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Abstract
Defining protein oligomeric state and/or its changes in solution is of significant interest for many biophysical studies carried 
out in vitro, especially when the nature of the oligomeric state is crucial in the subsequent interpretation of experimental 
results and their biological relevance. Nuclear magnetic resonance (NMR) is a well-established methodology for the charac-
terization of protein structure, dynamics, and interactions at the atomic level. As a spectroscopic method, NMR also provides 
a compelling means for probing both molecular translational and rotational motion, two predominant measures of effective 
molecular size in solution, under identical conditions as employed for structural, dynamic and interaction studies. Protein 
translational diffusion is readily measurable by pulse gradient spin echo (PGSE) NMR, whereas its rotational correlation 
time, or rotational diffusion tensor when its 3D structure is known, can also be quantified from NMR relaxation parameters, 
such as 15N relaxation parameters of backbone amides which are frequently employed for probing residue-specific protein 
backbone dynamics. In this article, we present an introductory overview to the NMR measurement of bimolecular transla-
tional and rotational motion for assessing changes of protein oligomeric state in aqueous solution, via translational diffusion 
coefficients measured by PGSE NMR and rotational correlation times derived from composite 15N relaxation parameters of 
backbone amides, without need for the protein structure being available.
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Introduction

Protein oligomerization is a common event in cellular 
process where a significant proportion of proteins require 
oligomerization prior to interacting with their biological 
partners (Ali and Imperiali 2005). Oligomerization as a 
prerequisite for function in cells has been reported for 
many proteins involved in biological processes, e.g. mem-
brane transport proteins and amyloid proteins, where these 
proteins undergo self-association to form homo-, hetero- or 
domain-swapped dimers and subsequent functional higher 
order oligomeric forms. Knowledge of protein oligomeric 
state in biophysical characterization in vitro is not only 
significant for the optimization of experimental conditions, 
but also critical for determining biological relevance of 
results in vivo. A variety of biophysical methods, with 
their own inherent advantages and limitations, are avail-
able for the characterization of protein oligomeric state. 
These include size exclusion chromatography, analytical 
ultracentrifugation, dynamic light scattering, mass spec-
trometry, and fluorescence microscopy, and their applica-
tion to studies of protein oligomerization has recently been 
reviewed (Gell et al. 2012).

Nuclear magnetic resonance (NMR) is well established 
as a key complementary methodology to X-ray crystal-
lography and cryo-electron microscopy for 3D structure 
elucidation of proteins and protein complexes, particu-
larly when the systems of interest do not crystalize or are 
too small for electron microscopy (Sugiki et al. 2017). 
In addition, NMR is a principal experimental technology 
for investigating protein dynamics at atomic level across 
a broad range of time scales (Palmer 2004, 2016). Like 
other molecules in solution, proteins undergo persistent 
global motions, namely translation and rotation, as well 
as segmental and residue-specific motions, including fast 
atomic fluctuation, sidechain rotation, and large-scale local 
structural change. Insights into residue-specific protein 
dynamics gained via NMR spectroscopy have unveiled 
critical correlations between protein dynamics and their 
functions (Alderson and Kay 2021). In solution NMR, 
a first sign of a change in protein oligomeric state may 
be reflected in the spectral linewidth as a consequence 
of an effect on overall rotational reorientation. Analyses 
of NMR spectral linewidth are still employed for evalu-
ation of protein oligomeric state (Bjorndahl et al. 2011). 
In fact, as a spectroscopic method, NMR readily provides 
a means for quantifying both translational and rotational 
motions of proteins, two key size dependent properties 
of molecules in solution. A previous report correlates 
molecular mass with rotational correlation time derived 
from 15N relaxation parameters of proteins from a range 
of studies (Maciejewski et al. 2000). Here, we limit our 

focus on the fundamentals of NMR measurement of pro-
tein translational diffusion coefficients and collective 15N 
relaxation parameters of backbone amides, without the 
need of knowing its 3D structure, to evaluate change in 
the protein oligomeric state.

Background

Molecular translational and rotational diffusion 
in solution

The dependence of molecular translational and rotational 
diffusion coefficients on the (effective) hydrodynamic radius 
( Rh ) in solution is described by the well-known Stokes–Ein-
stein (Einstein 1905) and the Debye–Stokes–Einstein equa-
tions (Debye 1929), respectively:

where kB is the Boltzmann constant, T is the absolute tem-
perature, and η is the viscosity of the solution. Equations 1 
and 2 indicate that the translational diffusion coefficient is 
inversely proportional to the effective hydrodynamic radius, 
Rh, of the molecule whereas the rotational correlation time, 
τc, is proportional to R3

h
 , i.e. the effective volume. In other 

words, when translational and rotational diffusion of bio-
molecules are coupled, the rotational correlation time would 
be generally considered to be significantly more sensitive 
than translational diffusion coefficient in probing changes 
of protein size/mass as a consequence of self-association, 
aggregation, etc.

Measuring molecular translational diffusion 
in solution by PGSE NMR

Effects of flow in NMR spectroscopy have been extensively 
explored with substantial advances achieved in quantitative 
mapping of fluid velocity with spatial resolution (Callaghan 
and Xia 1991; Pope and Yao 1993) and in application to 
angiography of blood vessels (Hartung et al. 2011). In par-
ticular, pulsed gradient spin echo (PGSE) NMR, since its 
introduction in the 1960s, has evolved into a key methodol-
ogy for non-invasively probing molecular translational dif-
fusion and associated properties, with applications spanning 
most disciplines where molecular motion is studied, includ-
ing chemical engineering and biomedicine. For example, 
PGSE NMR-based measurements of water translational 

(1)Dt =
kBT

6��Rh

,

(2)Dr =
1

6�c
=

kBT

8��R3

h

,



195European Biophysics Journal (2022) 51:193–204 

1 3

diffusion has been used to probe microstructure of porous 
materials (Stallmach and Karger 1999) and to serve as an 
imaging contrast agent, termed as diffusion-tensor MRI 
(Basser and Jones 2002). Both theoretical background as 
well as technical and practical aspects of PGSE NMR have 
been extensively reviewed (Price 1997, 1998), including var-
ious applications, for example in lipidic cubic phases (Lindb-
lom and Oradd 1994; Momot and Kuchel 2003; Rajput et al. 
2022). Basically, molecular self-diffusion (random walk) 
results in a loss of magnetization coherence in the presence 
of a field gradient. In the absence of flow, the application of 
a pair of linear pulsed gradients (dB0/dz) results in attenu-
ation of the NMR signal. This signal attenuation caused by 
(unrestricted) molecular translational self-diffusion for a 
molecule with a diffusion coefficient Dt in the presence of a 
pair of pulsed field gradients can be expressed as

where γ is the spin (1H) gyromagnetic ratio, and g, δe and Δ 
are the amplitude, effective duration and separation of the 
gradient pulses, respectively.

Evaluating molecular rotational reorientation 
via NMR relaxation measurements: 15N relaxation 
parameters of protein backbone amides

Exploring molecular motions/dynamics via NMR relaxa-
tion measurements can be traced back to the very early 
days when NMR was first discovered. Depending on 
the systems under study and the measured spin relaxa-
tion parameters, such as longitudinal or spin–lattice 
(T1) and transverse or spin–spin (T2) relaxation times, 
various factors, for instance multiple spin dipole–dipole 
interactions, cross-relaxation, chemical shift anisot-
ropy, etc., will contribute to experimentally measured 
spin relaxation parameters. Consequently, although the 
theory of NMR spin relaxation is well established, a 
reliable molecular rotational correlation time may not 
be readily extracted from the measured spin relaxation 
parameters in the absence of exhaustive modelling. 
For example, abundant 1H networks in the surrounding 
vicinity would significantly complicate the 1H relaxa-
tion parameters. In the last 2 decades, measurements 
of backbone 15N T1, T2, and steady state {1H}-NOE of 
uniformly isotope-enriched proteins, at one or mul-
tiple fields, have emerged as a thriving methodology 
for exploring protein backbone dynamics with residue 
specificity (Kay et al. 1989; Palmer 2016). In addition 
to uniform 15N labelled material being readily available 
for NMR structural studies of proteins, backbone 15N 
relaxation parameters are dominated by dipole–dipole 

(3)I = I0exp

{
−�2g2�2

e

(
Δ −

�e

3

)
Dt

}
,

interaction to the bonded hydrogen and, therefore, can 
be treated as a two-spin (H–N) system, which represents 
one of the simplest relationships between measured spin 
relaxation parameters and the overall molecular rota-
tional correlation and local dynamics. As an alternative 
to a direct (reduced) spectral density mapping for the 
evaluation of residue-specific backbone dynamics prior 
to (or in the absence of) a global rotational correlation 
time is defined (Farrow et al. 1995), a so-called model-
free formalism is commonly adopted for the analysis 
of experimentally measured 15N relaxation parameters. 
Based on the spectral density function, i.e. the Fourier 
transform of the correlation function, with the approxi-
mation that the dipole–dipole interactions from nuclei 
other than directly bonded protons to be negligible, com-
monly measured backbone 15N relaxation rates in the 
laboratory frame are expressed as

where d2 = 1

4
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2 with μ0 
being the permeability of vacuum, h being Planck’s constant, 
γH and γN being the gyromagnetic ratios of 1H and 15N, 
respectively, rNH = 1.02 Å being the H–N bond length, ωH 
and ωN being Larmor frequencies of 1H and 15N, respec-
tively, and ∆σ = (�‖ − �

⟂
) =  − 160 ppm being the chemical 

shift anisotropy of an 15N nucleus. In the model-free formal-
ism, assuming no cross-correlation between residue-specific 
internal motion and the global motion of the molecule, the 
spectral density function takes the following form (Lipari 
and Szabo 1982a, b):

where S2 is the order parameter and 1
�
=

1

�f
+

1

�m
 with τm 

being the global rotational correlation time of the protein 
and τf being the effective internal correlation time of indi-
vidual backbone amides. For the analysis of 13C relaxation 
of macromolecules (polymers or lipids) based on the two-
step model, the overall correlation (slow) time constant is 
usually estimated from relaxation parameters measured on 
a different nucleus, such as 14N, or 2H and 17O when 
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isotope-labelled nuclei are made available (Soderman and 
Henriksson 2020; Wong et al. 1989). In contrast, for studies 
of protein backbone dynamics via 15N relaxation measure-
ments, the overall correlation times of proteins, including a 
full rotation diffusion tensor when its 3D structure is avail-
able, are commonly estimated from a sub-group of backbone 
amides that do not exhibit slow internal motion and are not 
involved in chemical/conformational exchange process (Kay 
et al. 1989). An improved scheme for the estimation of iso-
tropic correlation times, using the above-mentioned sub-
groups of backbone amides and including additional 
restraints from 15N NOEs, has also been described (Yao 
et al. 1998). While 13C relaxation measurements of proteins, 
e.g. via selectively isotope-enriched methyl groups, have 
seen applications in probing protein sidechain dynamics, 
application to the evaluation of protein overall rotational 
motion is complicated due to the presence of 13C–13C cou-
pling in uniformly labelled proteins which are commonly 
used in NMR structural studies. Hence, protein overall rota-
tion correlation times derived from 15N relaxation parame-
ters of backbone amides often are used for the analysis of 
13C relaxation-based studies of protein sidechain dynamics 
(Jin et al. 2003).

Technical aspects and applications

Protein self‑diffusion in aqueous solution measured 
by PGSE NMR

PGSE NMR with water suppression

An extensive library of PGSE NMR sequences has been 
developed to meet with an increasing expansion of applica-
tions. As for NMR structural studies of proteins in solu-
tion, solvent suppression is a prerequisite for measuring 
translational diffusion coefficients of proteins by PGSE 
NMR. Several robust water suppression schemes are pulsed 
gradient based, such as WATERGATE (Piotto et al. 1992) 
and excitation sculpting (Stott et al. 1995) schemes for 1D 
and 2D homonuclear experiments; and the echo/anti-echo 
scheme, originally designed for sensitivity improvement 
(Palmer et al. 1991), for coherence selection in heteronu-
clear multidimensional experiments. PGSE NMR sequences, 
employing WATERGATE and excitation sculpting schemes 
to achieve water suppression, for measuring translational 
diffusion coefficients of proteins in aqueous solution have 
been introduced (Balayssac et al. 2009; Price et al. 2002). 
A stimulated echo sequence, featuring bipolar pulse pair 
(BPP-STE) after appending an excitation sculpting segment 
before signal acquisition, suitable for translational diffusion 
measurement of proteins in aqueous solution is shown in 
Fig. 1. The sequence also contains a weak presaturation 

pulse, for further improving the efficiency of water suppres-
sion, throughout the entire range of pulsed gradients used for 
PGSE NMR experiments. This weak presaturation pulse is 
beneficial when a single axis gradient pulse, e.g. Gz, is used 
for both diffusion encoding/decoding and water suppression, 
which is commonly true for spectrometers equipped with 
cryoprobes devoted to biological NMR. For the BPP-STE 
sequence shown in Fig. 1, which is less susceptible to instru-
mental imperfection and sample complexity in comparison 
to the standard STE sequence, the diffusion-induced signal 
attenuation in the presence of field gradient is given by

where τ1 is the time interval between the bipolar gradient 
pulses (within the encoding or decoding, see Fig. 1). When 
τ1 is sufficiently shorter than δe, Eq. 8 reduces to Eq. 3. It 
is worth noting that for the analysis of complex mixtures 
by PGSE NMR and for assessing or monitoring changes of 
protein translational diffusion under various conditions such 
as different stages of folding/unfolding, a partial region of 
the spectrum containing resonances arising from the pro-
tein or even a single protein resonance would be sufficient. 
PGSE NMR sequences involving the use of band-selective 
RF pulses (Yao et al. 2014a) or heteronuclear (e.g. 13C or 
15N) filters for measuring translational diffusion coefficients 
have also been reported (Augustyniak et al. 2011; Shukla 
and Dorai 2011; Yao et al. 2018). One of the advantages for 
a selective PGSE NMR sequence is that potential dynamic 
range issues causing by the presence of intense resonances 
from molecules other than the protein of interest, such 
as detergents, in the solution is avoided. In addition, the 
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Fig. 1  Schematic diagram of a BPP-STE PGSE NMR sequence after 
the incorporation of the excitation sculpting scheme for water sup-
pression suitable for measuring protein translational diffusion coeffi-
cients in aqueous solution (Yao et al. 2018). As a convention, narrow 
and wide filled bars represent 90° and 180° rf-pulses, respectively. 
The selective 180° pulses within the excitation sculpting scheme are 
shown in parabolic shape. Phases of rf-pulses are x, unless indicated. 
Gradient pulses used for diffusion encoding and decoding are marked 
with curved lines whereas the spoiled gradient (g1) and gradients (g2 
and g3) used in the excitation sculpting scheme are coloured grey.
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presence of possible (slow) chemical exchange will compli-
cate the interpretation of protein oligomeric state from the 
apparent diffusion coefficient determined by PGSE NMR 
(Chen et al. 1998; Johnson 1993). As a result, resonances 
arising from spins potentially involved in exchange, like 
amide protons in proteins, should be avoided for evaluating 
protein translational diffusion by PGSE NMR unless dedi-
cated sequences are used. While molecular diffusion meas-
ured by PGSE NMR using nuclear spins other than protons 
are less likely to be susceptible to exchange, in practice they 
are generally less favoured because of their reduced efficacy 
in diffusion weighting and low signal sensitivity due to their 
lower gyromagnetic ratio and natural abundance. Finally, if 
the presence of convection in the samples is of concern, e.g. 
when measurements are carried out far from ambient tem-
peratures, replacing the single STE with the double STE ver-
sion can be considered so as to correct for systematic errors 
introduced by convection (Jerschow and Muller 1997, 1998).

Calibration of pulsed gradient strength and data analysis

Calibration of pulse field gradient strength is critical for com-
parison of experimentally determined molecular translational 
diffusion coefficients with those measured from other tech-
niques, for example, dynamic light scattering. Calibrations 
can be carried out either on a sample containing solution with 
known physical dimensions or known diffusion coefficient 
under given conditions, such as commonly quoted diffusion 
coefficient of 1.90 ×  10–9  m2  s−1 for residual  H2O in a 100% 
2H2O sample at 298.13 K (Callaghan et al. 1983; Mills 1973). 
The back calculation gave nearly identical calibrated values 
for the field gradient to those resulted from gradient profiles 
of known sample dimensions, e.g. internal diameter of an 
NMR tube (Yao et al. 2000). Extracting translational diffu-
sion coefficients from PGSE NMR datasets involves non-
linear regression analysis of signal intensities using Eq. 8 or 
similar, depending on the details of the sequences used, for 
example, Eq. 3 if a single pair of gradients was used instead. 
A popular alternative to the non-linear regression for the 
analysis of PGSE NMR data involves the use of an inverse 
Laplace transformation along the diffusion encoding/decod-
ing dimension of the pseudo-2D dataset and the resultant 
spectrum subsequently termed as DOSY (diffusion-ordered 
spectroscopy) (Morris and Johnson 1992). This DOSY pres-
entation is sometimes considered preferable in analyses of 
mixtures of small molecules where resonances arise from 
different species, which are separated based on their diffu-
sion coefficients along the longitudinal axis of a DOSY plot. 
While the DOSY gives a magnificent spectroscopic view of 
molecular distribution based on their translational diffusion 
motions, it may be difficult to evaluate the outcomes of indi-
vidual resonances (molecules) quantitatively.

Translational diffusion of Bax‑∆C upon dimerization

Signal attenuations in the presence of pulsed gradients for 
the monomeric and dimeric forms of Bax-∆C, a key pro-
apoptotic Bcl-2 family protein with a construct mass of 
19 kDa for its monomeric form, is shown in Fig. 2. The 
resultant diffusion coefficients for the monomer and dimer 
are (1.215 ± 0.008) and (0.873 ± 0.005) ×  10–10  m2  s−1 at 
305 K, respectively (Yao et al. 2014b). Upon dimeriza-
tion, a 28% reduction of its translational diffusion motion 
was observed. In other words, an increase of 28% in the 
effective hydrodynamic radius was observed for the dimer 
of Bax-∆C compared to the monomer. A 26% increase in 
effective hydrodynamic radius is predicted by Eqs. 1 and 2 
for a spherical molecule with a doubling in volume/mass. 
This confirmation of both monomeric and dimeric forms 
of Bax-∆C is in excellent agreement with results from gel 
filtration carried out prior to the NMR measurements (Yao 
et al. 2014b).

Fig. 2  Translational diffusion coefficients of proteins in solution 
measured by PGSE NMR. Translational diffusion-induced signal 
attenuation in the presence of pulsed gradients for the monomeric and 
dimeric forms of Bax-∆C, a key pro-apoptotic Bcl-2 family protein. 
Data acquired at 305 K using a sequence similar to the one shown in 
Fig. 1, but with water suppression achieved using the WATERGATE 
scheme instead of excitation sculpting. Lines represent fits to Eq. 8. 
Redrawn from data in Yao et al. (2014b)
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Protein overall rotational reorientation evaluated 
via composite 15N relaxation parameters 
of backbone amides

15N longitudinal (R1 = 1/T1) and transverse (R2 = 1/T2) 
relaxation rates

As mentioned earlier, for the analysis of 13C relaxation of 
macromolecules, an overall correlation (slow) time of poly-
mer/lipids is commonly estimated from relaxation parame-
ters of a quadrupolar nuclear spin, such as 14N, or 2H and 17O 
if labelled isotopes are available in the molecules (Soderman 
and Henriksson 2020; Wong et al. 1989). Alternatively, 1H 
NMR relaxation times measured at low resonance frequen-
cies have been used for studying protein tumbling as the 
magnetic relaxation at low frequencies is dominated by over-
all Brownian rotation (Krushelnitsky 2006). The presence 
of molecules other than the protein of interest, such as small 
molecules or detergents frequently present for reasons of 
solubility and/or stability of proteins in solution, may limit 

the use of these methods due to poor spectral resolution. 
For evaluating protein oligomeric states, as a supplement 
to PGSE NMR described earlier, extracting protein overall 
rotational correlation times from composite 15N relaxation 
parameters of backbone amides is an attractive estimation 
prior to a residue-specific analysis. The pulse sequences 
depicted in Fig. 3 involve the use of echo/anti-echo for 
coherence selection (similar to standard hsqct1etf3gpsi and 
hsqct2etf3gpsi in Bruker pulse sequence library) and are 
suitable for measuring composite 15N relaxation rates, R1 
and R2, of protein backbone amides. Except for an additional 
heat compensation segment at the beginning in the 15N T2 
sequence, both sequences are composed of three basic seg-
ments: (1) an initial INEPT (insensitive nuclei enhanced by 
polarization transfer) to transfer magnetization from 1H to 
15N, (2) a variable 15N relaxation delay, and (3) a reverse 
INEPT (with sensitivity improvement) to transfer magneti-
zation from 15N back to 1H for detection.

Composite 15N R1 and R2 values can be obtained by fit-
ting the integrals of peaks across the entire amide region 

Fig. 3  Schematic diagrams of pulse sequences for the measurement 
of composite backbone amide: A 15N longitudinal (R1), and B trans-
verse relaxation (R2) rates. Same as Fig.  1, narrow and wide filled 
bars represent 90° and 180° rf-pulses, respectively. The phases for the 
rf-pulses are: A: Φ1 = {2(x),2(− x)}; Ψ1 = {4x,4(− x)}; Ψ2 = {y,− y}; 
Ψ3{2(x),2(− x)}; Ψ4 = {2(− y),2y,}; Φres = {x,2(− x),x,− x,2x,− x}, 
and B Φ1 = {2(x),2(− x)}; Ψ1 = {x,− x}; Ψ2 = {4(x),4(− x)}; 
Ψ3 = {2(x),2(− x)}n; Ψ4 = {2(− y),2y,}; Φres = {x,− x,− x,x}. The 

water flip-back rf-pulse is shown as parabolic shape filled in grey. 
The delay, Δ, in both the INEPT and reverse INEPT with sensitivity 
improvement segments are 1/(2JNH). The gradients used in echo/anti-
echo coherence selection are shown in solid and dashed parabolic 
shape (unfilled) with the spoiler gradients filled in grey. For the meas-
urements of collective 15N R1 and R2 relaxation rates, the 15N dimen-
sion is not acquired with the t1 delay set at ca. 6 μs.
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(typically, 7.0–10.0 ppm) to a two-parameter single-com-
ponent exponential decay and a four-parameter dual-com-
ponent exponential decay, respectively:

where Rf
2
 and Rs

2
 represent the shorter and longer compo-

nents of composite 15N transverse relaxation times, T2 = 1/R2, 
respectively. For a globular protein, Rf

2
 represents the 

(9a)I(t) = I(0)exp
(
−R1t

)
,

(9b)I(t) = If (0)exp
(
−Rf

2
t
)
+ Is(0)exp

(
−Rs

2
t
)
,

collective contribution of backbone amides subjected to rela-
tively restrained internal motion, such as those in and around 
its hydrophobic core, with If(0) >  > Is (0). For the estimation 
of protein rotational correlation time of globular proteins, Rf

2
 

is then used as an approximation of composite 15N transla-
tion relaxation rate of backbone amides not experiencing 
significant internal motion, and the spectral density function 
shown in Eq. 7 reduces to J(�) =

(
2

5

)
�c

1+(��c)
2 . An estima-

tion of rotational correlation time of a globular protein may 
be obtained through the ratio of collective backbone 15N Rf

2
 

and R1 relaxation rates similar to that used in 15N relaxation-
based protein backbone dynamics studies:

Effective rotational correlation times can then be esti-
mated from the collective 15N Rf

2
/R1 ratios using programs, 

such as Modelfree (AG Palmer III, Columbia University), 
TENSOR2 (Dosset et al. 2000), or NMRbox (Maciejewski 
et al. 2017), that are publicly available for the analysis of 
protein dynamics based on experimentally measured NMR 
relaxation parameters.

Rotational reorientation of Bax‑ΔC upon dimerization

An example of collective backbone 15N relaxation rates of 
monomeric and dimeric forms of Bax-ΔC protein are shown 
in Fig. 4. The resultant correlation for the monomeric and 
dimeric forms of Bax-ΔC are 9.46 and 18.68 ns, respec-
tively, representing an increase of ca. 97% upon dimeriza-
tion, which corresponds to an increase of 25.5% in effective 
hydrodynamics radius, Rh, based on Eq. 2 and is in excellent 
agreement with results from PGSE NMR described earlier.

Since the composite 15N relaxation parameters of back-
bone amides are used in evaluating protein rotational cor-
relation times, the inclusion of backbone amides experienc-
ing local/regional flexibility or conformational exchange will 
impact the estimated rotational correlation times to a certain 
extent. If potential exchange of backbone amides is sus-
pected, then relaxation dispersion (Palmer 2014) or chemical 
shift saturation transfer (Vallurupalli et al. 2017) experi-
ments could be used to identify those backbone amides and 
subsequently exclude them from the composite evaluation. 
Second, an accurate description of rotational diffusion ani-
sotropy is critical for subsequent analysis of protein back-
bone (typically by 15N relaxation) and sidechain dynamics 
(by 13C relaxation). The difference in terms of overall rota-
tion correlation time, however, is often minor. In the case of 
murine interleukin-3, a full anisotropic rotational diffusion 
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Fig. 4  Collective backbone 15N relaxation parameters, R1 (A), and Rf
2
 

(B) for monomeric (in black) and dimeric (in red) forms of Bax-ΔC. 
Lines represent fit to Eqs.  9a and 9b and the resultant fitted 15N R1 
and Rf

2
 are (1.54 ± 0.07)  s−1 and (11.0 ± 1.2)  s−1 for the monomer 

and (0.90 ± 0.10)  s−1 and (22.2 ± 2.9)  s−1 for the dimer, respectively. 
Redrawn from data in Yao et al. (2014b)
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tensor resulted in Dxx:Dyy:Dzz of 0.51:0.89:1.0 corresponding 
to an effective rotational correlation time of 10.77  ns 
( � =

1

6Dr

=
1

2(Dxx+Dyy+Dzz)
), compared to a value of 11.05 ns 

from an isotropic analysis (Yao et al. 2011).

15N cross‑correlated transverse relaxation rates of 15 N 
alpha (Rα) and beta (Rβ) spin states of backbone amides

In the case above, composite 15N backbone R1 and R2 of mono-
meric and dimeric forms of Bax-ΔC resulted in very satisfac-
tory agreement and confirmed by gel filtration profile used in 
the sample preparations. Clearly, the validity of evaluating pro-
tein rotational correlation times via composite backbone 15N 
relaxation parameters strongly depends on the compactness 
of the proteins under study. In other words, the significance of 
local motions, particularly those on slow timescale, such as con-
formational exchange to be specific, will impact the outcome. 
Furthermore, the presence of conformational exchange and the 
contribution of remote dipole–dipole interactions, in particular 
as the protein/protein complex mass increases, may significantly 
impact 15N transverse and longitudinal relaxation times. Conse-
quently, the estimation of protein rotational correlation times via 
the ratio of Rf

2
/R1, as described above, may become untenable. 

A dedicated pulse sequence for measuring protein rotational 
correlation times via collective cross-correlated 15N relaxation 
rates, named TRACT (TROSY for rotational correlation times), 
has been described (Lee et al. 2006). The TRACT experiment 
measures 15N transverse cross-correlated relaxation rates of the 
α- and β-spin state, respectively:

where λ, ηxy, RDD, and RCS are the auto-relaxation rate, the 
transverse cross-correlated relation rate, transverse relaxa-
tion due to dipole–dipole coupling with remote protons, and 
relaxation contributed from chemical exchange, respectively. 
The correlation time, τc is then calculated from the differ-
ence of 15N relaxation rates of the α- and β-spin states:

where d and c are the same as defined in Eqs. 4–6 and the 
spectral density function takes the reduced form of Eq. 7, 
J(�) =

(
2

5

)
�c

1+(��c)
2 , as described earlier. Angle θ is defined 

by the N–H bond and the unique axis of 15N chemical shift 
tensor, which is assumed to be axially symmetric. Clearly, 
the contribution of dipole–dipole coupling from remote pro-
tons and chemical exchange are eliminated in Eq. 12, which 
make the TRACT sequence superior to the basic 15N T1- and 
T2-based sequences as conventionally used for probing pro-
tein backbone dynamics via 15N relaxation parameters in the 
laboratory frame. A schematic diagram of the TRACT 
sequence, which adopts a TROSY scheme in the selection 
of spin state for detection, instead of a reverse INEPT as 
seen in conventional 1H–15N HSQC (Fig. 3), is shown in 
Fig. 5 (Lee et al. 2006).

(11a)R� = � − �xy + RDD + RCS,

(11b)R� = � − �xy + RDD + RCS,

(12)

(
R� − R�

)

2
= hxy = dc

(
4J(0) + 3J

(
�N

))(
3cos2� − 1

)
,

Fig. 5  Schematic  [15N, 1H]-
TRACT sequence for measur-
ing cross-correlated transverse 
relaxation rates of α- and β-spin 
state for 15N uniformed labelled 
proteins as proposed by Lee 
et al. (2006) As in Fig. 1, nar-
row and wide filled bars repre-
sent 90° and 180° rf-pulses. The 
selection of cross-correlated 
spin states is achieved via 
alternating phases of Ψ1 and Ψ2 
as follows: Ψ1 = {y,− y,− x,x}, 
Ψ2 = {− x} for α-spin state and 
Ψ2 = {x} for β-spin state, respec-
tively, and Φrec = {y,− y, x, − x}. 
The delay, Δ, in both the INEPT 
and TROSY segments are 1/
(2JNH).
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Rotational correlation time of the elonginBC and the SOCS 
box domain complex

Unlike the Bax-ΔC system shown earlier, for a 28 kDa 
complex formed by elonginBC and the SOCS box 
domain of SOCS3 (Babon et  al. 2008), the labora-
tory frame composite backbone 15N R1 and R2 failed 
to produce a sufficiently reliable R2 value for back-
bone amides, presumably due to substantial internal 
motion. The cross-correlated transverse relaxation rates 
of α- and β-spin states, Rα and Rβ, as measured using 
the TRACT sequences, resulted in a lower limit value 
for τc of 15.4 ns at 293 K (Yao et  al. 2008). Collec-
tive backbone 15N cross-correlated transverse relaxa-
tion rates of the elonginBC-SOCS box domain complex 
acquired using the TRACT sequence (Fig. 5) are shown 
in Fig. 6. The slight deviation from single exponential 
decay in both cross-correlated transverse relaxation rates 
are evident in Fig. 6 and reflect contributions to the 
composite profiles of 15N cross-correlated transverse 
relaxation rates from specific backbone amides under-
going relatively slower motions. It has been suggested 
that a narrow spectral region within the amide proton 
chemical shift range, that contains only dispersed reso-
nances arising from the folded fraction of protein, might 
minimize the interference (Fuglestad et al. 2017). The 
TRACT sequence has also been employed to evaluate 
proteins in a DHPC micelle complex (Edrington et al. 
2011) and reverse micelles (Nucci et al. 2011). Recently, 
a new algebraic solution for determining overall rota-
tional correlation times from cross-correlated transverse 
relaxation rates of spin-state α and β as measured using 
the TRACT sequence has been reported (Robson et al. 
2021).

Internal standard for diffusion coefficient 
and hydrodynamic radius

In theory, explicit molecular mass may be calculated from 
experimentally obtained translational diffusion coefficients 
when detailed solution properties, such as viscosity, and 
the shape factor of the proteins together with the amount of 
bound water, etc. are known (Cantor and Schimmel 1980). 
Assessing protein oligomeric state usually involves compar-
ing translational diffusion coefficients measured over time 
and/or over different solution conditions. To avoid complica-
tions arising from changes of solution conditions, small mol-
ecules, either already existing in the solution or purposely 
introduced, have been used as internal viscosity standards 
for PGSE NMR measurements (Chen et al. 1995; Jones et al. 
1997). These internal viscosity standards may also serve as 
a hydrodynamic radius reference if known for the reference 
molecule, e.g. dioxane with a calculated Rh

Ref of 2.12 Å, is 
frequently quoted (Wilkins et al. 1999). The apparent hydro-
dynamic radius of the protein, Rh

pro can then be calculated 
based on the Stokes–Einstein equation (Eq. 1):

This approach was employed in comparing native and 
urea-denatured lysozyme by PGSE NMR diffusion measure-
ments to avoid the complexities arising from variations in 
solution concentration and temperature (Jones et al. 1997). 
For example, the explicit effective hydrodynamic radii of 
murine interleukin-3 in two buffer solutions over a tempera-
ture range from 283 to 303 K were obtained by measuring 
translational diffusion coefficients of both the reference mol-
ecule, dioxane, and murine interleukin-3 (Yao et al. 2011). 
The dynamic range of diffusion-induced signal attenuation 
between protein and internal reference of small molecule 
should be considered. In other words, separate PGSE NMR 
experiments might have to be performed for the measure-
ment of the protein and the internal references. Recently, a 
selective PGSE NMR sequence capable of encoding differ-
ent species independently in a single experiment has been 
described (MacKinnon et al. 2021). The inclusion of small 
molecules as internal hydrodynamic radius references could 
also serve as an internal standard for evaluating rotational 
correlation of proteins via composite 15N relaxation meas-
urements as described above. The small molecule provides a 
means to assess if the change of observed correlation times 
is not due to a variation in solution conditions, such as vis-
cosity and pH. Small molecules other than dioxane may 
also be used as an internal reference as long as they do not 
interact with the protein or other solutes molecules in the 
solution. While dioxane has been frequently used as an inter-
nal reference of hydrodynamic radius in aqueous solution 

(13)R
pro

h
= RRef

h

(
DRef

t

D
pro

t

)
.

Fig. 6  Composite 15N cross-correlated transverse relaxation rates of 
α- and β-spin states for elonginBC in complex with the SOCS box 
domain of SOCS3 measured at 293  K for estimation of its rotation 
correlation time. Lines represent fits to single exponential (in blue) 
and dual-exponential decay (in red). Redrawn from data in Yao et al. 
(2008)
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(Wilkins et al. 1999), for high protein concentrations, it may 
be not a suitable probe for viscosity experienced by the pro-
tein (Rothe et al. 2016).

Conclusion

As a spectroscopic method, NMR provides a vital means 
for evaluating both translational and rotational motions of 
molecules in solution, a predominant mode for numerous 
characterizations of biomolecules. We have presented a 
mini-review on the evaluation of biomolecular oligomeric 
state in solution using NMR spectroscopy with a focus on 
practical aspects of PGSE NMR and composite backbone 
15N relaxation-based methods. Although protein trans-
lational and rotational diffusion may be decoupled under 
certain conditions, such as lateral diffusion in membranes 
(Macdonald et al. 2013) or under molecular crowding (Roos 
et al. 2015), in this review, translational and rotational cor-
relation are considered as remaining coupled, i.e. both Eqs. 1 
and 2 hold true, as is the case for the majority of protein 
structural, dynamic, binding and functional studies in aque-
ous solution by NMR. While the molecular rotational cor-
relation time is more sensitive than translational motion to 
changes in biomolecular oligomeric state, due to its indirect 
experimental accessibility, the rotational correlation time is 
more susceptible to experimental uncertainties or error. In 
contrast, direct measurement of molecular translational dif-
fusion by PGSE NMR is readily applied. Nevertheless, both 
methods provide supplementary experimental means for 
assessing protein oligomeric state in solution. However, we 
emphasize that changes in experimentally determined values 
of Dt and τc can occur in the absence of protein oligomeri-
zation, such as partial or extensive unfolding. Therefore, 
caution is needed in the interpretation of both translational 
and rotational parameters of proteins measured by NMR: 
the effects of anisotropy may be quite reduced for the over-
all apparent τc, but be more substantial for Dt. Other NMR 
spectral parameters should also be considered when changes 
are observed in Dt and τc. For example, partial unfolding of 
proteins is generally accompanied by significant difference 
in spectral features compared to structured proteins. Finally, 
when high-resolution 3D protein structures are available, 
tools for structure-based hydrodynamic calculations of pro-
tein translational and rotational motion can be applied (de 
la Torre et al. 2000; Rezaei-Ghaleh et al. 2013). PGSE and 
composite 15N relaxation NMR measures, however, provide 
an additional quality check for ensuring experimental condi-
tions of protein binding, interaction, screening, etc., are bio-
logically relevant. An improved quantitation of protein rota-
tional diffusion may become accessible by a full anisotropy 
analysis of rotational motion (Palmer 2004) or an alternative 

approach for the determination of rotational correlation time 
can be explored if necessary (Korchuganov et al. 2004).
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