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Abstract
Determination of the size, density, and mass of viral particles can provide valuable information to support process and for-
mulation studies in clinical development. Analytical ultracentrifugation (AUC), as a first principal method, has been shown 
to be a beneficial tool for the characterization of the non-enveloped adeno associated virus (AAV). Here, we demonstrate the 
suitability of AUC for the challenging characterization of a representative for enveloped viruses, which usually are expected 
to exhibit higher dispersity than non-enveloped viruses. Specifically, the vesicular stomatitis virus (VSV)-based oncolytic 
virus VSV-GP was used to evaluate potential occurrence of non-ideal sedimentation by testing different rotor speeds and 
loading concentrations. The partial specific volume was determined via density gradients and density contrast experiments. 
Additionally, nanoparticle tracking analysis (NTA) was used to determine the hydrodynamic diameter of VSV-GP particles 
to calculate their molecular weight via the Svedberg equation. Overall, this study demonstrates the applicability of AUC and 
NTA for the characterization of size, density, and molar mass of an enveloped virus, namely VSV-GP.
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Introduction

A fast-growing number of virus-based therapeutics are 
entering clinical development, such as adeno-associated 
virus (AAV) for gene therapy and vesicular stomati-
tis virus (VSV) for both oncolytic cancer therapy (Muik 
et al. 2014; Merchan et al. 2020) and modern vaccination 
approaches (Piszczatoski and Gums 2020; Saphire 2020; 
Liu et al. 2021). During development, analytical charac-
terization methods are essential to lead process and prod-
uct design of viral therapeutics. In particular, development 
activities benefit from analytical techniques that enable the 

characterization of size, density, molar mass, and aggrega-
tion of virus particles with high accuracy. This information 
can then be used for the assessment of critical quality attrib-
utes, e.g., the ratio of full to empty particles for AAV. For 
AAV, analytical ultracentrifugation (AUC) has already been 
extensively used and has been shown to be a valuable tool 
for characterization of size and composition heterogeneity 
(Berkowitz and Philo 2007; Burnham et al. 2015; Fu et al. 
2019; Maruno et al. 2021) and probably can be considered 
the gold standard for quantification of empty and full capsids 
(Gimpel et al. 2021). In contrast, less AUC data on other 
viral therapeutics like VSV-GP (Muik et al. 2014) are avail-
able. VSV is a member of the Rhabdoviridae and is known 
for its bullet-shaped morphology. VSV has an approximate 
size of 175 nm × 70 nm (David-West and Labzoffsky 1968), 
molecular weights were reported between 265 and 355 MDa 
(Ware et al. 1973; Hartford et al. 1975; Thomas et al. 1985), 
and sedimentation coefficients between 610 and 667S (Brad-
ish et al. 1956; Ware et al. 1973; Hartford et al. 1975). As 
VSV is an enveloped virus, a higher degree of polydispersity 
is expected compared to the non-enveloped AAV, because 
the envelope is less well defined regarding its composition 
compared to the protein-based capsid. In addition, it has 
been reported that nucleocapsids are not homogenous with 
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regards to their radial diameter, which consequently leads 
to a polydisperse nucleocapsid length distribution (Desfos-
ses et al. 2013; Jenni et al. 2022). In this contribution, we 
show an experimental approach for the development of ana-
lytical ultracentrifugation methods for characterization of 
VSV-GP. We determined dispersed sedimentation, density, 
spectral, and diffusion properties leading to the assessment 
of the molecular weight of VSV-GP. This approach has great 
potential for other enveloped viruses of similar size, e.g., 
lentiviruses, and lipid nanoparticles.

Experimental background

Analytical ultracentrifugation

Although the basis of the various existing experimental 
techniques can be found in literature (Schuck et al. 2015; 
Uchiyama et al. 2016), the main principles relevant for this 
study will be outlined in the following.

The sedimentation velocity of particles and macromol-
ecules within a centrifugal field ṙ can be normalized to 
the applied centrifugal field with angular rotor velocity � 
and radial position r giving the sedimentation coefficient s , 
which solely depends on particle and solvent parameters, 
such as, the mass of the particle m , the solvent density �S , the 
friction factor f  , as well as the particle’s partial specific vol-
ume v , which is related to the inverse of the particle density.

Radial broadening of the sedimentation boundary during 
the experiment can be attributed to sample polydispersity in 
terms of the sedimentation coefficient or can be due to the 
influence of diffusion, which relates to the diffusion coef-
ficient D with the thermal energy kBT:

The frictional factor is given based on the hydrodynamic 
diameter xH and the solvent viscosity �:

An alternative to AUC for obtaining the diffusion coef-
ficient of particles is by tracking the Brownian motion of 
particles over time via, e.g., nanoparticle tracking analysis 
(NTA). Once D and s are known, the Svedberg equation can 
be used to determine the particle’s molar mass M via the 
Avogadro constant NA (Svedberg 1925):

(1)s =
ṙ

𝜔2r
=

m(1 − v ⋅ 𝜌S)

f

(2)D =
kBT

f

(3)f = 3��xH

Overall, the sedimentation coefficient and the diffusion 
coefficient indicate the potential of analytical ultracentrifu-
gation to provide insights into hydrodynamic, thermody-
namic and density properties of virus particles depending 
on the experimental approach.

Another type of experiment, which would rather be con-
sidered a sedimentation equilibrium experiment (Meselson 
et al. 1957), relies on the occurrence of a static concentra-
tion gradient, e.g., made of CsCl, leading to a radially vary-
ing density of the solvent, thus, providing the possibility 
of detecting buoyant density heterogeneity (Berkowitz and 
Philo 2007). This density gradient method (Mächtle and 
Börger 2006) forces the particles to sediment and float to 
the isopycnic position, where according to Eq. 1 the sedi-
mentation coefficient becomes zero, hence particles neither 
float nor sediment. Broadening of detected bands can then be 
attributed either to buoyant density dispersity or diffusion of 
the particles, which can be tuned, e.g., via the steepness of 
the density gradient (Vinograd 1963). The radial static gradi-
ent can be either determined via tracer particles or modeled 
based on meniscus and bottom position of the cell used with 
�in
1

 being the initial volume fraction of CsCl and �in
0

 the 
initial volume fraction of water (Mächtle and Börger 2006):

Another method targeting the partial specific volume of 
the particles or macromolecules in solution, relies on the 
partial exchange of solvent via isotope exchange, thereby, 
altering viscosity and density of the solvent (Cheng and 
Schachman 1955; Martin et  al. 1956; Mächtle 1984). 
There, influencing factors might be a partial H–D exchange 
(Brown et al. 2011; Fagan et al. 2013; Henrickson et al. 
2021; Maruno et al. 2021) or the incorporation of density 
varying components into the investigated particles. From the 
cumulative sedimentation coefficient distributions measured 
at several different isotope levels, the change of sedimenta-
tion coefficient for the individual distribution fraction can 
be used alongside the solvent density to deduce the apparent 
partial specific volume vapp via linear extrapolation to the 
balance of centrifugal and buoyancy force:

(4)M =
s

D

kBNAT
(

1 − v ⋅ �S
)
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The data obtained should be checked for consistency, as 
the analysis can be misled by substantial density heterogene-
ity (Mächtle 1984). Therefore, a prerequisite is that the order 
of species within the sedimentation boundary, respectively, 
the sedimentation coefficient distribution, should not alter 
to avoid incorrect attribution of partial specific volumes per 
fraction.

Nanoparticle tracking analysis

In NTA, particles are detected by light scattering and the 
Brownian motion of individual particles is measured in a 
video. The two-dimensional displacement ( < x, y

2
> ) of the 

particles over time t is used to assess the diffusion of the 
particles.

Using the Stokes–Einstein equation, the hydrodynamic 
diameter of the samples can then be calculated.

Materials and methods

Analytical ultracentrifugation

AUC experiments were performed with a Beckman Coulter 
Optima AUC using absorbance optics. For all experiments 
an An50-Ti rotor was used, and experiments were run at 
20 °C.

Sedimentation velocity experiments (SV)

SV experiments were performed using epon double-sector 
centerpieces, which were filled with 450 µL of sample. Sam-
ples were diluted in their corresponding formulation buffer. 
Scans were obtained at 280 nm and 320 nm. The samples 
were measured at 2000–12,000 rpm. Analysis of absorb-
ance and pseudo-extinction data was performed using Sedfit 
(Schuck and Rossmanith 2000) (resolution of 100, no regu-
larization, fitting of RI-, TI-noise and meniscus). Density 
and Viscosity of formulation buffers were measured using 
a DMA density meter and a Lovis viscosimeter from Anton 
Paar.

Density gradient experiments

Density gradient experiments were performed with epon 
double-sector centerpieces, which were filled with 450 µL 

(6)vapp =
1

�S(s ⋅ � = 0)

(7)D =

< x, y
2
>

4 ⋅ t

of sample in formulation buffer spiked with 17 and 15 wt% 
cesium chloride for material A and B, and stressed material 
C, respectively. The samples were centrifuged at 35,000 rpm 
for a total of 34 h, scanning at 280 nm every 30 min for 
the first 26 h and then scanning every other wavelength 
between 240 and 320 nm. Afterwards, this was repeated at 
40,000 rpm. The particle buoyant density was calculated 
for the CsCl using Eq. 5 based on the meniscus and bot-
tom radial positions determined in the first scan. The initial 
CsCl concentration in the sample compartment was calcu-
lated based on the spiked CsCl fraction. A constant density 
increment was added to the radial density distribution of 
CsCl to account for remaining formulation components.

Density contrast experiments

H2O/D2O Experiments were performed with epon double-
sector centerpieces, which were filled with 450 µL of sample 
diluted in formulation buffer with varying concentrations of 
 D2O (0%, 25%, 50%). Density and viscosity were calculated 
using SEDNTERP (Philo 2021) taking the buffer composi-
tion into account. The experiment was run at 6000 rpm and 
scans were acquired at 280 nm. Sedimentation coefficient 
distributions were obtained with Sedfit using the ls-g(s*) 
model and the distribution of vapp was extrapolated.

Viruses

VSV, in which the glycoprotein (G) of VSV was replaced 
by the glycoprotein (GP) of lymphocytic choriomeningi-
tis virus, was used (Muik et al. 2014). Material A, B, and 
C are from pre-clinical process development. Material C 
has additionally been subjected to surfactant stress prior to 
characterization.

Nanoparticle tracking analysis

For nanoparticle tracking analysis (NTA) the  ZetaView® 
PMX-120 from Particle Metrix was used. Samples were 
diluted in their corresponding formulation buffer and vis-
cosity of the buffer (calculated in SEDNTERP (Philo 2021)) 
was taken into consideration for determination of the hydro-
dynamic diameter. Three replicates of each sample at 11 
positions with 5 cycles each were measured.

Results and discussion

Evaluation of non‑ideality and optimization 
of SV‑experiment

The wildtype of VSV was reported to be anisotropic 
(approximately 175 × 70 nm (David-West and Labzoffsky 
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1968)) giving an aspect ratio of approximately 2.5 and a 
sedimentation coefficient between 610 and 667S (Bradish 
et al. 1956; Ware et al. 1973; Thomas et al. 1985). The influ-
ence of the concentration and rotor speed on the retrieved 
sedimentation coefficients for anisotropic particles has been 
discussed and investigated extensively in literature for vari-
ous macromolecules like DNA, the tobacco mosaic virus, or 
carbon nanotubes (Hearst and Vinograd 1961; Batista et al. 
2014; Schuck et al. 2015). Therefore, the influence of rotor 
speed and concentration on the retrieval of sedimentation 
coefficient distributions as well as the retrieved subspecies of 
VSV-GP were investigated using a stressed sample (material 
C) and two different unstressed samples (material A and B). 
In accordance to protein analysis nomenclature, we named 
the subspecies fragment, main and oligomer fraction, how-
ever, the required analysis for a final characterization and 
identification goes beyond the scope of this work.

The results of these studies are depicted in Fig. 1, where 
the main species of material A exhibits a modal value of 
about 769S at 20 °C and water conditions. Varying the rotor 
speed and loading concentration did not significantly influ-
ence the retrieved sedimentation properties. These results 
suggest that non-ideal sedimentation is not relevant within 
the experimental range used here. Apart from the main spe-
cies, the exemplary sedimentation coefficient distribution 
of material A shows a slower sedimenting species below 
620S and a species with a higher sedimentation coefficient. 
To evaluate whether the faster sedimenting species is in 
accordance with the sedimentation speed of a virus particle 
dimer, theoretical estimations using the Zeno software can 
be performed (Juba et al. 2017). There, the hydrodynamic 
properties of dimers made of spherical, cuboid or rod-like 
particles can be evaluated quickly. Using those geometrical 
models, the sedimentation coefficients of dimers can be esti-
mated to be between 900 and 1500S, considering the sedi-
mentation coefficient distribution width of the main species. 
It is obvious that due to the virus’ inherent polydispersity 
in terms of size, envelope composition, density and shape, 
the analysis and assignment of oligomers is more challeng-
ing than for other biopharmaceuticals, such as antibodies 
(Bou-Assaf et al. 2022). However, the amount of oligomers 
can be an important quality attribute during development 
of a virus-based therapeutic, as oligomers and larger aggre-
gates might lead to potency loss and trigger immunotoxicity 
(Wright 2014; Gimpel et al. 2021). Therefore, the relative 
absorption-based amount is an important parameter, espe-
cially during process optimization. The results of the data 
evaluation in Fig. 1 were not showing a significant influ-
ence of rotor speed or initial concentration for oligomers or 
fragments. However, the determined relative amount of the 
faster sedimenting species showed larger variations, which 
could be caused by the less pronounced separation between 
main and oligomeric species. Overall, the results of these 

Fig. 1  Results of the AUC characterization of material A, B, C. a Sedimentation 
coefficient distributions at 6000  rpm transformed to water conditions based on 

v = 0.842
cm

3

g
 b Mean s-value from peak integration between 620 and 980S for 

material A depending on loading extinction signal. c Integrated relative fraction of 
fragments and oligomers in remaining parts of distribution for material A depend-
ing on loading extinction signal. Symbols indicate rotor speed, the colors give 
information on the type of subspecies namely oligomer or fragments
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experiments suggest that rotor speed and concentration do 
not influence the retrieved sedimentation properties to great 
extent, allowing the use of higher rotor speeds and thus 
achieving higher sample throughput without compromising 
the data quality.

For material B, the sedimentation coefficient distribution 
in Fig. 1 exhibits a similar shape but exhibits minor amounts 
of faster sedimenting subspecies above 2500S (not shown). 
Albeit significant overlap with the sedimentation coefficient 
distribution of material A, the corresponding modal value 
of material B is slightly shifted to smaller sedimentation 
coefficient values (671S), which might be due to small dif-
ferences in density, mass or geometry of the viral particle 
according to the definition of the sedimentation coefficient 
in Eq. 1. The exhibited differences in sedimentation proper-
ties of material A and B show the ability of analytical ultra-
centrifugation to provide additional information on product 
quality supporting the expectation, which were derived from 
the analytical panel of orthogonal methods performed in-
house (data not shown).

Lastly, material C, which was subjected to chemical 
stress, shows significantly smaller sedimentation velocities, 
as shown by a modal value of 332S. According to the defini-
tion of the sedimentation coefficient in Eq. 1, this reduced 
sedimentation velocity could be attributed to a reduction of 
density or mass, or the combination of those factors. To get 
more insights into the differences of these disperse envel-
oped viral particles, additional experiments targeting those 
quantities are needed.

Density determining experiments

Characterizing the density heterogeneity of a formulated 
viral vector can provide valuable information on critical 
quality attributes like the ratio of empty to full AAV vec-
tors (Berkowitz and Philo 2007), or can be used for batch-
to-batch comparisons. In this study, we used CsCl density 
gradients and  H2O/D2O-density variation to get access to 
buoyant density information of the sedimenting particles. 
The results in Fig. 2 showed two occurring subspecies in 
material C, while material A and B only exhibited one spe-
cies. Compared to density gradient data from literature for 
wildtype VSV (McCombs et al. 1966) with species in CsCl 
at solution densities of 1190, 1220 and 1260 kg/m3 and one 
species in sucrose at 1160 kg/m3, we found for material A 
and B only one VSV-GP species with a smaller density rang-
ing from 1140 to 1150 kg/m3 and two species for material 
C with 1130 and 1150 kg/m3. Apart from the composition 
difference of VSV and VSV-GP, which may lead to differ-
ent density, the stability of the virus particles during the 
density gradient experiment might be an issue. McCombs 
et al. argue that VSV disruption via CsCl might occur and 
could lead to high density bands, whereas no disruption 

in sucrose occurs, and therefore, results in a single band 
only. The bands we observed stayed at the same position 
throughout the experiment for 34 h at 35,000 rpm and 34 h 
at 40,000 rpm, therefore, we assumed that the material was 
not disrupting the virus particles on the timescale of the 
experiment.

With the radial separation of the components, measure-
ment of extinction spectra of the individual subspecies with 
high spectral resolution via the Optima AUC was practica-
ble. This revealed that material C is not only consisting of 
two species with varying density, but also that these species 
have differing spectra, as the normalized spectra in Fig. 2 
diverge in the region of 240 nm to 280 nm. In particular, 

Fig. 2  Results of density gradients experiments using CsCl. a Radial 
distribution of extinction b Extracted extinction spectra of subspecies 
normalized to 280 nm
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the two species differed in their 260 nm to 280 nm ratio. 
An explanation for this could be that the induced stress led 
to loss of the viral genome. Surprisingly, the species with 
the lower 260 nm to 280 nm ratio is also the species with 
the higher density. Further experiments involving cryo-EM 
to investigate the nature of these subspecies as well as the 
determination of the molar mass could help resolving this 
open question. However, the latter is challenging to achieve, 
as the sedimentation coefficient distribution of material C in 
Fig. 1 does not exhibit two distinct species.

To avoid any uncertainty in terms of sample stability, 
heavy water can be used to vary the density of the solution 

(Cheng and Schachman 1955; Martin et al. 1956; Mächtle 
and Börger 2006). The original sedimentation coefficient 
distributions shown in Fig. 3, suggest that especially for low 
and high boundary fractions the calculation of the partial 
specific volume is difficult. This is due to the fact that the 
slowly varying cumulative sedimentation coefficient dis-
tributions in the low or high fractions might not be well 
defined experimentally, which could lead to these alterations 
of individual data points. Therefore, these parts are omitted 
from the analysis.

Compared to the results from the CsCl density gradient 
experiments, the measured partial specific volumes in  H2O/
D2O were a few percent lower. This could be attributed to 
membrane penetration of  D2O (Fettiplace and Haydon 1980) 
or H–D exchange (Brown et al. 2011; Fagan et al. 2013; 
Henrickson et al. 2021; Maruno et al. 2021), which could 
lead to an overestimation of the measured density in this 
experiment.

Determination of molar mass

NTA can be used to provide information on the diffusion 
coefficient of the analyte. The resulting number-based dis-
tributions for material A and B are depicted in Fig. 4. The 
median value of the hydrodynamic diameter distribution of 
material A (122 nm) is close to the theoretical hydrodynamic 
diameter of 120 nm calculated based on the electron-micros-
copy dimensions (175 × 70 nm) of wild-type VSV (David-
West and Labzoffsky 1968) and a flat rod hydrodynamic 
model (Hansen 2004). Material B shows a slight shift to 
higher hydrodynamic diameters with a median hydrody-
namic diameter of 129 nm.

From calculations (Hansen 2004) and simulations (Juba 
et al. 2017), the ratio of the hydrodynamic diameter of a 

Fig. 3  Results of density variation via  H2O/D2O a Cumulative 
sedimentation coefficient distribution for material A at different 
 D2O-concentrations b resulting  v

app
 for cumulative fractions in (a)

Fig. 4  Hydrodynamic diameter distribution obtained from NTA for 
material A and B
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dimer (side-by-side or head-to-head) and monomer rod can 
be approximated to be within the range of 1.3 to 1.4. Based 
on the given median value of Material A, dimeric rods could 
be expected to have a hydrodynamic diameter of approxi-
mately 160–175 nm, which could contribute to the slight 
tailing to higher diameters in Fig. 4.

Although, both NTA as well as AUC provide property 
distributions, namely sedimentation and diffusion coef-
ficients, the simultaneous information on those quantities 
for the individual species is lost, as the provision of both 
parameters via AUC becomes increasingly difficult with 
high sedimentation coefficients, low diffusion coefficients 
and substantial dispersity of the investigated particles. Com-
bining property distributions (e.g., s,D, v,M ) originating 
from different devices to provide multidimensional property 
distributions (e.g., composition vs. length vs. diameter) has 
great potential (Furat et al. 2020), but goes beyond current 
capabilities.

However, already with the results from NTA and AUC 
available, the molar mass of VSV-GP was estimated accord-
ing to Eq. 4. Based on the median values of s,D as well as the 
apparent partial specific volume associated with the median 
of the  (D2O) cumulative sedimentation coefficient distribu-
tions in Fig. 3, the molar mass of material A can be given 
as M = 333MDa , while material B exhibits M = 315MDa , 
which is in line with the large range reported in the literature 
(Ware et al. 1973; Hartford et al. 1975; Thomas et al. 1985).

Summary and conclusion

Within this study, AUC was used to characterize the onco-
lytic virus VSV-GP. Although, the fractionating method 
of AUC offers the opportunity to investigate dispersity in 
samples, limitations of the method occur due to the multidi-
mensionality and complexity of enveloped virus particles. 
As the sedimentation coefficient depends on geometry, mass, 
and density, several different AUC experiments that aim at 
isolating individual disperse properties should be conducted. 
Especially, for large viral particles, other techniques that pro-
vide additional information, like nanoparticle tracking analy-
sis, can help in providing more information on the quality 
of viral therapeutics. Overall, AUC can be a valuable tool to 
give information on disperse properties such as size, density, 
and mass, to support process and formulation development 
of viral therapeutics.
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