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Abstract
This investigation examines the source of the disparity between experimental values of the light scattering second virial 
coefficient A

2
 (mL.mol/g2) for proteins and those predicted on the statistical mechanical basis of excluded volume. A much 

better theoretical description of published results for lysozyme is obtained by considering the experimental parameters to 
monitor the difference between the thermodynamic excluded volume term and its hydrodynamic counterpart. This involves 
a combination of parameters quantifying concentration dependence of the translational diffusion coefficient obtained from 
dynamic light scattering measurements. That finding is shown to account for observations of a strong correlation between 
A
2
M

2
 (mL/g), where M2 is the molar mass (molecular weight) of the macromolecule and the diffusion concentration parameter 

k
D
 (mL/g). On the grounds that k

D
 is regarded as a hydrodynamic parameter, the same status should be accorded the light 

scattering second virial coefficient rather than its current incorrect thermodynamic designation as B
2
 (mL.mol/g2), or just 

B, the osmotic second virial coefficient for protein self-interaction.

Keywords Dynamic light scattering · Hydrodynamics · Lysozyme · Monoclonal IgG antibodies · Second virial coefficient · 
Statistical mechanics · Static light scattering · Thermodynamic nonideality

Introduction

In accordance with standard textbook doctrine (Tanford 
1961; Cantor and Schimmel 1980; Van Holde 1985) the 
nonideality parameter A2 (mL.mol.g−2) determined from 

the linear concentration dependence of “classical” or “total 
intensity” light scattering intensity measurements for pro-
tein solutions has routinely been identified with B2, the 
osmotic second virial coefficient (mL mol g−2 ) for solute 
self-interaction. However, that designation was called into 
question (Deszczynski et al. 2006; Winzor et al. 2007) as 
the result of reports of negative values (George and Wil-
son 1994; Muschol and Rosenberger 1995; Rosenbaum 
and Zukoski 1996)—a finding incompatible with the inter-
pretation of thermodynamic nonideality on the statistical-
mechanical basis of excluded volume (McMillan and Mayer 
1945; Hill 1968). Experimental support for that contention 
has come from rigorous estimation of the osmotic second 
virial coefficient for protein self-interaction by sedimen-
tation equilibrium (Wills and Winzor 1992; Wills et al. 
1993), which has yielded positive values of B2 for lysozyme 
(Behlke and Ristau 1999), equine serum albumin (Desczyn-
ski et al. 2006) and ovalbumin (Winzor et al. 2007) under 
comparable conditions to those yielding negative A2 values 
from “static” light scattering measurements (Muschol and 
Rosenberger 1995; Guo et al. 1999; Winzor et al. 2007). 
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The thermodynamic second virial coefficient B2 when 
measured correctly from osmotic pressure or sedimenta-
tion equilibrium in the analytical ultracentrifuge (Hall et al 
1999) is useful in the description of the thermodynamic 
nonideality behaviour of macromolecular solutions and in 
the elucidation of macromolecular shape, conformation in 
solution and solvation (Rallison and Harding 1985; Harding 
1985; Winzor et al 2001; Serdyuk et al 2007 and references 
cited therein).

On the grounds that the quantitative expressions derived 
from a more rigorous thermodynamic treatment of the con-
centration dependence of static light scattering experiments 
still failed to generate the negative A2 versus c2 dependence 
(Winzor et al. 2007), we now explore the possibility that 
the linear concentration coefficient obtained from light scat-
tering intensity measurements should be reclassified as a 
hydrodynamic steady-state parameter (Winzor et al. 2007).

Theoretical considerations

Caution is required when defining the second virial coeffi-
cient for a macromolecular solution because of the different 
conditions under which the solute concentration can be var-
ied (Winzor and Wills 1994). Theory has traditionally been 
written for the condition of osmotic equilibrium, which is 
a convenient standard to which changes in thermodynamic 
quantities can be referred. Choice of this standard condi-
tion then allows the establishment of a formal equivalence 
between the theory of imperfect gases (van der Waals 1873) 
and nonideal macromolecular solutions (Hill 1959; Wills 
and Winzor 2005).

Macromolecular solutions: thermodynamic 
considerations

The inclusion of a single protein solute (species 2) in sol-
vent (species 1) at constant temperature gives rise to one 
of two situations. In classical osmometry, for example, the 
chemical potential of solvent ( �1 ) in the protein-containing 
phase (α) and solvent phase (β) remains equal to that of sol-
vent at atmospheric pressure; and hence complies with the 
condition of osmotic equilibrium discussed above. Because 
buffer components and additional small cosolutes are also in 
partition equilibrium between the two phases, they too can 
be regarded as part of the solvent, whereupon the solution 
becomes a single-solute system. A totally different situa-
tion arises in situations (as in light scattering measurements) 
where constant pressure P is the second constraint. Because 
the osmotic equilibrium condition is not met: the solvent 
chemical potential then becomes dependent upon the pro-
tein concentration. Consequently, separate definitions of the 

solute chemical potential ( �
2
 ) are required for the two situ-

ations (Hill 1959).
Under the constraints of constant temperature and solvent 

chemical potential the thermodynamic activity of the protein 
(z2) is related to its molar concentration ( C2 ) by the relation-
ship (Hill 1959; Wills et al. 2015)

where the solute thermodynamic activity  z2 is a molar quan-
tity in the sense that it equals the molar concentration C2 in 
the ideal limit of infinite dilution (a situation denoted by 
superscript o); and is therefore most appropriately expressed 
as the product of C2 and a dimensionless activity coefficient 
�2 . The osmotic pressure can be written in virial form as

where M2 is the molar mass of the solute (g.mol−1) and B2 is 
the second virial coefficient (mL.mol.g−2). Rewriting with 
the second virial coefficient B2 expressed in the dimensions 
of exclusion volume (mL.mol.−1) B22 = B2.M

2
2

 These and other terms are summarised in Table 1.
Using a purely thermodynamic argument, Hill (1959) has 

shown that the expression

 defines the molar activity coefficient. For a spherical solute 
with radius R2 his second virial coefficient can be expressed 
in terms of the potential-of-mean-force, u22 , between two 
molecules separated by centre-to-centre distance r via the 
equations (McMillan and Mayer 1945; Mayer 1950; Hill 
1968)

where kB is the Boltzmann constant; and where Avogadro’s 
number 

(

NA

)

 converts the virial coefficient from a molecu-
lar to a molar basis. The first integral in Eq. (4a) accounts 
for the excluded volume for two uncharged spheres (the 
hard-sphere contribution BHS

22
 ), whereas the second integral 

accommodates the additional contribution of the pertur-
bation of the chemical potential arising from electrostatic 
interaction 

(

BEL
22

)

 via the function u22(r) written in the form

(1)(�2)T ,�1
= (�o

2
)T ,�1

+ RT ln z2 = (�o
2
)T ,�1

+ RT ln�2 C2

(2a)
Π

RT
= C2 + B2.M

2
2
C2 +…

(2b)
Π

RT
= C2 + B22.C

2
2
+…

(3)ln �2 = 2B22.C2 +…

(4a)B22 = 2�NA

[

∫
2R2

0

r2 dr+∫
∞

2R2

f22(r)r
2dr

]

(4b)f22(r) = exp
[

−u22(r)∕(kBT)
]

− 1



345European Biophysics Journal (2023) 52:343–352 

1 3

for a protein bearing net charge Z2 (not to be confused with 
the activity z2). The factor of 1000 reflects calculation of the 
Debye–Hückel inverse screening length κ (in  cm−1) as 3.27 
× 107

√

IM  , where IM is the ionic strength recorded on the 
conventional molar scale (mol.L−1). Solution of Eq. (4) by 
approximating the Mayer function as

(5)
u22(r)

kBT
=

1000Z2
2
�2exp

[

−�
(

r − 2R2

)]

8�NAIM (1 + �R2)
2r

r ≥ 2R2

 leads to the expression (Wills and Winzor 2009)

(6)f22(r) = −u22(r)∕
(

kBT
)

+ [u22(r)∕
(

kBT
)

]2 + …

(7)

B22 =
16�NAR3

2
3

+
Z2
2
(

1 + 2�R2
)

4IM(1 + �R2)2

−
Z4
2
(

1000�3)

128I2M(1 + �R2)4
…

Table 1  Symbols and abbreviations used, and equations in which they appear

Symbol Meaning Units Equations

M, M2 molar mass of solute g.mol−1 11,12,15,19,20
A2 2nd light scattering virial coefficient mL.mol.g−2 19
B2 2nd thermodynamic virial coefficient mL.mol.g−2 2,19
B22 B2 expressed as an exclusion volume = B2M2

2 mL.mol−1 2,3,4,7,12
kd concentration dependence of translational diffusion coefficient mL.g−1 16,20
C2 molar concentration of solute mol.mL−1 2,3
c2 weight (mass) concentration of solute g.mL−1 20
m2 molal concentration of solute mol.g−1 9,10,13
�
1
, �

2
 solvent, solute chemical potential erg.mol−1 1

�◦

1
,�◦

2
 �

1
, �

2
 value at infinite dilution erg.mol−1 1

�, � protein containing phase, solvent containing phase –
z2 thermodynamic activity of solute (molar scale) mol.mL−1 1
a2 thermodynamic activity of solute (molal scale) mol.g−1 8
�
2
, y

2
dimensionless activity coefficient – 1,8,10

Π osmotic pressure dyn.cm−2

R gas constant 8.314 ×  107 erg  mol−1  K−1 1,6
T absolute temperature K 1,4,6
R centre-to-centre distance cm 4
u22 potential-of-mean-force between 2 molecules whose centres separated by r 4,6
kB Boltzmann constant 1.3807 ×  10–16  cm2.g.s−2  K−1 4
NA Avogadro’s number 6.0221 ×  1023  mol−1 4,5,7,15,22
Z2 net valency – 5
R2 spherical solute radius cm 4,5,7
κ Debye-Hückel inverse screening length cm−1 5,7
Im ionic strength (molar) mol.L−1 5,7
C22, C23 molal  2nd virial coefficient for protein–protein interaction, for protein-cosolute 

interaction
– 9.10

m2, m3 molal concentrations of solute, cosolute mol.g−1 9,10
v
2

partial specific volume of solute mL.g−1 15
�
1
, �

2
 density of solvent, solute g.mL−1 11,12

D, Do translational diffusion coefficient, and D value at infinite dilution cm2.s−1 17
ϕ volume fraction of solute – 14
�
T
, �

H
 volume fraction dependence thermodynamic and hydrodynamic coefficients – 14,16

HS hard-sphere contribution – 16
vs swollen (hydrated) specific volume of solute mL.g−1 16
�b Oseen coefficient – 15
�, �b viscosity of solution, solvent cm−1⋅g⋅s−1 17,18
[�] intrinsic viscosity of a macromolecule/polymer in solution mL.g−1 18
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which establishes that the osmotic second virial coefficient 
for macromolecule self-interaction can only assume posi-
tive values because of convergence of the series of charge-
dependent terms with alternating sign.

For solutions with temperature and pressure as fixed con-
straints, the thermodynamic activity of the macromolecule ( a2 ) 
is defined (Hill 1968) by the equation

in which a2 is a molal quantity and therefore most appropri-
ately expressed as the product of molal concentration m2 and 
a dimensionless activity coefficient y2 . Under these condi-
tions the counterparts of Eqs. (2) and (3) for the change 
in solvent chemical potential due to the addition of solvent 
become (Hill 1968; Wills et al 1993)

where C22 is the molal second virial coefficient for macro-
molecule self-interaction. Unlike its molar counterpart B22 , 
the molal second virial coefficient ( C22 ) is not generally 
amenable to statistical-mechanical interpretation. However, 
the assumption of solution incompressibility (an acceptable 
approximation for aqueous systems) allows the expression 
of a molal concentration in terms of its molar counterpart as

where M2 and v2 denote the molar mass and partial spe-
cific volume, respectively, of the protein, and where �1 is the 
solvent density. It then follows that the two second virial 
coefficients are related by the expression (Wills et al. 1993)

which allows conversion of the molal second virial coeffi-
cient C22 to its molar osmotic second virial counterpart B22.

The above consideration of nonideality under the con-
straints of fixed temperature and pressure does, of course, 
refer to a single-solute system—a protein dissolved in solvent 
(water). As noted in the early days of static light scattering 
measurements (Kirkwood and Goldberg 1950; Stockmayer 
1950) the monitoring of solute thermodynamic nonideality 
on the molal scale mandates the inclusion of additional virial 
coefficient terms for protein interaction with buffer compo-
nents and other small cosolutes, which cannot be regarded as 
part of the solvent. It therefore becomes necessary to distin-
guish between nonideality reflecting the second virial coeffi-
cient for protein self-interaction ( C22 ) and that emanating from 

(8)(�2)T ,P = (�o
2
)T ,P + RT ln a2 = RT ln

(

y2m2

)

(9)
(�1)T ,P − (�o

1
)T ,P

RT
= m2 + C22.m

2
2
+…

(10)ln y2 = 2C22.m2 +…

(11)m2 =
C2

�1
(

1 −M2.v2.C2

) ≈
C2

�1

(

1 +M2. v2 .C2 +…
)

(12)C22 =
(

B22 −M2.v2
)

�1

physical protein–cosolute interaction (designated for simplicity 
of presentation as C23 ). The previous expression for the activity 
coefficient [Eq. (3)] needs modification to the form

 to account for the physical interaction between protein and 
the cosolute present at molal concentration m3.

More than fifty years elapsed before these require-
ments resurfaced in an investigation (Winzor et al. 2007) 
designed to test whether nondeality arising from pro-
tein–cosolute interactions could account for the negative 
light scattering second virial coefficients obtained in the 
presence of high concentrations of uncharged cosolutes, 
such as polyethylene glycol (Vivarés and Bonneté 2002) 
and sucrose (Winzor et al. (2007), for which nonideality 
reflects only the hard-sphere excluded volume interactions. 
Interest in this possibility was triggered by the presence 
of the term–

(

C23∕�1
)2 in the expression for the light scat-

tering second virial coefficient (Kirkwood and Goldberg 
1950; Winzor et al. 2007). Although that endeavour did 
lead to a decrease in the magnitude of A2 , the effect was 
minor compared to the experimentally observed depend-
ence of A2 upon C3. Furthermore, those calculations 
neglected the contribution of a third virial coefficient 
term, C223∕�

2
2
 , which, it transpires, effectively counters that 

from
(

C23∕�1
)2 . C223 is a parameter with the dimensions of 

a third virial coefficient reflecting the potential-of-mean-
force interaction of a single cosolute molecule, which may 
be an electrolyte with a pair of protein molecules, and 
about which little is known, so it is effectively a fitting 
parameter (Deszczynski et al. 2006).

For present purposes we therefore proceed on the basis 
that the effects of thermodynamic nonideality in light scat-
tering measurements on buffered aqueous protein solutions 
can be described adequately by single-solute theory (the 
standard practice). The respective expressions for m2 and 
C22 continue to be given by Eqs. 11 and 12, but with ρ1 the 
density of the cosolute-supplemented solvent.

Because the thermodynamic excluded volume param-
eter can only assume positive values, we also examine the 
possibility that the negative values of A2 reported in the 
literature may include hydrodynamic contributions.

Macromolecular solutions: a hydrodynamic 
perspective

The first detailed consideration of the effect of hydrody-
namic interactions on Brownian motion involving the net 
flux of solute was provided by Batchelor (1976) in the con-
text of concentration-dependent diffusion in sedimenta-
tion velocity for solutions dilute enough that only pairwise 

(13)ln y2 = 2C22.m2 + C23.m3 + ...
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interactions between particles were significant. In that study 
a combination of statistical-mechanical and hydrodynamic 
approaches led to description of the concentration depend-
ence of the diffusion coefficient D for a rigid, uncharged 
spherical particle under such very dilute conditions as

in which � , the volume fraction occupied by the diffusing 
particle = c2.vs, the product of the weight-concentration 
c2 (g/ml) of the solute and its solvated specific volume 
(ml/g)�

s
= 4�N

A
R
3

2
∕
(

3M
2

)

 . �T and �H are coefficients rep-
resenting the thermodynamic and hydrodynamic nonideality 
coefficients (the latter equivalent to Ks in Harding and John-
son (1985a, b)). D

o
=
(

k
B
T
)

∕(6��
1
R
2
) is the “ideal” trans-

lational diffusion coefficient obtained experimentally in the 
limit of zero solute concentration. From Eq. (7) it is evident 
that the factor �T = 8 in Eq. (14) corresponds to 2BHS

22
∕M2 , 

the volume from which the centres of two uncharged solute 
molecules are mutually excluded; and is therefore a ther-
modynamic factor. Hydrodynamic factors are incorporated 
into the second term, �H = 6.55 of Eq. (14), which decreases 
the effective magnitude of the excluded volume. It is worth 
noting that for more concentrated solutions the pairwise 
approximation ceases to become valid: from multi-particle 
theory Brady and Durlofsky (1988) obtained a value of 5 for 
hard spheres, also from a solvent frame of reference (Hard-
ing and Johnson 1985a, b).

On the grounds that the osmotic second virial coeffi-
cient equates with half of the thermodynamic contribution 
to excluded volume, the same situation also applies to its 
hydrodynamic counterpart. The excluded volume contribu-
tion to an experimentally measured concentration coefficient 
kD (mL/g) in Eq. (14) thus becomes [ 

(

�T − �H
)

vs] /2 to be 
consistent with the description of �T as 2BHS

22
∕M2.

Most of the subsequent attention has been directed 
towards the determination of D from dynamic light scat-
tering studies, for which the same expression [Eq. (14)] 
has also been obtained for an uncharged spherical parti-
cle (Felderhof (1978; Wills 1979; Phillies and Wills 1981; 
Cichocki and Felderhof 1988). Petsev and Denkov (1992) 
have shown that the presence of net charge on those hard 
spheres increases the magnitude of the thermodynamic term 
in accordance with Eqs. (4a,4b) and (5). The corresponding 
relationship for the hydrodynamic term is dominated by the 
Oseen contribution)

(

�ovs
)

 

(14)
D =

(

kBT
)

6��1R2
[1 + (8� − 6.55�)]

= Do
[

1 +
(

λT − �H
)

�
]

= Do
(

1 + kD.c2
)

(15)�
o
v
s
=

2�N
A
R
2

M
2

[

∫
2R

2

0

rdr + ∫
∞

2R
2

f
22
rdr

]

which establishes that the Oseen hard-sphere contribution to 
�H is 6: the remainder (0.55) comes from two other contribu-
tions that account for short-range hydrodynamic interactions 
(Felderhof 1978; Petsev et al. 1992).

The coefficient describing the concentration depend-
ence of the translational diffusion coefficient, kD
(mL/g) = (�T − �H)vs∕2 , for charged hard spheres (HS) has 
therefore been considered to be given by the expression

with f22(r) defined by Eqs. (4b) and (5). Although the two 
integrals in Eq. (16) are usually evaluated by expanding 
the exponential in f22(r) as a power series in r, the value 
obtained for the electrostatic contribution to the excluded 
volume ( �Tvs ) is an overestimate (Wills and Winzor 2009); 
and a similar situation presumably applies to the correspond-
ing contribution to the hydrodynamic term �Ovs in Eq. (15). 
We have therefore used the trapezoidal integration procedure 
for estimates of (�T − �H)vs in considerations of experimen-
tal systems

In dynamic light scattering studies (�HS
T

− �HS
H

 ) has often 
been taken as 1.45 for dilute solutions of rigid spherical par-
ticles in dominant Brownian motion, the value deduced by 
Batchelor (1976) for sedimentation velocity and traditional 
diffusion measurements, where particle flux is effected by 
a concentration gradient. It is worth pointing out that this 
value however only applies to very dilute conditions where 
the pairwise approximation is valid (Brady and Durlofsky 
1988; Winzor et al 2021). Use of this value in dynamic 
light scattering studies has also been criticized by Phillies 
(1987) on the grounds that light scattering spectroscopy is 
merely sensitive to particle position; and that the value of 
(�HS

T
− �HS

H
 ) should therefore be decreased to − 0.9.

Analysis of experimental results

Lysozyme represents a good starting point for analysis, 
due to its low degree of asymmetry (Blake et al 1965) and 
approximate uniform surface charge distribution (Fig. 1). 
The ionic strength dependence of the light scattering second 
virial coefficient for lysozyme in acetate and acetate–chlo-
ride buffers (pH 4.7) is presented in Fig. 2a, where the exper-
imental points (∙) have been calculated from the values of A2 
reported in Table 2 of Muschol and Rosenberger (1995) and 
a molecular mass of 14,600 Da. Attempts to describe these 
data in thermodynamic terms, 2A2M2 = �Tvs − v2 , with 

(16)

kD =

(

�HST − �HSH
)

vs
2

+
2�NA
M2

∞

∫
2R2

f22(r)r2dr

+
2�NAR2

M2

∞

∫
2R2

f22(r)rdr
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respective values of 1.9 nm and 11 for R2 and Z2 (Muschol 
and Rosenberger 1995) to solve the integrals in Eq. (4a,b) 
lead to their consistent overestimation (− − −).

This finding clearly corroborates earlier assertions that 
the light scattering coefficient should not be regarded as 
the osmotic second virial coefficient (Deszczynski et al 
2006; Winzor et al. 2007; Wills et al. 2015). Much better 
agreement between experiment and prediction is achieved 
(_______) by adopting the viewpoint that 2A2M2 monitors 
[(�T − �H)vs − v2] with the additional hydrodynamic term in 
�H (see also Harding and Johnson 1985a, b), an observation 
that favours consideration of the light scattering coefficient 
as a hydrodynamic rather than an equilibrium parameter. 
From Eq. (16) it is evident that the concentration depend-
ence of A2M2 should then parallel that for the diffusion coef-
ficient, which also monitors [ (�T − �H)vs∕2] − v2 . The small 
extra term v2 comes from the Gibbs–Duhem relation (Hard-
ing & Johnson 1985a).

The extent of that correlation is shown in Fig. 2b, where 
the values of kD have also been calculated from Table 2 of 
Muschol and Rosenberger (1995) after correcting for their 
use of the unsolvated mole fraction ( v2) for vs . Although 
those results conform reasonably well with the concept of 
a linear relationship between kD and A2M2 with a slope of 
unity, the observation of a finite (negative) ordinate intercept 
precludes their consideration as the same parameter.

Inasmuch as Eq.  (16) implies constancy of viscosity 
(taken as that of buffer, �b ), no account has been taken of 
the effect of solution viscosity on the magnitude of the meas-
ured diffusion coefficient at finite protein concentrations. 
This deficiency is remedied by writing the concentration 
dependence of the diffusion coefficient as (Scott et al. 2014)

where η denotes the viscosity of a protein solution with 
concentration c2 for which D was measured, and Do that 
of buffer (the solution viscosity in the limit of zero solute 
concentration to which Do refers). Allowance for the fact 
that the relative viscosity is related to the intrinsic viscosity 
[�] of a spherical protein species by the expression (Tanford 
1961; Harding 1997)

 introduces an additional decrease in the predicted value of 
kD by 2.5 vS . An ordinate intercept of − 2.5 vs and a slope of 
unity is thus the predicted dependence of kD upon A2M2 (— 
in Fig. 2b). This is close to the intercept value of ~ − 3.1 vs. 
Exact agreement is made if allowance is made for the strong 
dependence of the Einstein-Simha viscosity shape factor ν 

(17)D = Do

1 + kD.c2

�∕�b

(18)�∕�b = 1 + [�].c2+… ≈ 1 + 2.5vsc2

Fig. 1  Electrostatic map calculated using the Poisson–Boltzmann 
equation of hen egg white lysozyme (PDB: 1AKI) at pH 7.0. It can be 
clearly seen that there is an even distribution of charge across the sur-
face (positive: blue; negative: red). Hydrophobic patches are shown 
in grey: the only patch visible was c.a. 5 angstroms in diameter seen 
in the bottom right of the molecule, and is unlikely to contribute to 
aggregation due to the large electrostatic shadow cast by the other 
residues in the molecule. No other patches were visible on the mol-
ecule (data not shown) (color figure online)

Fig. 2  Analysis of static light scattering data for lysozyme solutions 
at pH 4.7 (from data of Muschol and Rosenberger 1995). a Experi-
mental results (∙) for the dependence of the second virial coefficient 
A
2
M

2
 upon ionic strength, together with theoretical dependence pre-

dicted either on the basis of its consideration as the equivalent of the 
osmotic second virial coefficient for protein self-interaction, �

T
v
s
∕2 

(− − −) , or the combination of that parameter and its hydrody-
namic counterpart (—), as in Eq. (16) for the diffusion concentration 
dependence coefficient, 

(

�
T
− �

H

)

v
s
∕2 . b Demonstration of the cor-

relation between k
D
 and A

2
M

2
 . [Data for �

T
 and �

H
 calculated from 

Table 2 of Muschol and Rosenberger (1995)]
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on shape (ν = 2.5 for spheres and > 2.5 for other shapes), 
and can be determined exactly from triaxial crystallographic 
dimensions (Harding 1982, 1997; Harding et al 1979, 1981, 
1982, 1983, 2005). From its crystallographic dimensions 
(Blake et al 1965) lysozyme approximates a prolate ellipsoid 
of axial ratio ~ 2.1. Using the program ELLIPS1 (Harding 
et al 2005; Garcia de la Torre & Harding 2013) this cor-
responds to a value of ν = 3.1. By contrast the exclusion 
volume term A2M2 is relatively insensitive to such a shape 
change (Rallison & Harding 1985; Harding et al 1999). 
The degree of conformity between experiment and predic-
tion is considered excellent for the reported data even with 
no indication of experimental uncertainty inherent in the 
measurements.

Similar linear plots for the dependence of kD upon A2M2 
have been reported for five monoclonal antibodies in his-
tidine–chloride buffers (pH 6.0) with low and high ionic 
strengths (Lehermayr et al. 2011), and also for a single 
monoclonal antibody over a range of pH and ionic strengths 
(Roberts et al. 2014). Data from the former study are shown 
in Fig. 3a, and those at pH 5.0 and pH 5.75 from the latter 
investigation in Fig. 3b. A molar mass M2 of 145 kDa and a 
Stokes radius R2 of 5.2 nm (Roberts et al. 2014) have been 
used to calculate the predicted ordinate intercepts. As in 
Fig. 2b, the experimental results conform reasonably well 
with a slope of unity (— in Fig. 3a, b), although the inter-
cepts are ~ 7 mL/g, considerably differ from the predicted 
− 2.5 vS for hard spheres. However, again if we allow for the 

greater sensitivity to shape of the viscosity increment ν com-
pared with the exclusion volume: the value for the Einstein-
Simha viscosity increment ν for an IgG antibody of  molar 
mass ~ 150,000 g/mol is ~ 4.3 (Longman et al 2005). The 
time averaged hydration δ for antibodies is ~ 0.6 g water/g 
protein (Lu et al 2006) so vS = ( v2+ δ/ρo) ~ 1.35 mL/g, where 
ρo is the density of the aqueous solvent (~ 1 g/L). So the 
predicted value for the intercept = − ν.vS is ~ 6–7 mL/g and 
appears to be consistent with Fig. 3a and b, and the experi-
mentally measured values for the intrinsic viscosity (Kilar 
et al. 1985; Longman et al 2005).

Concluding remarks

The ionic strength dependence of A2M2 for lysozyme (pH 
4.7) shown in Fig. 2a has again challenged the designation 
of this light scattering coefficient as the osmotic second 
virial coefficient, either in its molar form or its molal form 
C22.M2 = �Tvs∕2 − v2 , which is unequivocally a thermody-
namic parameter. Further support for the need to consider 
the Rayleigh ratio R� obtained from “static” light scattering 
intensity as a steady-state rather than an equilibrium meas-
urement comes from Figs. 2b, 3a b, which provide direct 
experimental evidence of a correlation between A2M2 and 
the corresponding parameter, kD , for concentration depend-
ence of the translational diffusion coefficient. This reflects 
the difference between the consequences of excluded vol-
ume and hydrodynamic intermolecular interactions. In other 
words, evidence is mounting for identification of the light 
scattering second virial coefficient as ( �T − �H)vs∕2 rather 
than �Tvs∕2 , and hence for cessation of its consideration as 
a thermodynamic parameter.

By demonstrating that the light scattering second virial 
coefficient A2M2 equates with the excluded volume contri-
bution to kD , the coefficient describing the concentraton 
dependence of diffusion coefficients obtained by dynamic 
light scattering, this investigation has substantiated our 
earlier conclusion (Deszczynski et al. 2006; Winzor et al. 
2007) that A2 should not be designated as the osmotic sec-
ond virial coefficient for protein self-interaction, B

22
∕M2

2
 

– a parameter with thermodynamic status (McMillan and 
Mayer 1945). A subsequent challenge to that conclusion 
(Blanco et al. 2011) perhaps reflected an entrenched his-
torical practice whereby the nonideality parameter emanat-
ing from scattering spectroscopy measurements (visible 
light, X-rays, neutrons) is automatically described as the 
osmotic second virial coefficient. Indeed, the possibil-
ity that negative values of A2 might include some conse-
quences of hydrodynamic interactions had already been 
suggested (Neal et al. 1999). That suggestion appears to 
be further supported by the demonstration that A2M2 moni-
tors ( �T − �H ), the difference between thermodynamic and 

Fig. 3  Further evidence for correlation between the diffusion concen-
tration dependence coefficient k

D
 and the light scattering second virial 

coefficient A
2
M

2
 for monoclonal IgG antibodies. a Combined results 

for five monoclonal IgG antibodies (pH 6.0) at high and low ionic 
strengths. [Data taken from Lehermayr et al (2011)] b Corresponding 
dependence for a single monoclonal antibody at pH 5.0 and pH 5.75 
and a range of ionic strengths. [Data from Roberts et al. (2014)]
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hydrodynamic excluded volume contributions, respec-
tively; and thereby appears to invalidate the implication 
inherent in the light scattering literature that A2 is the 
thermodynamic parameter B2 (= B22/M 2) in mL.mol/g2. 
Specifically

A second problem addressed in this investigation has 
been the failure of the dependence of kD upon A2M2 to 
pass through the origin despite the 1:1 correlation. That 
dilemma has been overcome by incorporating the addi-
tional effect of solution viscosity on D–c dependence, a 
factor neglected by Batchelor (1976) and Felderhof (1978) 
in the rationalization of nonideality on the statistical-
mechanical basis of excluded volume.

Finally, some consideration needs to be given to the 
consequences of the current reclassification of A2 as a non-
thermodynamic parameter on recent procedures for the 
quantitative characterization of nonideality in static light 
scattering measurements (Minton 2007; Fernàndez and 
Minton 2009). From the theoretical expression that forms 
the basis of the analysis for a single uncharged solute,

it is evident that Rayleigh scattering ratio R� is being 
accorded full thermodynamic status: 8vs is �T  for an 
uncharged sphere in the above considerations. Incorporation 
of the increased excluded volume for a charged species, �EL

T
, 

is accommodated (Minton and Edelhoch 1982) by increasing 
the effective size of the hard sphere by expressing Eq. (7) as

The method is empirical in the sense that a value for 
the solvated specific volume is obtained as a curve-fiting 
parameter, whereupon the contributions of the hydrody-
namic terms �HS

H
, �EL

H
 are also incorporated. It therefore 

remains valid as an empirical procedure despite being 
based on thermodynamic expressions that do not apply to 
static light scattering measurements. There is also poten-
tial for error in the analysis arising from the other curve-
fitting parameter, which has been taken as M2 in Eq. (19) 
but which incorporates a protein–cosolute virial coefficient 
term B23C3 because of the need to regard buffer species as 
additional non-scattering cosolutes (Kirkwood and Gold-
berg 1950; Winzor et al. 2007; Blanco et al. 2011; Wills 
and Winzor 2017).

The combination of empiricism and the non-equilib-
rium nature of A2 clearly detracts from “static” light scat-
tering as an alternative to techniques such as osmometry 

(19)A2M2 = B2M2 − v2 − �Hvs∕2

(20)
R�

K
=

M
2
c
2

1 + c
2
d ln y

2
∕dc

2

=
M

2
c
2

1 + 8vsc2

(21)B22 =
16�NA(R

HS
eff
)3

3

and sedimentation equilibrium, where conformity with the 
constraints of constant temperature and solvent chemical 
potential fully justify the interpretation of experimental data 
in terms of thermodynamic expressions for single-solute 
systems. This can also have a bearing on the analysis of 
reversible self-association processes. With sedimentation 
equilibrium (and osmotic pressure the effects of reversible 
self-association are nonetheless difficult to extract from ther-
modynamic nonideality effects as they are both dependent 
on concentration (see Scott and Winzor 2009 and Harding 
and Rowe 2010) and sometimes these effects can cancel out 
to lead to “pseudo-ideal” conditions. Where structural infor-
mation about the monomer species is available, for globular 
based structures the best procedure is to calculate B2 or B22 
from the tri-axial shape of the molecule (and the net charge 
and ionic strength) using a routine COVOL, downloadable 
from https:// www. notti ngham. ac. uk/ ncmh/ (Harding et al 
1998, 1999; Harding 2013)—or for asymmetric shapes such 
as immunoglobulins using SOLPRO (Garcia de la Torre 
et al. 1999). With light scattering there may be an extra layer 
of difficulty with having the added complication of hydro-
dynamic as well as thermodynamic nonideality to deal with.
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