
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and Scheraga 2003). These were calculated in the molecu-
lar visualization program PyMol using the plugin ‘wrappy’ 
(Martin 2012; Warren 2002). To identify BHBs, the maxi-
mum allowed deviation from the optimal hydrogen bond-
ing angle was taken as 40° and the donor–acceptor distance 
cutoff as 0.35 nm. The receptor was found to have 126 BHBs 
and hence each complex is characterized by 126 descriptors. 
Finally, the descriptor values for the uncomplexed receptor 
were subtracted from the corresponding descriptor values 
for all complexes so that the data describes the additional 
wrapping due to the binding of ligands.

Machine learning

Regression with machine learning algorithms was used 
in the current work to test the hypothesis introduced ear-
lier, which posits a relationship between the wrapping of 
BHBs and the surface area term ΔGsa. The schematic of 
the machine learning workflow is illustrated in Fig. 2. The 
regression models were created and analyzed using the 
Python library scikit-learn (Pedregosa et al. 2011). The 
dataset consisting of 126 wrapping descriptors and the sur-
face area terms of 1165 complexes was first pre-processed. 
Features with very little or no variance (< 0.01) were elimi-
nated. These mostly represent BHBs farther from the bind-
ing pocket since the presence of the bound ligand does not 
influence their wrapping count. Furthermore, if two features 
had a correlation coefficient of 0.7 or more, the feature with 
the lower variance was dropped. A residue pair having two 
BHBs between them was considered a single feature since 
the desolvation region as described above, and hence the 
descriptor value, is the same for any hydrogen bond between 
that pair.

At this time, the dataset was split into a training set con-
sisting of 80% of the data and a test set with the remain-
ing data. Feature selection was carried out with the training 
set based on feature importance computed using a gradient 
boosting regressor. Regression was then carried out using 

random forest regressors (RFRs), gradient boosting regres-
sors (GBRs), support vector regressors (SVRs), and linear 
regression (LR). Hyperparameters for all machine learning 
algorithms were optimized by a grid search using the train-
ing data, with an eightfold cross-validation scheme. The per-
formance of the models on the test set was then evaluated 
by calculating the Pearson correlation coefficient (PCC) and 
root mean squared error (RMSE) between the predictions of 
ΔGsa and its values from docking. These models, trained on 
80% of the dataset, were also used to predict the surface area 
terms for the three known inhibitors.

Furthermore, a principal component analysis (PCA) 
of the entire dataset was carried out to visualize the high-
dimensional data and identify any underlying trends. The 
variance in the data explained by the first five principal 
components was also analyzed and loadings of the various 
features were compared to the feature importance values 
previously calculated.

MD simulation

Camostat, nafamostat, and their common metabolite 4-guan-
idinobenzoic acid (GBA) are known covalent inhibitors of 
TMPRSS2 (Fraser et al. 2022; Hempel et al. 2021; Hoff-
mann et al. 2021a). To understand the wrapping patterns for 
these inhibitors, MD simulations were carried out for each 
of their non-covalent complexes which precede the forma-
tion of the covalent bond, and also for the apo TMPRSS2. 
This was done using GROMACS 2022.3 with the OPLS-AA 
force field (Hess et al. 2008). The ligand topologies were 
generated using the web server LigParGen (Dodda et al. 
2017). The receptor from docking was used and the docked 
poses of the ligands were taken as the starting point for the 
complexes.

The receptor or its complex was first solvated with the 
TIP3P model of water in a dodecahedron box with peri-
odic boundary conditions, followed by the addition of an 
appropriate number of  Cl− ions to bring the net charge of 

Fig. 2  Schematic of the workflow for performing regression using machine learning algorithms
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the system to 0. This system was first subjected to energy 
minimization by the steepest descent algorithm until the 
maximum force was less than 1000 kJ/(mol. nm). Two 
equilibration steps were then carried out under an NVT 
followed by an NPT ensemble, for 100 ps each. Finally, 
the equilibrated system was subjected to a production run 
of 180 ns. All simulations had a step size of 2  fs and 
were carried out at 300 K and 1 bar maintained using 
a modified Berendsen thermostat and a Parrinello–Rah-
man barostat, respectively. Data were collected at 10 ps 
intervals.

To ensure the stability of the protein and the simulation 
as a whole, the root mean square deviation (RMSD) of 
the protein backbone with reference to the starting struc-
ture, along with its radius of gyration (Rg) and root mean 
square fluctuation (RMSF) were observed. The solvent 
accessible surface area (SASA) of the protein during the 
simulations was also plotted. The simulations were ana-
lyzed using data collected from the last 50 ns of each 
trajectory. To study the wrapping patterns of BHBs in 
the four cases, 1000 frames separated by 50 ps intervals 
were extracted from respective trajectories, and descrip-
tors were calculated as described above for each frame. 
This data were then analyzed to infer the stability of 
these BHBs. The arrangement of solvent surrounding a 
BHB was observed by calculating the radial distribution 
function (RDF) of the oxygen atom of water around its 
hydrogen bond acceptor to identify BHBs that undergo 
desolvation due to the inhibitors.

Results and discussion

Molecular docking

Virtual screening for TMPRSS2 inhibitors was carried 
out with 1174 small molecules having molecular weights 
between 100 g/mol and 1000 g/mol from the MEROPS pro-
tease inhibitor database and the structure of TMPRSS2 from 
the Protein Data Bank. The preparation of the ligands and 
the receptor for molecular docking with DOCK was carried 
out using Chimera and DOCK’s accessory programs. Dock-
ing was first carried out using the default grid-based score. 
The scores for this initial docking ranged from − 83.58 kcal/
mol to − 17.88 kcal/mol, with all negative values except 
for one. These poses were then subject to energy minimi-
zation by allowing translation, rotation, and refinement of 
torsion angles of the molecules, and finally rescored using 
the Hawkins GB/SA score. The negative scores for this step 
ranged from − 60.56 kcal/mol to − 1.73 kcal/mol. Nine 
compounds showed positive scores with few having unre-
alistically high values despite having negative grid-based 
scores, revealing unsuccessful energy minimization. This 
is likely caused by the difference between the two scoring 
functions. Since the GB/SA score considers more interac-
tions than the grid-based score, the two will have different 
energy surfaces and the minima of one may not coincide 
with that of the other. These compounds were excluded from 
the following analyses to avoid using unrealistic conforma-
tions. The complete list of scores for both docking steps is 
given in Online Resource 1.

Table 1  Docking result—docking scores for compounds with 10 best Hawkins GB/SA scores and three known inhibitors along with TMPRSS2 
residues with which they interact

PubChem
CID

Grid-based 
Score (kcal/
mol)

Hawkins GB/SA 
Score (kcal/mol)

Hydrophobic/van der Waals Interactions Electrostatic Interactions

102148004 − 83.58 − 60.06 Gln438, Thr459, Trp461 Val280, His296, Glu299, Lys342, Gly439, Ser441, 
Gly462, Ser463

5464201 − 75.38 − 59.42 Gln438, Trp461 Gly439. Ser441, Gly462
44430647 − 75.67 − 58.96 Thr459, Trp461 Val280, His296, Lys342, Ser441, Gly462
445400 − 69.61 − 57.61 Val280 Thr393, Ser436, Cys437, Gly439, Ser441, Gly462, 

Cys465
9939783 − 75.10 − 57.15 Lys342, Trp461 His296, Asp435, Ser436, Gly439, Ser441, Trp461
24749175 − 75.08 − 56.30 Gln438, Trp461 His296, Lys342, Asp435, Ser436, Gln438, Trp461, 

Gly464
52914324 − 72.10 − 55.83 Lys342, Leu419, Trp461 Lys342, Ser436, Gly439, Ser460, Ser463, Gly464
3849 − 64.94 − 55.54 Val280, Leu419, Thr459, Trp461 Gly439, Ser441, Gly462
137704649 − 63.44 − 55.23 Leu302 Val280, His296, Gly439, Ser441
146683669 − 64.91 − 55.13 Lys342, Trp461 Lys390, Asp435, Ser436, Gln438, Ser441, Gly464, 

Arg470
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The compounds with the ten best Hawkins GB/SA scores 
which are potential TMPRSS2 inhibitors are given in Table 1 
along with their PubChem CIDs, both docking scores, and 
the residues with which they interact via hydrogen bond-
ing, hydrophobic effect, or other interactions in their final 

pose. This was obtained using the Protein–Ligand Interac-
tion Profiler web tool (Adasme et al. 2021). Their molecular 
structures are provided in Online Resource 2. The cumula-
tive docking results with respect to the number of wrapping 
groups added (ΔGroups) for 16 backbone hydrogen bonds 

Table 2  Docking result—
number of wrapping groups 
for 16 BHBs in case of apo 
TMPRSS2, average number of 
groups added for 1165 docked 
ligands, and groups added for 
the docked inhibitors camostat, 
nafamostat, and GBA

a Double BHB where each residue acts as a donor and an acceptor

Backbone hydrogen bond Wrapping 
groups (Apo)

ΔGroups

Docking average Camostat Nafamostat GBA

Ala386_Gln438 11 6.51 ± 3.10 10 14 5
Trp461_Val473a 26 6.41 ± 2.90 5 5 5
Asp440_Cys437 12 4.21 ± 2.39 5 5 5
Gly282_Ser441 13 2.76 ± 1.79 5 4 3
Ser460_Val473 28 1.94 ± 1.50 0 0 0
Ala427_Gly472 29 1.84 ± 1.73 0 0 0
Cys297_Ala294 21 1.55 ± 2.07 1 0 0
Val280_Leu273 23 1.38 ± 1.81 4 4 0
Thr459_Gly443 13 0.88 ± 0.93 0 0 0
Gly442_Thr459 15 0.88 ± 0.93 0 0 0
Cys281_Leu273a 21 0.71 ± 1.02 2 3 0
Gly443_Asp440 7 0.41 ± 0.66 2 1 2
Lys342_Asp338 19 0.32 ± 0.80 0 0 0
Leu302_Glu299 22 0.27 ± 0.77 0 0 0
Val298_Ala295 29 0.13 ± 0.43 0 0 0
Gly391_Glu388 16 0.11 ± 0.51 0 0 0

Fig. 3  Docking Result—
Number of wrapping groups 
for 16 BHBs in case of apo 
TMPRSS2, average number 
groups added for 1165 docked 
ligands, and groups added for 
docked inhibitors camostat, 
nafamostat, and GBA
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(BHBs) with the largest values are given in Table 2 and with 
respect to the total number of wrapping groups in Fig. 3. The 
corresponding values in the absence of any docked ligands 
are also included. The naming convention used for the BHBs 
is donor residue_acceptor residue.

Figure 4 shows the important regions of the TMPRSS2 
binding pocket—the catalytic triad (magenta) Asp345, 
His296, and Ser441, the S1 site (orange) essential for sub-
strate binding which includes the residues Asp435 and 
Ser436, and Gly464, and the oxyanion hole formed by the 
Gly439 and Ser441 backbone NH groups depicted as thin 
lines. It also shows some nearby BHBs as red dotted lines 
between residues depicted as sticks of different colors. From 
Table 2, each of Ala386_Gln438 and Trp461_Val473 on 
average gain more than 6 wrapping groups as a result of 
docked ligands, the highest out of all BHBs. The former 
is located close to the oxyanion hole, while the latter lies 
across the binding pocket from it. An average of 4.21 and 
2.76 wrapping groups are added to the BHBs Asp440_
Cys437 adjacent to the oxyanion hole and Gly282_Ser441 
adjacent to the catalytic triad, respectively. Besides these, 
Ser460_Val473, Ala427_Gly472, Cys297_Ala294, and 

Val280_Leu273 gain an average of 1.94, 1.84, 1.55, and 1.38 
groups, respectively.

The descriptor values for most of these BHBs are strongly 
correlated with ΔGsa, as discussed in the following section, 
suggesting a relationship between wrapping and ΔGsa. 
From Fig. 3, the BHBs Ala386_Gln438, Asp440_Cys437, 
Gly282_Ser441, and Gly443_Asp440 have fewer wrap-
ping groups in the apo case compared to other BHBs. They 
involve the residues Cys437, Gln438, Asp440, and Ser441, 
which all lie close to one another Additionally, the first three 
of these BHBs on average gain a large number of wrapping 
groups from docking and hence, may constitute a desolva-
tion hotspot.

Along with the inhibitor database, docking of the 
known TMPRSS2 inhibitors camostat, nafamostat, and 
GBA was also carried out and their docking poses were 
found to be similar to those reported previously (Hempel 
et al. 2021; Hoffmann et al. 2021a). As shown in Fig. 5, 
the positively charged guanidinium head for all three lies 
in the S1 pocket making electrostatic interactions via salt 
bridge or hydrogen bonding. This involves two or more 
of the S1 residues shown in Fig. 4 and Trp461, and in the 

Fig. 4  Backbone hydrogen bonds surrounding the binding pocket 
of TMPRSS2 shown as dotted red lines between colored residues: 
Ala386_Gln438 (purple), Ala427_Gly472 (gray), Asp440_Cys437 
(forest green), Cys281_Leu273 and Val280_Leu273 (lime green), 
Cys297_Ala294 (salmon), Gly282_Ser441 (magenta), and Ser460_

Val473 and the two BHBs between Trp461 and Val473 (brown), 
where the colors are those of their respective carbon atoms. His296 
and Asp345 of the catalytic triad (magenta), Asp435, Ser436, and 
Gly464 of the S1 pocket (orange), and Gly439 of the oxyanion pocket 
(cyan) are depicted as lines
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case of camostat, also Pro471. The ester group in camostat 
and nafamostat, which is hydrolyzed to form the cova-
lent complex, interacts with the oxyanion hole. It accepts 
hydrogen bonds from both, Gly439 and Ser441, in the for-
mer’s case and from only Ser441 in the case of the latter. 
The carboxyl group in GBA forms hydrogen bonds with 
both. These interactions likely stabilize the inhibitors in 
the binding pocket and enable the formation of a covalent 
bond with TMPRSS2.

Camostat, nafamostat, and GBA contribute 10, 14, and 5 
wrapping groups to Ala386_Gln438, respectively, and each 
of them contributes 5 to both, Asp440_Cys437 and Trp461_
Val473, which is in accordance with the high average val-
ues for those BHBs in Table 2. The first two BHBs and the 
third one lie on either side of the phenyl ring attached to the 
guanidinium head and all three gain 5 wrapping groups from 
this ring in the case of each inhibitor. In the case of the two 
larger inhibitors, the remaining groups for Ala386_Gln438 
are from the other aromatic ring(s). Of the top four BHBs in 
Table 2, all three inhibitors have a lower number of wrap-
ping groups for Trp461_Val473 than the average value from 
docking. This is interesting since its wrapping groups count 
for the apo case is much greater compared to the other three, 
which suggests that it may be well wrapped even without a 
bound inhibitor.

Regression

Machine learning was used to investigate the extent to which 
data encoding the wrapping patterns of BHBs could esti-
mate ΔGsa. The dataset generated from docking poses was 
first subjected to feature elimination to reduce redundancies, 
which brings down the number of features to 14. Models 
to predict ΔGsa were then created using four algorithms 
with varying numbers of features. The ΔGsa term obtained 
from docking for all ligands ranges from − 8.66 kcal/mol to 
− 2.42 kcal/mol and is 10–30% of the total score for 1118 
out of the 1165 ligands. The hyperparameters were selected 
using cross-validation by searching a grid of possible values. 
The selected values are provided in Online Resource 3. The 
performance of the regression models was evaluated using 
the Pearson correlation coefficient (PCC) and root mean 
squared error (RMSE) for predictions from ten different 
random train-test splits and the average values are given in 
Online Resource 4 and Fig. 6.

The performance with respect to both metrics for all algo-
rithms improves with the increasing number of features until 
eight, beyond which additional features show little effect. 
For eight features, predictions from the RF, GBR, SVR, and 
LR had mean PCC values of 0.76, 0.76, 0.74, and 0.66, with 
corresponding mean RMSE values in kcal/mol of 0.76, 0.76, 

Fig. 5  Docking poses of camostat in gray (a), nafamostat in light pink 
(b), and GBA in yellow (c). All three poses are shown in (d) along 
with surface representation of TMPRSS2. The catalytic triad com-

prising His296, Asp345, and Ser441 is shown in magenta. Important 
residues Asp435, Ser436, and Gly464 of the S1 pocket are shown in 
orange. Gly439 is shown in teal
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0.78, and 0.87, respectively. The corresponding scatter plots 
between the predicted and actual ΔGsa for the ten train-test 
splits is provided in Online Resource 5. As seen from Fig. 6, 
in most cases RF, GBR, and SVR all perform comparably 
with each of their means lying within one standard devia-
tion of the mean for the other two. LR shows the poorest 
performance in all cases. The results indicate that ΔGsa is 
influenced by wrapping around only a few important BHBs.

The moderate performance of the models is to be 
expected considering the simplicity of the wrapping descrip-
tors. Additionally, there are no ligand descriptors in the fea-
ture set, and hence the model is not exposed to any explicit 
ligand properties, likely hampering its performance. The 
regression models are not meant for predictions anyway, 
but rather to verify the descriptor-target variable relation-
ship and help identify regions in the protein that could ben-
efit from additional wrapping groups. Nonetheless, it may 
be possible to build more robust models by including other 
descriptors along with the wrapping.

The mean importance calculated using a GBR of the 
various features along with their correlation to ΔGsa is 
shown in Fig. 7 and Online Resource 6. Features with the 
three highest importance values are Val280_Leu273 (0.32), 
Lys342_Asp338 (0.22), and Cys297_Ala294 (0.14), with 
corresponding correlations to ΔGsa of − 0.44, − 0.32, and 
− 0.33, respectively. Nearly all features with high impor-
tance are also strongly correlated with ΔGsa. suggesting the 
importance of wrapping for these BHBs. Despite its strong 
correlation, the feature importance of Ala386_Gln438 is rel-
atively low. This could be because it is highly correlated to 
Gly282_Ser441 and Asp440_Cys437 with correlation coef-
ficients of 0.59 and 0.50, respectively, reducing its influence 

on model performance. In this analysis, feature importance 
may be a misleading or incomplete indicator to interpret the 
physical effects of inhibitor binding on BHBs since features 
that play an important role in the binding mechanism may 
have been dropped during feature elimination.

Principal component analysis

To further ascertain the relationship between the wrapping 
of BHBs and ΔGsa a principal component analysis of the 
complete dataset with 14 features was carried out. Figure 8 
shows scatter plots of the data in terms of the first three 
principal components. The different shades of the scatter 
points represent different values of ΔGsa as shown on the 
colormap. Distinct trends in the plot signify an underly-
ing relationship between the features and the target vari-
able. Most points with smaller absolute values of ΔGsa are 
seen in a discernable cluster which is visible as the region 
enclosed by dashed ovals, while points with larger values 
are spread over a greater area. This suggests that the wrap-
ping for various BHBs is similar in complexes with smaller 
absolute ΔGsa and is notably different from the remaining 
complexes, which may be useful in identifying inhibitors 
that provide insufficient wrapping.

Figure 9a shows the explained variance ratios for the 
first 5 principal components (PCs). The first, first three, 
and first five PCs account for 0.47, 0.83, and 0.93 per-
cent of the explained variance, respectively. Hence, it may 
be possible to further simplify the regression models by 
replacing the features with PCs. Loadings, which are the 
coefficients in features space, for the first three PCs in 
(a) are shown in Fig. 9b. These data are also tabulated 

Fig. 6  Regression performance with different number of features for Random Forest (RF), Gradient Boosting Regressor (GBR), Support Vector 
Regressor (SVR), and Linear Regression (LR) using two metrics: a Pearson correlation coefficient and b root mean square error (RMSE)
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in Online Resource 7. The PC loading corresponding 
to a particular feature is a measure of the influence that 
that feature has on the PC. The features Val280_Leu273, 
Cys297_Ala294, Trp461_Val473, and Ala386_Gln438 
show the largest combined loading magnitudes for the 
first three PCs. These features also have the highest 
importance values in Fig. 7 and have correlation coeffi-
cients with absolute values greater than 0.2 with respect 
to ΔGsa suggesting that their wrapping is likely important 
for ΔGsa.

MD simulation

The effect of the inhibitors camostat, nafamostat, and GBA 
on the BHBs of TMPRSS2 was studied using molecular 
dynamics (MD). For this, 180 ns simulations of their com-
plexes, as well as uncomplexed TMPRSS2 were carried 
out. The root mean square deviation (RMSD) of a protein 
and radius of gyration (Rg), which quantifies its compact-
ness, are parameters typically used to monitor the stability 
and conformational changes during simulations. The time 

Fig. 7  Mean feature importance 
calculated using gradient boost-
ing regressor and correlation of 
features to ΔGsa
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evolution of RMSD of the TMPRSS2 backbone with respect 
to the structure at time zero is shown in Fig. 10a for the four 
simulations and the corresponding backbone Rg is shown in 
Fig. 10b. All RMSD curves flatten out within the first 20 ns 
of simulation, beyond which they undergo only small fluc-
tuations. The average RMSD and Rg values over the 180 ns 
are given in Table 3. The apo protein simulation has the 
highest average RMSD, followed by GBA, while camostat 
and nafamostat have lower and comparable RMSDs. The 
instantaneous fluctuations in RMSD are also larger in the 
apo and GBA simulations compared to the other two. The 
Rg plot follows a similar trend, with the average values and 
fluctuations for the apo protein and the GBA complex being 
larger than those for the other two complexes. Hence, the 
binding of these inhibitors appears to improve the stability 
of TMPRSS2.

The solvent accessible surface area (SASA) of TMPRSS2 
throughout the simulation and the root mean square fluctua-
tion (RMSF) of its backbone, calculated from the final 50 ns, 
are shown in Fig. 11. Proteins tend to minimize the exposure 
of their non-polar residues to water due to the hydrophobic 
effect (Schmidtke et al. 2011). Hence, the SASA is also an 
important quantity to assess structural stability in proteins. 
As would be expected, the apo protein, which does not have 
a bound inhibitor, shows a higher SASA compared to the 
complexes in Fig. 11a. This is also consistent with its larger 
Rg, since a less compact protein structure leaves a greater 
area exposed to water. The binding of inhibitors camostat 
and nafamostat results in greater desolvation of the pro-
tein, while the SASA for the GBA complex is higher due 

to its smaller size. The RMSF measures the movement of 
atoms about fixed positions. The backbone RMSF, shown in 
Fig. 11b, is highest for most residues in the case of the apo 
protein. However, the backbone atoms near residues 438, 
450, and 464 for the camostat complex show a larger fluc-
tuation, indicating greater movement in the presence of the 
inhibitor.

For the complexes, the guanidine group of the inhibitors 
interacted with Asp435, Ser436, and Gly464 in the S1 pocket 
via salt bridge or hydrogen bonding, which ensured that that 
end was held in place. This association appeared stronger for 
nafamostat than camostat and strongest for GBA. For the 
two larger drugs, the other end with the dimethyl amide or 
amidine moved more freely. Both of these inhibit TMPRSS2 
by covalently binding to it and this preceding complex is 
known to be metastable (Hempel et al. 2021), which may 
explain the movement. The ester group in these inhibitors 
and the carboxyl group in GBA interacted electrostatically 
with His296 and Ser441 of the catalytic triad.

The analysis of important BHBs in all four simula-
tions is based on the last 50 ns of each trajectory. The 
calculation of the average number of wrapping groups was 
performed using 1000 evenly spaced frames drawn from 
this portion of the simulation. The BHBs with the largest 
increase in wrapping due to the presence of inhibitors are 
reported in Table 4. Frames where the distance between 
a donor hydrogen and acceptor oxygen exceeds 0.35 nm 
were not considered in calculating the wrapping groups 
of that BHB. The number of frames out of 1000 used to 
calculate the average is given in parentheses. A large value 

Fig. 9  Results from PCA: a explained variance ratios for first five principal components; b Feature loadings of first three principal components
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represents a stable BHB, while a small value represents a 
weakly associated BHB that breaks and forms intermit-
tently or seldom forms. The corresponding average dis-
tance between donor hydrogens and acceptor oxygens dur-
ing the 50 ns is shown in Fig. 12 and Online Resource 8.

Similar to the results from docking, Gly282_Ser441, 
Ala386_Gln438, and Gly443_Asp440 show a large increase 
in the average number of wrapping groups in the presence of 
inhibitors, except for Gly443_Asp440 in the case of camo-
stat. This is assuming their values to be 0 in the apo case, 
since the apo TMPRSS2 simulation had no frames where 
the donor H-acceptor distance was within 0.35 nm. For the 
uncomplexed system, starting with the crystal structure the 
protein initially underwent some conformational changes 
and as a result, the three BHBs were either unable to per-
sist or became unstable, which is also reflected in their high 
average distance as seen in Fig. 12.

In comparison, Gly-282_Ser-441 was much more stable 
in the presence of inhibitors, considering the number of 

Fig. 10  a Root mean square 
deviation (RMSD) and b 
radius of gyration (Rg) of 
the TMPRSS2 backbone for 
simulations of apo protease, 
and its complex with camostat, 
nafamostat, and GBA

Table 3  Average root mean square deviation (RMSD) and radius of 
gyration (Rg) of TMPRSS2 backbone for four 180 ns MD simulations

Apo Camostat Nafamostat GBA

RMSD (nm) 0.22 ± 0.03 0.15 ± 0.02 0.17 ± 0.03 0.2 ± 0.02
Rg (nm) 1.69 ± 0.01 1.64 ± 0.01 1.64 ± 0.01 1.67 ± 0.01
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Fig. 11  a Protein solvent 
accessible surface area (SASA) 
and b backbone root mean 
square fluctuation (RMSF) for 
simulations of apo TMPRSS2, 
and its complex with camostat, 
nafamostat, and GBA

Table 4  Average number of wrapping groups for BHBs and number of MD frames used to calculate the average

Backbone hydrogen bond Apo Camostat Nafamostat GBA

Gly282_Ser441 – 15.03 ± 1.94 (36) 12.17 ± 1.59 (764) 14.69 ± 1.55 (52)
Ala386_Gln438 – 9.63 ± 0.97 (595) 15 ± 1.66 (971) 13.18 ± 1.06 (920)
Gly443_Asp440 – – 12.02 ± 1.19 (853) 10.81 ± 1.72 (698)
Asp440_Cys437 10.16 ± 0.85 (891) 12.4 ± 1.26 (908) 13.95 ± 1.1 (607) 17.33 ± 0.93 (928)
Cys297_Ala294 20.34 ± 1.56 (949) 26.66 ± 1.76 (287) 21.68 ± 1.81 (310) 20.36 ± 1.46 (176)
Val473_Trp461 22.88 ± 1.52 (1000) 26.48 ± 1.64 (999) 28.07 ± 1.21 (999) 28.81 ± 2.11 (992)
Trp461_Val473 22.92 ± 1.53 (815) 26.48 ± 1.64 (974) 28.05 ± 1.21 (972) 28.78 ± 2.11 (967)
Ser460_Val473 25.98 ± 1.84 (634) 28.44 ± 1.92 (869) 28.64 ± 1.66 (794) 30.54 ± 2.55 (151)
Gly391_Glu388 11.78 ± 1.06 (357) 14.19 ± 1.34 (610) 16.48 ± 1 (192) 15.35 ± 0.8 (697)
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frames in which it was formed, as well as bond distance. 
However, it seems to favor a smaller number of wrapping 
groups since its bond distance is shortest for nafamostat, 
which contributed an average of 12.2 groups, the few-
est among the three inhibitors. There was a considerable 
increase in the stability of Ala386_Gln438 and Gly443_
Asp440 also, but to a smaller extent in the case of camostat 
where the average number of wrapping groups is lower—
9.63 and 0, respectively—indicating insufficient wrapping. 
Compared to this, the average numbers for those two BHBs 
in the case of nafamostat are 15 and 12.02, and in the case 
of GBA are 13.18 and 10.81, respectively. All three BHBs 
have residues in the region from Cys437 to Gly443. Similar 
to the results from docking, BHBs in this region seem to 
show the largest increase in wrapping and also the largest 
change in bond distance.

Other BHBs with notable increases include Trp461_
Val473, Val473_ Trp461, Asp440_Cys437, Ser460_Val473, 
Cys297_Ala294, and Gly-391_Glu-388 which all gained on 
average more than three wrapping groups for at least one of 
the complexes. Of these, Trp461_Val473, Ser460_Val473 
(except in the case of GBA), and Gly-391_Glu-388 had a 
small decrease in the distance in the presence of the inhibi-
tors, while Val473_ Trp461 and Asp440_Cys437 were 
strongly associated even in the apo state, and the presence 
of inhibitors did not significantly affect them. However, 
Cys297_Ala294 appeared weaker as evidenced by both the 

decrease in the number of frames in which it was formed 
and the larger distance for complexes. This may be due to 
its proximity to the catalytic triad and the consequent pres-
ence of several simultaneous interactions, which may be 
more favorable than desolvation. For the two BHBs between 
Trp461 and Val473, the difference in the number of frames 
in which each of them was formed is much greater in the apo 
protein’s case. This again points toward the greater instabil-
ity of apo TMPRSS2 as compared to its complexes.

To observe the solvent environment of various BHBs in 
the four simulations, the radial distribution function (RDF) 
of water, which describes the density of solvent around a 
reference atom, was calculated. Figure 13 shows the RDF 
for the oxygen atom of water calculated around the hydrogen 
bond acceptors of the BHBs in Fig. 12. The biggest disparity 
in RDFs between apo TMPRSS2 and its complexes is seen 
for Gln438 (b), Asp440 (c), Cys437 (d), and Glu388 (h), all 
of which except Cys437 have a distinct first peak in the apo 
case that represents a well-formed first solvation shell.

For Gln438, nafamostat has the shortest first peak, fol-
lowed by camostat and GBA. The shortening of the first 
peak is a result of disruption of the solvation layer and its 
height could be considered an approximate measure of the 
extent of desolvation. For Asp440, nafamostat and GBA 
have comparable, moderate peaks and camostat has a tall 
peak, which follows from Table 4 since Gly443_Asp440 is 
never formed in the camostat simulation. This allows the 

Fig. 12  Average distance in nm 
between donor hydrogen and 
acceptor from the last 50 ns of 
the MD simulations
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formation of a solvation shell. Unlike the others, the RDF 
for Cys437 in the case of the two larger inhibitors shows 
the formation of a solvation shell due to inhibitor binding, 
while the bond distance remains roughly the same. This sug-
gests that water molecules provide a stable bridging effect to 
maintain the BHB. The shorter peak in the case of GBA can 
be explained by the higher number of wrapping groups for 
it in Table 4 leading to greater desolvation. The first peak is 
nearly absent for Glu388 in the case of nafamostat indicating 
significant desolvation, while camostat and GBA have short, 
comparable peaks.

In the RDF around Ser441, only nafamostat shows a 
relatively shorter first peak, whereas it is unchanged in the 
case of camostat and GBA. This agrees with the observa-
tion that the nafamostat complex has the shortest average 

distance for Gly-282_Ser-441. The absence of a first peak for 
Ala294 shows that Cys297_Ala294 is well wrapped even in 
apo TMPRSS2, which may explain its preference for fewer 
wrapping groups. The small first peak for camostat is likely 
due to larger fluctuations as seen from its standard deviation 
in Fig. 12 and a result of solvation shell formation during the 
periods of time when the BHB was broken. This is absent in 
others where the BHB remained at least weakly associated 
throughout the simulation. A well-defined, sharp solvation 
peak is absent in the Trp461 RDF for all cases, while the 
peak is unchanged for all cases in the RDF around Val473, 
which is consistent with the excellent stability of the two 
BHBs between these residues in all simulations.

Hence, residues Gln438, Asp440, Ser441, and Glu388 all 
show desolvation to at least some extent, which may have 

Fig. 13  Radial distribution function of oxygen atom of water (Ow) around backbone oxygen of eight BHB acceptor residues
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contributed to the stabilization of their BHBs. Addition-
ally, the first three of these lie in the chain from Cys437 to 
Gly443, which may be a desolvation hotspot. Judging from 
the RDFs, in general, nafamostat offers better wrapping than 
camostat, which could be one of the reasons for its higher 
effectiveness in blocking the entry of SARS-CoV-2 into host 
cells (Hoffmann et al. 2020a, b).

Conclusions

This study describes the utility of a novel and easy-to-cal-
culate descriptor based on the concept of hydrogen bond 
wrapping, which could be used to enhance our understand-
ing of protein–ligand interactions. The descriptor quantifies 
the extent of wrapping around the backbone hydrogen bonds 
(BHBs) of a protein or its complex and can be used to iden-
tify BHBs crucial to inhibitor binding, similar to a receptor-
based pharmacophore model. By modifying an inhibitor 
to alter the wrapping of these BHBs, one could potentially 
improve both, its binding affinity toward the target protein, 
as well as specificity.

Here, virtual screening was carried out for Transmem-
brane protease serine 2 (TMPRSS2) inhibitors using molec-
ular docking with a Generalized Born surface area (GBSA) 
scoring function and the number of wrapping groups added 
to the various BHBs in the resultant poses was analyzed. 
The BHBs Gly-282_Ser-441, Ala386_Gln438, and Asp440_
Cys437, which had a lower number of wrapping groups in 
the apo case compared to other BHBs, were seen to have 
some of the largest average increases in wrapping due to the 
docked inhibitors, signifying their importance in the binding 
process. It was also shown that a weak relationship exists 
between the descriptor and the surface area term ΔGsa of the 
GBSA score and that the concept could possibly be used to 
study the change in solvent-accessible surface area due to 
the binding of ligands.

A similar analysis using the descriptor was also carried 
out for the MD trajectories of the inhibitors camostat, nafa-
mostat, and 4-guanidinobenzoic acid (GBA) in complex 
with TMPRSS2. It was found that the BHBs Gly-282_Ser-
441, Ala386_Gln438, and Gly443_Asp440, which were not 
formed in the apo case, were relatively stable in most cases 
in the presence of the bound inhibitors and with adequate 
wrapping. Interestingly, the first two of these BHBs are the 
same that were identified as having a large increase in wrap-
ping from docking. In parallel with this increase in stabil-
ity, it was observed using the radial distribution function 
of water that the well-formed solvation layer around the 
hydrogen bond acceptors of these BHBs in the uncomplexed 
TMPRSS2 is perturbed due to the inhibitors. This shows 
that along with the guanidine group of the inhibitors which 
interacts electrostatically with the S1 pocket, the groups that 

provide wrapping to these BHBs lying close to the binding 
pocket also play a role in their binding.

The descriptor offers a promising method to study the 
phenomenon of hydrogen bond wrapping in proteins to gain 
insights into the binding mechanism of inhibitors and the 
rational design of new inhibitors. The encouraging results 
from the current study and the potential of the descriptor to 
be developed into a powerful tool for drug design warrant 
further investigation of its application.
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