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Abstract
This study establishes the existence of substantial agreement between published results from traditional boundary spreading 
measurements (including synthetic boundary measurements in the analytical ultracenrifuge) on two globular proteins (bovine 
serum albumin, ovalbumin) and the concentration dependence of diffusion coefficient predicted for experiments conducted 
under the operative thermodynamic constraints of constant temperature and solvent chemical potential. Although slight nega-
tive concentration dependence of the translational diffusion coefficient is the experimentally observed as well as theoretically 
predicted, the extent of the concentration dependence is within the limits of experimental uncertainty inherent in diffusion 
coefficient measurement. Attention is then directed toward the ionic strength dependence of the concentration dependence 
coefficient ( k

D
 ) describing diffusion coefficients obtained by dynamic light scattering, where, in principle, the operative 

thermodynamic constraints of constant temperature and pressure preclude consideration of results in terms of single-solute 
theory. Nevertheless, good agreement between predicted and published experimental ionic strength dependencies of k

D
 for 

lysozyme and an immunoglobulin is observed by a minor adaptation of the theoretical treatment to accommodate the fact 
that thermodynamic activity is monitored on the molal concentration scale because of the constraint of constant pressure 
that pertains in dynamic light scattering experiments.

Keywords Concentration dependence · Diffusion coefficient · Dynamic light scattering

Introduction

The use of dynamic light scattering to determine the concen-
tration dependence of the translational diffusion coefficient 
(D) for globular proteins and macromolecular assemblies 
(Harding and Johnson 1985a,b; Petsev and Denkov 1992; 
Eberstein et al. 1994; Arzenšek et al. 2012) has become 
standard practice because of its relative ease of use com-
pared with the traditional boundary spreading procedures for 
the measurement of D (Cecil and Ogston 1948; Longsworth 
1954; Baldwin et al. 1955; Gosting 1956; Creeth 1958). An 
outcome of this switch in methodology has been a changed 
perception of the extent of that concentration dependence 
(see, e.g., Harding and Johnson 1985a,b). Only slight nega-
tive concentration dependence of diffusion coefficients had 
been observed for globular proteins by the traditional pro-
cedure of monitoring the time-dependent spreading of an 
initially sharp boundary between solution and diffusate with 
which it is in dialysis equilibrium (Baldwin et al. 1955; Gost-
ing 1956; Creeth 1952, 1958; Creeth et al. 1958). Indeed, the 
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statistical uncertainty in the estimate of that concentration 
dependence coefficient exceeded its magnitude. On the other 
hand, unequivocal evidence for positive as well as negative 
concentration dependence of the translational diffusion coef-
ficient has emanated from some dynamic light scattering 
measurements on globular protein solutions and globular 
macromolecular assemblies such as plant viruses (Harding 
and Johnson 1985a,b; Petsev and Denkov 1992; Eberstein 
et al. 1994; Muschol and Rosenberger 1995; Arzenšek et al. 
2012; Roberts et al. 2014). This apparent difference in the 
concentration dependence behavior of D between the two 
approaches has gained increasing importance with the grow-
ing interest of synthetic boundary methods in sedimenta-
tion velocity analytical ultracentrifugation [see, for example, 
Wright et al. (2018) Schneider and Cölfen (2018), Perevy-
azko et al. 2021)].

This investigation extends a previous report (Scott et al. 
2014) by incorporating the effects of protein net charge to 
improve the theoretical expression for D–c dependence 
in traditional diffusion experiments and thereby to justify 
further the earlier conclusion that the predicted slightly 
negative concentration dependence of D observed therein 
is encompassed by the extent of experimental scatter in 
diffusion coefficients obtained under the thermodynamic 
constraints of constant temperature and solvent chemical 
potential. We also establish that a slight modification of the 
quantitative expression for the concentration dependence 
of D from traditional diffusion coefficient measurements 
describes adequately the reported ionic strength depend-
ence of kD obtained by dynamic light scattering for lysozyme 
(Eberstein et al. 1994) and a monoclonal antibody (Arzenšek 
et al. 2012).

Theoretical considerations

In techniques such as osmometry, sedimentation equilibrium 
and size exclusion chromatography, the chemical potential 
of the protein (species 2) is monitored under the thermody-
namic constraints of constant temperature and constant sol-
vent chemical potential (Hill 1959; Wills et al. 1993, 2015). 
On the grounds that small partitioning species such as buffer 
components and supporting electrolytes can be regarded as 
part of the solvent (species 1), a buffered protein solution 
essentially becomes a single-solute system for which the 
solute chemical potential, (�2)T ,�1

 , is described in terms of its 
standard state chemical potential, (�0

2
)
T ,�1

, by the relationship

where z2 , the molar thermodynamic activity of solute, is log-
ically written as the product of its weight concentration c2 (g/

(1)
(�2)T ,�1

− (�0
2
)
T ,�1

RT
= ln z2 = ln �2c2∕M2

mL) divided by molar mass M2 , and a dimensionless activ-
ity coefficient �2 to account for thermodynamic nonideality.

Because the left-hand side of Eq. (1) is also Π/(RT), the 
ratio of osmotic pressure Π to the product of the universal 
gas constant and absolute temperature, Eq. (1) is frequently 
written as the following virial expansion in c2

where the second form of the expression accommodates the 
fact that the osmotic second virial coefficient B22 , which 
has the dimensions of an excluded volume (mL  mol−1), is 
defined experimentally as  B2 = B22∕M

2
2
 with dimensions 

mL mol g.−2. By differentiating Eq. (2) with respect to c2 , it 
follows that (correct to first order in concentration)

where the osmotic second virial coefficient is related to ther-
modynamic activity coefficient [Eq. (1)] by the relationship 
(Hill. 1959; Wills et al. 1993)

Inasmuch as a negative gradient in solute chemical poten-
tial, −(��2∕�c2)T ,�1

 , is the driving force of diffusion in tradi-
tional experiments involving a U-tube assembly to monitor 
the spreading of an initially sharp boundary between dia-
lyzed protein solution and diffusate; the above single-solute 
expressions also describe the consequences of thermody-
namic nonideality.

As noted by McMillan and Mayer (1945), the osmotic 
second virial coefficient can be related to molecular proper-
ties of the solute by the interpretation of thermodynamic 
nonideality on the statistical–mechanical basis of excluded 
volume. For example, the thermodynamic nonideality gener-
ated by a rigid uncharged sphere with radius a2 is described 
by the relationship

where Avogadro’s number ( NA ) is included to convert the 
excluded volume from a molecular to a molar basis (see 
p2435 of Harding et al 1999). In other words, the nonideality 
takes into account the volume from which the centers of two 
solute molecules are mutually excluded.

(2)

Π

RT
=

c2

M2

+ B22

(
c2

M2

)2

+⋯ =
1

M2

(
c2 + B2M2c

2
2
+⋯

)
,

(3)
d[Π∕(RT)]

dc2

=
1 + 2(B22∕M2)c2

M2

=
1 + 2B2M2c2

M2

(4)ln�2 = 2
(
B22∕M2

)
c2 = 2B2M2c2

(5)ln �2 = 2B2M2c2 =
32�NAa

3
2

3M2

c2 +⋯
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Concentration dependence of diffusion for hard 
uncharged spheres

The first detailed consideration of the effect of hydrody-
namic interactions on Brownian diffusion involving the net 
flux of solute was provided by Batchelor (1976), who devel-
oped an alternative derivation of the Einstein expression for 
the concentration-independent translational diffusion of 
molecules,

where the diffusion coefficient is described in terms of the 
Boltzman constant kB, the hydrodynamic (Stokes) radius a2 
and the dynamic solvent viscosity η, whereas this relation-
ship for ideal diffusion had been derived initially by Einstein 
on the purely thermodynamic basis of osmotic pressure, 
Batchelor employed a mixture of statistical mechanical and 
hydrodynamic considerations to achieve the same result. 
Adoption of that approach led to description of the con-
centration dependence of D for a rigid, uncharged spherical 
particles (hard sphere, HS) relative to a solvent frame of 
reference as

in which ϕ, the volume fraction occupied by the diffus-
ing particles, is the product of concentration c2 of solute 
and its solvated specific volume, v

s
= 4�NAa

3
2
∕3M2. From 

Eq. (5) the factor 8ϕ in Eq. (7) is accounting for the thermo-
dynamic nonideality. On the other hand, the −6.55 ϕ term 
contains excluded volume contributions from hydrodynamic 
sources and is calculated based on pairwise only interac-
tions between the particles, i.e., for very dilute solutions. 
Motion of the particles alone is responsible for − ϕ, and the 
viscous dragging of fluid surrounding each solvated parti-
cle contributes − 4.5ϕ. A further contribution of − 1.55ϕ 
reflects the mutual effect of particles on each other, and an 
additional + 0.5ϕ arises from Faxen’s relation that takes into 
account the non-zero mean value of the second derivative of 
the fluid viscosity in the environment of any sphere effected 
by the presence of all others.

An alternative (and more popular) breakdown of contri-
butions to the concentration dependence of D was provided 
by Felderhof (1978), whose expression for Eq. (7) can be 
written in the form

which separates the thermodynamic contribution �HS
T

 from 
its hydrodynamic counterpart �HS

H
. As above, Do is the 

(6)D =
kBT

6��a2

(7)D =
(1 + (8� − 6.55�))kBT

6��a2
= D

o

[
1 +

(
�HS
T

− �HS
H

)
�
]

(8)
D = D

o

[
1 + �HS

T
+
(
�HS
o

+ �HS
A

+ �HS
S

+ �HS
D

)]
�

= D
o

[
1 +

(
�
T
− �

H

)
�
]

diffusion coefficient in the limit of zero solute concentra-
tion (ϕ → 0) and � is the volume fraction of solvated solute, 
and �H

T
� again equates with the thermodynamic excluded 

volume [Eq. (5)]. In greater detail, �HS
T

 for uncharged hard 
spheres with radius a2 separated by scalar distance r is given 
by

where the second form of the integral is the expression 
used by Felderhof (1976). This thermodynamic excluded 
volume is countered by a hydrodynamic counterpart, the 
Oseen contribution,

A short-term hydrodynamic interaction term

also provides a counter-contribution, for which the above 
value (Jones and Schmitz 1988; Cichoki and Felderhof 1988) 
amends the original estimate of − 1.73 (Felderhof 1978) by 
taking into account the slow convergence of the series in 
Eq. (11). These two hydrodynamic terms are opposed by a 
second short-range interaction

and a dipole force term

The combined hydrodynamic contribution �HS
H

 in Eq. (8) 
is then 6.546, which supports the value of 6.55 obtained 
by Batchelor [see Eq. (6)] and also by Wills (1979, 1981), 
whereupon the dimensionless coefficient for diffusion con-
centration dependence �HS thus becomes

It is important to note that this value of 
(
�HS
T

− �HS
B

)
 

has been obtained by restricting consideration to the con-
sequences of pairwise solute interactions, which applies 
to very dilute solutions. A higher value of 3.0 has been 
derived by Brady and Durlofsky (1988) for higher con-
centrations, where higher-order terms reflecting multi-
ple-body interactions dominate the extent of nonideality. 

(9)�HS
T

=
4�NA

M2vS

2a2

∫
0

r
2
dr =

3

a
3
2

2a2

∫
0

r
2
dr = +8

(10)�HS
o

= −
3

a
2
2

2a2

∫
0

rdr = −6

(11)�HS
A

=
3

a
3
2

∞

∫
2a2

(
9

8

a
6
2

r4
−

5

4

a
4
2

r2
+…

)
dr = −1.831

(12)�HS
S

=
75a4

2

4

∞

∫
2a

dr

r5
= +0.286

(13)�HS
D

= +1

(
�HS
T

− �HS
B

)
= 1.45.
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Indeed, those authors note that their formulation [Eq. (9) 
of Brady and Durlofsky (1988)] reduces to the Batchelor 
expression when nonideality is described solely by the 
consequences of pairwise interactions (ϕ → 0) (see also 
Winzor et al 2021). We continue on the basis that the 
linear D–c dependence for a single solute modeled as an 
uncharged sphere is reflecting pairwise interactions and 
therefore described by Eq. (8) with 

(
�HS
T

− �HS
H

)
= 1.45.

Allowance for effects of solute charge 
on the concentration dependence of diffusion

As noted by Petsev and Denkov (1992), the presence of net 
charge Z2 on the hard spheres only requires modification of 
the expressions for �T and �O to accommodate significant 
additional contributions arising from electrostatic interac-
tions between the two particles. We now summarize the 
steps involved in the elucidation of those two contributions, 
which dominate the magnitudes of the dimensionless coef-
ficient λ.

The magnitude of the osmotic second virial coefficient 
for a single solute, B22 , is given (McMillan and Mayer 1945; 
Mayer 1950) by

where r is the scalar distance between the centers of two sol-
ute molecules and where the potential of mean force between 
them, u22(r) , is contained within the Mayer function:

For spherical solute molecules with solvated radius 
a2, the energy function u22(r) is described in terms of the 
Debye–Hückel inverse screening length κ, the dielectric con-
stant of the solvent medium ε, electronic charge e and the 
net protein charge Z2 (assumed to be spread uniformly over 
the spherical surface) by

from which it is evident that f22(r) is − 1 for r < 2a2.
A more useful experimental form of Eq. (16) for r ≥ 2a2 

is obtained by taking advantage of the relationship between 
molar ionic strength IM and inverse screening length,

where upon the potential of mean force for r ≥ 2a2  becomes

(14)B22 = −2�N
A

∞

∫
2a2

f22(r)r
2
dr

(15)f22(r) = exp

[
−
u22(r)

kBT

]
− 1

(16)
u22(r)

k
B
T

=

{
∞ r < 2a2
Z
2
2
e
2exp[−𝜅(r−2a2)]
𝜀(1+𝜅a2)r

r ≥ 2a2

(17)�2 =
8�N

A
e
2
I
M

�kBT

in which the factor of 1000 in the numerator converts the 
units of ionic strength from molar to the concentration scale 
(mol/mL) being used here.

From Eq. (14), the expression for the overall thermody-
namic excluded volume to the dimensionless coefficient �tot 
is therefore

in which the first and second integrals refer to �HS
T

 and �EL
T
, 

respectively. Consistency with Eq. (9) is evident on not-
ing that 4�NA∕

(
M2vs

)
= 3∕a3

2
 . In the same terminology, 

the complete expression for the Oseen hydrodynamic term 
(Petsev and Denkov 1992) is

which necessarily yields the earlier value of -6 for �HS
o

 [see 
Eq. (10)]: the second term will be regarded as the negative 
�EL
H

 contribution.
After allowance for the effects of charge–charge repul-

sion on excluded volume, the Batchelor expression for the 
concentration dependence of D, Eq. (6), becomes

where

A similar adjustment would be necessary for the 
Brady–Durlofsky expression for the concentration depend-
ence of D for higher concentration systems (Brady and 
Durolfsky 1988; Winzor et al 2021).

Values of �EL
T

 and �EL
H

 are most accurately obtained by 
numerical integration to solve the respective integrals in 
Eqs. (19) and (20) for specific systems with assigned val-
ues of protein radius ( a2 ) and net charge ( Z2 ) as well as 
the ionic strength IM of the medium: the value of κ  (cm−1) 
is obtained as 3.27 × 107

√
I
M

 . The initial treatment of the 
problem (Petsev and Denkov 1992) incorporates the assump-
tion that exp

[
−uEL

22
(r)∕(kBT)

]
 ≈ 1− uEL

22
(r)∕(kBT) , which gives 

rise to the expression

(18)
u22(r)

kBT
=

1000Z2
2
�2 exp[−�

(
r − 2a2)

]
8�NAIM(1 + �a2)

2

(19)�
T
=

2B22

M2vs

=
4�NA

M2vs

⎡
⎢⎢⎣

2a2

∫
0

r
2
dr +

∞

∫
2a2

f22(r)r
2
dr

⎤
⎥⎥⎦

(20)�
o
= −

4�NAa2

M2vs

⎡⎢⎢⎣

2a2

∫
0

rdr +

∞

∫
2a2

f22(r)rdr

⎤⎥⎥⎦

(21)D = Do

[
1 + �tot�

]

(22)�tot =
(
�HS
T

− �HS
H

)
+
(
�EL
T

− �EL
H

)
= 1.45 + �EL

T
− �EL

H

(23)�
tot

=

(
1.45 +

1000Z2
2

2I
M

(
1 + �a2

)
M2vs

)
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as the approximate counterpart of Eq. (22). However, its 
use to define the magnitude of 

(
�EL
T

− �EL
H

)
 leads to overes-

timation of the electrostatic contribution to �tot at low ionic 
strengths. The extent of the disparity between the correct 
and approximate estimates of (�EL

T
− �EL

H
) is evident from 

Fig. 1, which summarizes the effect of ionic strength on that 
concentration dependence coefficient for a protein with the 
size and charge characteristics of bovine serum albumin at 
neutral pH ( a2 = 3.5 nm, M2 = 66 kDa, Z2 = -20). In keeping 
with the earlierobservations on osmotic second virial coeffi-
cients [see Table 1 of Wills and Winzor (2009)], the approxi-
mate values (◊) overestimate their counterparts deduced by 
numerical integration (♦) by an extent that decreases with 
increasing ionic strength. Adoption of the numerical inte-
gration approach avoids the need for any concern about the 
evaluated �tot and is accordingly the method adopted in the 
following considerations of experimental systems.

We now need to establish the relationship between �
tot

 
and kD , the coefficient for the dependence of D upon sol-
ute concentration c2 . On the grounds that � = vsc2 , it has 
become standard practice to regard kD as �totvs . However, 
reference to Eq. (5) reveals that the coefficient describing 
the thermodynamic excluded volume is 2B2M2 . Obligatory 
adoption of the same convention for the hydrodynamic and 
hence combined exclusion volumes leads to the conclu-
sion that

At this stage, no account has been taken of the effect of 
solution viscosity on the magnitude of the measured diffu-
sion coefficient at finite protein concentrations because Eqs. 
(7) and (8) imply constancy of the viscosity term η. This 
situation is rectified by writing the concentration depend-
ence of the diffusion coefficient as (Scott et al. 2014)

(24)kD = �totvs∕2 = [(0.725 +
(
�EL
T

− �EL
H

)
∕2]vs

where η denotes the viscosity of a protein solution with con-
centration c2 for which D was measured, and �

b
 that of buffer 

(the solution viscosity in the limit of zero solute concentra-
tion to which Do refers). Upon replacement of the relative 
viscosity of dilute solutions of hard spheres by the expres-
sion (Scott et al 2014)

Equation (24) becomes

which predicts negative D–c dependence for an isoelectric 
protein ( Z2 = 0) . On the other hand, the sign of kD for a 
charged protein depends upon the extent to which the posi-
tively charged term counteracts the negative hard-sphere 
repulsion term.

Consideration of results from classical diffusion 
studies

The availability of a quantitative description of the concen-
tration dependence coefficient kD governing the diffusion 
coefficient obtained for charged globular proteins under the 
thermodynamic constraints of constant temperature and sol-
vent chemical potential allows more stringent scrutiny of the 
extent of conformity between experimental observation and 
theoretical prediction. For that endeavor, we need to go back 
to the 1950s to find traditional diffusion experiments involv-
ing the spreading of an initially sharp boundary between 
protein solution and diffusate—an era when the accuracy of 
diffusion coefficient measurement attained its peak (Gosting 
1956). Soon thereafter, the introduction of gel electropho-
retic techniques for protein separation led to a loss of inter-
est in moving boundary electrophoresis (Tiselius 1937), the 
U-tube cell assembly of which was central to those diffusion 
measurements.

This section begins with the refinement of a previous 
analysis of diffusion results for ovalbumin and bovine serum 
albumin (Scott et al. 2014), which was based on the revised 
value (Brady and Durlofsky 1988) of 5.0ϕ (cf 6.55 ϕ) for 
the hydrodynamic term in Eq. (7).

Traditional diffusion studies of ovalbumin 
and bovine serum albumin

Measurements (Creeth et al. 1958) of the diffusion coeffi-
cient (expressed as D20,w ) for isoelectric ovalbumin (pH 4.59, 
I 0.16 M) are shown (●) in Fig. 2a, which signifies a mean 

(25)D = D
o

1 + k
D
c2

�∕�
b

(26)�∕�
b
= 1 + [�]c2 + ⋯ ≈ 1 + 2.5v

S
c2

(27)kD =
[
−1.775 +

(
�EL
T

− �EL
H

)
∕2

]
vs

Fig.1  Predicted effects of ionic strength on the electrostatic contri-
bution, ( �EL

T
− �EL

H
), to D–c dependence for a protein with the size 

and charge characteristics of bovine serum albumin at neutral pH 
( M

2
 = 66  kDa, Z

2
 = –20) with a Stokes radius a

2
 of 3.5  nm, a net 

charge Z
2
 of − 20 and a molecular weight M

2
 of 66,000 based on the 

exact (♦) – Eq. 22 and approximate (◊)—Eq. 23 forms of Eq. (22)



338 European Biophysics Journal (2023) 52:333–342

1 3

diffusion coefficient of 7.24 × 10−7  cm2  s−1. It remains to cal-
culate the theoretical dependence predicted by Eq. (27) with 
�EL
T

− �EL
H

= 0 . Combination of the Stokes radius of 2.9 nm 
deduced from Eq. (6) with the molar mass of 44 kDa for 
this glycoprotein (Hall et al. 1999) yields a solvated specific 
volume ( vs ) of 1.40 mL/g, a limiting diffusion coefficient Do 
of 7.26  cm2s−1 and a kD of − 2.5 mL/g that refers to c2/2, the 
mean concentration across the diffusing boundary (Gosting 
1956). In that regard, a similar estimate (− 2.0 mL/g) for the 
concentration coefficient is obtained by linear least squares 
analysis of the experimental results, but the uncertainty 
(± 2SD) of the estimate (− 2.6 mL/g) exceeds its absolute 
magnitude. On the grounds that the same situation applies 
to the predicted D–c dependence, we conclude that the most 
appropriate experimental description of the results is in 
terms of a concentration-independent D20,w (± 2SD) of 7.24 
( ±0.10) × 10−7  cm2  s−1 (the solid line in Fig. 2a). Indeed, 
the absence of any detectable deviation from a Gaussian 
distribution in a test of boundary skewness in the experiment 
with highest ovalbumin concentration [Fig. 5 of Creeth et al. 

1958)] provides further justification for considering D to be 
effectively concentration independent.

The set of results (▲) in Fig. 2b refers to diffusion meas-
urements (Creeth 1952) on bovine serum albumin in phos-
phate buffer (pH 6.8, I 0.10 M), conditions under which the 
protein bears a net charge in the vicinity of − 20 (Tanford 
et al. 1955). In the absence of any discernible concentra-
tion dependence, the mean value of (6.14 ± 0.04) ×  10–7 
 cm2  s−1 for D20,w has been used to calculate a Stokes radius 
of 3.5 nm and hence a specific solvated volume ( vS ) of 
1.64 ml/g. For this system, the predicted value of kD is 
− 1.9 mL/g, whereupon the best-fit description becomes 
107 × D = 6.16

(
1 − 1.9c2∕2

)
  cm2  s−1 (broken line in Fig, 

2b). However, that predicted extent of concentration depend-
ence is again smaller than the experimental uncertainty 
inherent in the diffusion coefficient measurements—a situ-
ation that also applies to its slightly negative experimental 
counterpart ( kD = − 1.8 (± 2.6) mL/g). As with ovalbumin 
(Fig. 2a), the relatively low serum albumin concentrations 
employed in traditional diffusion experiments ensure that 
the predicted D–c dependence is contained within the scatter 
envelope of measured diffusion coefficients (Fig. 2b).

The above considerations have provided additional theo-
retical justification for the accepted viewpoint in the 1950s 
that the translational diffusion coefficient for globular pro-
teins exhibits slight concentration dependence, but that the 
variation in D over the concentration ranges being employed 
in those days (0.001–0.015 g/mL) was within the uncertainty 
limits of experimental diffusion coefficient measurements.

Concentration dependence of D from dynamic light 
scattering measurements

Interpretation of the concentration dependence of diffu-
sion coefficients obtained by dynamic light scattering has 
invariably been based on single-solute theory. Such action 
overlooks the need to regard buffer components as addi-
tional cosolutes to accommodate the fact that thermo-
dynamic activity is monitored on a molal-type scale (g 
solute/g solvent) under the operative constraints of constant 
temperature and pressure (Kirkwood and Goldberg 1950; 
Hill 1959). However, disregard of the consequences of these 
protein–cosolute interactions seems to have little impact on 
the predicted magnitudes of thermodynamic excluded vol-
ume contributions to nonideality (Winzor et al. 2007). We 
therefore persist with the description of dynamic light scat-
tering measurements in terms of single-solute theory, but 
do take into account the difference between molar ( B22∕M2) 
and molal ( C22∕M2) second virial coefficients. Subject to 
the assumed incompressibility of aqueous solutions, the two 
virial coefficients are related by the expression (Wills et al. 
1993)

Fig. 2  Experimentally measured concentration dependence of the 
translational diffusion coefficients ( D

20,w
) for proteins by the tradi-

tional boundary spreading procedure. a Ovalbumin in acetate–chlo-
ride buffer (pH 4.59, I 0.16  M). b Bovine serum albumin in phos-
phate buffer (pH 6.8, I 0.10  M). For both proteins, the broken line 
is the theoretical D–c dependence. [Data in (a) and (b) taken from 
Creeth et al. (1958) and Creeth (1952), respectively.]
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where v2 is the anhydrous partial specific volume of the sol-
ute and where �1, the solvent density, has been taken as 1 g/
mL for water.

In addition, Phillies (1987, 1992) has challenged the use 
of 1.45 for 

(
�HS
T

− �HS
H

)
 in the interpretation of dynamic light 

scattering measurements on the grounds that light scattering 
spectroscopy is sensitive to particle position, whereas the 
Batchelor/Felderhof treatment refers to particle flux effected 
by a gradient in solute chemical potential. Phillies (1987) 
calculates a value of − 0.9 for 

(
�HS
T

− �HS
H

)
 . The modified 

form of Eq. (27), namely

incorporates that change in the hard-sphere contribution as 
well as the fact that the excluded volumes responsible for 
nonideality in dynamic light scattering are molal volumes 
being measured experimentally on a molar concentration 
scale.

Consideration of experimental dynamic light 
scattering results

Interest in the determination of kD by dynamic light scat-
tering was fostered by the realization that the return of a 
slightly negative value provided a potential diagnostic of 
conditions commensurate with protein crystallization (Eber-
stein et al. 1994). In those days the quantitative description 
of the ionic strength dependence of kD also incorporated 
a curve-fitting parameter (Hamaker 1937) to account for 
attractive inter-solute forces. On the grounds that the effects 
of those van der Waals attractive forces are already included 
in the thermodynamic excluded volume (Wills and Winzor 

(28)C22∕M2 = (B22∕M2 − v2)�1

(29)kD =
[
−2.95 +

(
�EL
T

− �EL
H

)
∕2

]
vs − v2

2005) and presumably the hydrodynamic counterpart, it 
becomes of interest to examine the extent to which the pre-
sent approach can predict that experimental ionic strength 
dependence of kD for lysozyme (Eberstein et al. 1994).

The theoretical description of the ionic strength 
dependence of kD predicted by Eq. (29) for lysozyme at 
pH 4.2 (Fig. 3) clearly provides a good description of the 
results (♦) reported for this enzyme in Table 1 of Eber-
stein et al, (1994). Their value of 2.09 nm for the Stokes 
radius (derived from Do) was used for a2 , and the valence 
( Z2 ) was taken as + 12, the value inferred from pH-titration 
data (Tanford and Wagner 1954): the reported value of 
0.703 mL/g for lysozyme (Sophianopoulos et al. 1962) was 
used for v2 . Results reported in Table 2 of Muschol and 
Rosenberger (1995) for lysozyme under similar conditions 
(◊) are also described adequately by the same theoretical 
ionic strength dependence. The above value for the net 
charge seems more realistic than those of 5.4–6.8 (Eber-
stein et al. 1994; Muschol and Rosenberg 1995; Kuehner 
et al. 1997) deduced on the basis of Z2 and the Hamaker 
constant as curve-fitting parameters from lysozyme studies 
under similar conditions.

Further support for the adequacy of Eq. (29) as a theo-
retical description of diffusion measurements obtained by 
dynamic light scattering comes from Fig. 4, which summa-
rizes results deduced from Fig. 2 of Arzenšek et al. (2012) 
for a monoclonal antibody ( M2 = 145 kDa) at pH 5.75 and 
molar ionic strengths (IM) of 0.0.015 (♦), 0.030 (◊), 0.050 
(■) and 0.175 (□). Lines denote the D–c2 relationships 
predicted by Eq. (29) on the basis of the solute radius a2 
of 5.4 nm that stems from the value of 4.49  cm2  sec−1 for 
Do : v2 was taken as 0.73 mL/g. The value of 75 for Z2 , 
deduced as a curve-fitting parameter, is consistent with 
the estimate of (68 ± 15) obtained from the zeta potential 
measurements reported in Fig. 8 of Arzenšek et al. (2012). 
The fact that the present analysis, based solely on excluded 
volume and solution viscosity considerations, has yielded 

Fig. 3  Ionic strength dependence of the concentration coefficient k
D
 

for lysozyme at pH 4.2 (♦) and its best-fit description (_____) in terms 
of Eq. (29), together with results (◊) from a study under similar con-
ditions [Based on data from Table  1 of Eberstein et  al. (1992) and 
Table 2 of Muschol and Rosenberger (1995), respectively.]

Fig. 4  Concentration dependence of the diffusion coefficient for a 
monoclonal antibody (pH 5) at the indicated molar ionic strengths, 
together with descriptions in terms of Eq.  (29). [Data inferred from 
Fig. 2 of Arzenšek et al. (2012)]
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an acceptable description of the experimental data calls 
into question the need (Arzenšek et al. 2012) for incor-
poration of the Hamaker constant as an additional curve-
fitting parameter to cover the consequences of solute–sol-
ute interactions. Indeed, it can be argued that the current 
agreement between experimental and predicted dependen-
cies of kD upon ionic strength supports the contentionthat 
those van der Waals interactions are already included not 
only in the thermodynamic excluded volume (Wills and 
Winzor 2005) but also in its hydrodynamic counterpart, 
an assumption inherent in the present analysis.

Concluding remarks

The first objective of this review has been to justify con-
sideration of the translational diffusion coefficient for 
globular proteins as a constant for the analysis of bound-
ary spreading in experiments conducted under the thermo-
dynamic constraints of constant temperature and solvent 
chemical potential. To that end the Batchelor treatment 
of D–c dependence for an uncharged spherical particle 
(Batchelor 1976) used previously (Scott et al. 2014) has 
been extended by incorporating relevant quantitative 
expressions from the dynamic light scattering literature 
(Petsev and Denkov 1992; Arzenšek et  al. 2012) that 
include the effects of net charge on a spherical particle. 
The slightly positive D–c dependence thereby predicted 
for an isoelectric protein [Eq.  (22)] becomes negative 
after allowance is made (Scott et al. 2014) for the effect 
of solution viscosity [Eqs. (25)–(27)]. However, because 
the extent of experimental uncertainty in diffusion coeffi-
cient measurements (> ± 1%) exceeds that of the predicted 
concentration dependence of D, the appropriate course of 
action is to regard the diffusion coefficient as a constant in 
the analysis of boundary spreading in sedimentation veloc-
ity distributions for globular proteins obtained in the hey-
day of the model E ultracentrifuge (Baldwin 1957; Fujita 
1956, 1959; Van Holde 1960; Creeth and Winzor 1962). 
A much later example supporting this contention is the 
SEDFIT analysis of sedimentation velocity distributions 
for a 12 g/L solution of halophilic malate dehydrogenase 
(pH 8, IM 4.0), where allowance for D–c dependence led 
to no improvement in the best-fit description (Solovyova 
et al. 2001).

That simplification of the analysis of boundary spread-
ing does not apply to sedimentation velocity experiments 
on proteins in media with very low ionic strength because 
of the highly positive value of kD [Fig. 1 and Eq. (27)]. Nor 
does it apply to the sedimentation of concentrated protein 
solutions at moderate ionic strengths, where the magni-
tude of kDc2 can become significant despite the relatively 
small (negative) magnitude of the diffusion concentration 

coefficient. Examples of these two situations are provided 
by studies of (i) a monoclonal antibody (10 g/L) in 2 mM 
histidine buffer, pH 6, and (ii) bovine serum albumin 
(52 g/L) in phosphate-buffered-saline, pH 7.4 [Figs. 1 and 
5, respectively, of Chaturvedi et al. (2018)].

A potential outcome of attempted simultaneous evalu-
ations of the sedimentation concentration dependence 
parameter ks and kD stems from the inevitable correlation 
between estimates of the two curve-fitting parameters. 
For example, the return of a kD estimate of + 10 mL/g for 
bovine serum albumin in phosphate-buffered-saline [cf a 
calculated value of -2.9 mL/g from Eq. (27)] has led to a 
correlated estimate of 8.4 mL/g for ks that is larger than 
its independently determined counterpart of 7.2 mL/g 
[Fig. 8 of Winzor et al. (2021)]. In other words, the greater 
extent of diffusional boundary spreading generated by the 
curve-fitting overestimate of kD has been compensated by 
an increase in ks to achieve the extra boundary sharpen-
ing required to maintain the experimental boundary shape. 
Removal of the interdependence of ks and kD estimates 
by incorporating an experimentally measured value of 
the sedimentation concentration coefficient should in our 
opinion lead to improved delineation of kD from the cNI

(
so
)
 

approach developed by Chaturvedi et al. (2018).
The second objective of this investigation has been the 

adaptation of the theoretical description of D–c dependence 
in traditional diffusion experiments [Eq. (27)] to encompass 
measurements of diffusion coefficients by dynamic light 
scattering. Despite the change of thermodynamic constraint 
from constant solvent chemical potential to constant pres-
sure, a slightly modified version of the same quantitative 
expression [Eq. (29)] has provided good descriptions of 
dynamic light scattering data for lysozyme (Fig. 3) and a 
monoclonal antibody (Fig. 4), chosen because of the ready 
availability of the data.

The seeming disagreement about the need for allow-
ance for the concentration dependence of D has thus merely 
reflected the protein concentration range over which diffu-
sion coefficients were measured by the two techniques. In 
the traditional procedure, the resolving power of the optical 
systems sufficed for the accurate specification of boundary 
spreading across boundaries a concentration difference in 
the range 1–10 g/L. On the grounds that the measured D 
refers to c2∕2 (Gosting 1956), the uppermost concentra-
tion covered by the D − c dependence was only ~ 5 g/L in 
diffusion and sedimentation velocity experiments with the 
boundary between solution and diffusate. Nevertheless, the 
accuracy of those diffusion coefficients still sufficed for 
detection of the slight negative D–c dependence even though 
experimental scatter also justified its consideration in terms 
of concentration-independent diffusion (Fig. 2a, b).

In dynamic light scattering, the lesser sensitivity of 
the detection system dictates the use of higher protein 
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concentrations for accurate definition of the autocorrelation 
function g(τ) (see, for example, Harding et al. 1992 and ref-
erences therein), where τ is the delay time, particularly in 
studies of small proteins such as lysozyme for which con-
centrations as high as 60 g/L have been employed to define 
the D–c dependence (Eberstein et al. 1994; Muschol and 
Rosenberger 1995). The slower diffusion of larger proteins 
allows more accurate delineation of g(τ) and hence the use 
of a smaller concentration range for more definitive charac-
terization of the D–c dependence (Fig. 4).

Finally, the current quantitative treatment of concentra-
tion-dependent diffusion based solely on excluded volume 
and solution viscosity considerations differs from its pre-
decessors in that no specific allowance has been made for 
the consequences of solute–solute interaction, namely the 
“a” term in the equation of state for an imperfect gas (van 
der Waals 1873). As noted previously (Wills and Winzor 
2005), the thermodynamic consequences of those inter-
actions are already included in the osmotic second virial 
coefficient contribution, 

(
8 + �EL

T

)
vs in the present context. 

Based on the adequacy of the predicted descriptions of 
D–c dependence by Eq. (27) or Eq. (29) for the present 
systems (Figs. 2, 3, 4), it would seem that the hydrody-
namic consequences of van der Waals interactions are 
contained with the corresponding excluded volume term, 
(�HS

H
− �EL

H
) . Indeed, the inclusion of �HS

A
  [Eq.  (10)] as 

a short-range interaction contribution to the hard-sphere 
hydrodynamic term (-6.55 for systems studied under the 
constraints of constant temperature and solvent ionic 
strength) supports that contention.

At this stage, the parameter requiring further inves-
tigation is the value of the hard-sphere contribution, (
�HS
T

− �HS
H

)
 , to be used for the prediction of D–c depend-

ence in dynamic light scattering studies of protein solu-
tions. We have employed the reported value of –0.9 for 
spheres of (Phillies 1987), which takes into account the 
non-compliance of experimental conditions (constant T, 
�1 ) to which the commonly used value of + 1.45 (Batchelor 
1976; Felderhof 1978) applies. The only previous exper-
imental support for adopting the lower value has come 
from dynamic light scattering studies of stearylated silicon 
spheres in non-aqueous solvents (Mos et al. 1986). This 
aspect of the quantitative interpretation to be placed on 
the D–c dependence obtained by dynamic light scatter-
ing would clearly benefit from further investigation with 
a range of well-characterized globular proteins and other 
macromolecular assemblies. It has to be born mind also 
the assumption of hard spheres commonplace amongst 
discussions. Deviations in this behavior for non-spherical 
particles have to be taken into consideration, particularly 
because of the sensitivity of solution viscosity to confor-
mation: this is discussed further in Winzor et al (2023).
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