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Abstract Transient structures in unfolded proteins are

important in elucidating the molecular details of initiation

of protein folding. Recently, native and non-native sec-

ondary structure have been discovered in unfolded

A. vinelandii flavodoxin. These structured elements tran-

siently interact and subsequently form the ordered core of

an off-pathway folding intermediate, which is extensively

formed during folding of this a–b parallel protein. Here,

site-directed spin-labelling and paramagnetic relaxation

enhancement are used to investigate long-range interac-

tions in unfolded apoflavodoxin. For this purpose, gluta-

mine-48, which resides in a non-native a-helix of unfolded

apoflavodoxin, is replaced by cysteine. This replacement

enables covalent attachment of nitroxide spin-labels MTSL

and CMTSL. Substitution of Gln-48 by Cys-48 destabilises

native apoflavodoxin and reduces flexibility of the ordered

regions in unfolded apoflavodoxin in 3.4 M GuHCl,

because of increased hydrophobic interactions in the

unfolded protein. Here, we report that in the study of the

conformational and dynamic properties of unfolded

proteins interpretation of spin-label data can be compli-

cated. The covalently attached spin-label to Cys-48 (or

Cys-69 of wild-type apoflavodoxin) perturbs the unfolded

protein, because hydrophobic interactions occur between

the label and hydrophobic patches of unfolded apoflavo-

doxin. Concomitant hydrophobic free energy changes of

the unfolded protein (and possibly of the off-pathway

intermediate) reduce the stability of native spin-labelled

protein against unfolding. In addition, attachment of MTSL

or CMTSL to Cys-48 induces the presence of distinct states

in unfolded apoflavodoxin. Despite these difficulties, the

spin-label data obtained here show that non-native contacts

exist between transiently ordered structured elements in

unfolded apoflavodoxin.

Keywords Unfolded protein � Flavodoxin � a–b Parallel

protein � Paramagnetic relaxation enhancement �
MTSL � CMTSL

Introduction

Understanding the molecular mechanisms of protein

folding is one of the fundamental challenges of structural

biology. Proteins initially fold from disordered unfolded

states. Transient structures in unfolded proteins are

important in elucidation of the molecular details of initia-

tion of protein folding. Early observations of residual

structure in unfolded proteins prompted the suggestion that

native-like structure is present in the denatured state

(Gillespie and Shortle 1997; Yi et al. 2000; Lietzow et al.

2002) and that this residual structure biases the subsequent

conformational search toward the native conformation (Yi

et al. 2000; Daggett and Fersht 2003). However, evidence
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of non-native structure has been found in the unfolded

states of few proteins (Kristjansdottir et al. 2005; Platt et al.

2005; Reed et al. 2006; Marsh et al. 2007).

Recently, non-native secondary structure and non-native

hydrophobic interactions have been observed in the

unfolded state of a 179-residue flavodoxin from Azoto-

bacter vinelandii (Nabuurs et al. 2008), which is the pro-

tein of interest in the study presented here. Remarkably,

structure formation in unfolded flavodoxin does not direct

folding to the native state, but instead causes formation of a

misfolded off-pathway intermediate (Nabuurs et al. 2009a).

Flavodoxins are monomeric proteins involved in elec-

tron transport and contain a non-covalently bound flavin

mononucleotide (FMN) cofactor. The proteins consist of a

single structural domain and adopt the flavodoxin-like or

a–b parallel topology (Fig. 1), which is widely prevalent in

nature.

Both denaturant-induced equilibrium and kinetic

(un)folding of flavodoxin and apoflavodoxin (i.e., flavo-

doxin without FMN) have been characterized using gua-

nidine hydrochloride (GuHCl) as denaturant (van Mierlo

et al. 1998; van Mierlo and Steensma 2000; Bollen et al.

2004, 2005, 2006; Bollen and van Mierlo 2005). The

folding data show that apoflavodoxin autonomously folds

to its native state, which is structurally identical with that

of flavodoxin except that residues in the flavin-binding

region of the apo protein have considerable dynamics

(Steensma et al. 1998; Steensma and van Mierlo 1998).

Binding of FMN to native apoflavodoxin is the last step in

flavodoxin folding.

Apoflavodoxin kinetic folding involves an energy land-

scape with two folding intermediates and is described by:

Ioff $ unfolded apoflavodoxin $ Ion $ native apoflavo-

doxin (Bollen et al. 2004). Intermediate Ion lies on the

productive route from unfolded to native protein, is highly

unstable and is, therefore, not observed during denaturant-

induced equilibrium unfolding of apoflavodoxin.

Consequently, GuHCl-induced equilibrium unfolding of

apoflavodoxin is described by: Ioff $ unfolded apoflavo-

doxin $ native apoflavodoxin (Bollen et al. 2004).

Approximately 90% of folding molecules fold via molten

globule-like off-pathway intermediate Ioff, which is a rela-

tively stable species that needs to unfold to produce native

protein and thus acts as a trap (Bollen et al. 2004). Elevated

protein concentrations (van Mierlo et al. 2000) and

molecular crowding (Engel et al. 2008) cause severe

aggregation of this species. The formation of an off-path-

way species is typical for proteins with a flavodoxin-like

topology (Bollen and van Mierlo 2005). An off-pathway

intermediate is experimentally observed for all other a–b
parallel proteins of which the kinetic folding has been

investigated, i.e., apoflavodoxin from Anabaena (Fernan-

dez-Recio et al. 2001), CheY (Kathuria et al. 2008),

cutinase (Otzen et al. 2007), and UMP/CMP kinase (Lorenz

and Reinstein 2008).

To better understand why the off-pathway intermediate

is formed during flavodoxin folding, GuHCl-unfolded

apoflavodoxin has been characterized at the residue-level

using heteronuclear NMR spectroscopy (Nabuurs et al.

2008, 2009a). Secondary shifts analysis and investigation

of 1H–15N relaxation rates reveal four structured elements

that transiently exist in unfolded apoflavodoxin. These

transiently ordered regions have restricted flexibility on

the (sub)nanosecond timescale and comprise residues

Ala-41–Gly-53, Glu-72–Gly-83, Gln-99–Ala-122, and

Thr-160–Gly-176 (Nabuurs et al. 2008). These regions

match with regions of large average area buried upon

folding (AABUF), which correlates with hydrophobicity

(Rose and Roy 1980) and corresponds to sequence-

dependent dynamic variations due to hydrophobic inter-

actions in unfolded proteins (Schwarzinger et al. 2002; Le

Duff et al. 2006).

Restricted flexibility in unfolded apoflavodoxin is due to

transient helix formation and local and non-local hydro-

phobic interactions (Nabuurs et al. 2008, 2009a). On

reducing the denaturant concentration, the four structured

elements in unfolded apoflavodoxin transiently interact and

subsequently form the ordered core of the molten globule

(Nabuurs et al. 2008, 2009a). As a consequence, the molten

globule has a totally different topology compared with

native apoflavodoxin: it is helical and contains no b-sheet

(Nabuurs et al. 2009b). Structure formation within virtually

all parts of unfolded apoflavodoxin precedes folding to the

Fig. 1 Schematic diagram of native C69A flavodoxin from A.
vinelandii (pdb ID 1YOB (Alagaratnam et al. 2005)). The protein

contains a parallel b-sheet surrounded by a-helices at either side of

the sheet. Residues Ala-69 and Gln-48 are shown in ball-and-stick
representation (coloured blue). The FMN cofactor is not shown
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molten globule state. This folding transition is non-coop-

erative and involves a series of distinct transitions

(Nabuurs et al. 2009a). Part of Ioff remains random coil

down to a GuHCl concentration of 1.58 M (i.e., residues

Lys-13 to Val-36).

To probe long-range interactions in unfolded apoflavo-

doxin and to consolidate the findings of non-native

interactions that lead to formation of the off-pathway

intermediate, in the study presented here use is made of site-

directed spin-labelling. Paramagnetic relaxation agents are

often used to investigate long-distance interactions in

unfolded proteins (Dyson and Wright 2005). Site-specific

labelling with thiol-specific nitroxide electron spin-labels,

for example MTSL ((1-oxy-,2,2,5,5-tetramethyl-D-pyrro-

line-3-methyl)-methanethiosulfonate) (Berliner et al. 1982)

or CMTSL ((1-oxy-,2,2,5,5-tetramethylpyrroline-3-yl)-

carbamidoethyl methanethiosulfonate) (Card et al. 2005)

(Fig. 2), enables determination of long-range contacts in

unfolded proteins (Mittag and Forman-Kay 2007). MTSL

(or CMTSL) can exist in two electronic states, an oxidized

paramagnetic state and a reduced diamagnetic state. In the

oxidized state an unpaired electron in MTSL (or CMTSL)

reduces the intensity of NMR signals of atoms that are

within approximately 20 to 25 Å of the spin-label, making it

a workable probe of distances in the range from 10 to 20 Å

in folded proteins (Gillespie and Shortle 1997). This

phenomenon of signal intensity reduction is called para-

magnetic relaxation enhancement (PRE). Regions of a

polypeptide chain that form tertiary interactions with the

spin-labelled region will exhibit strong PRE effects.

Conversely, regions that remain distant at all times from the

spin-labelled region should exhibit weak PRE effects.

Wild-type flavodoxin contains a single cysteine at

position 69. This cysteine is poorly accessible to solvent in

the holo form of the protein, because of the presence of

FMN. However, in apoflavodoxin it is solvent accessible

and can be used to attach a spin-label to the protein.

Another variant of apoflavodoxin with a single cysteine

was made for the purpose of the study presented here.

In the latter variant, Gln-48, which resides in the non-

native a-helix that is formed in unfolded apoflavodoxin

(Nabuurs et al. 2008), is replaced by cysteine. In native

apoflavodoxin Gln-48 and Cys-69 are positioned at oppo-

site sites of the protein (Fig. 1).

Here, we show that attachment of a hydrophobic spin-

label leads to hydrophobic interactions between the spin-

label and various residues of an unfolded protein. Such

perturbation of an unfolded protein has not been reported

previously, despite the common use of spin-labels to

characterise unfolded proteins. Still, even though this per-

turbation exists, valid information about residual structure

in unfolded apoflavodoxin is obtained.

Materials and methods

Sample preparation

Site-directed mutagenesis was used to replace the single

cysteine in wild-type A. vinelandii (strain ATCC 478)

flavodoxin II (i.e., WT flavodoxin) by alanine (i.e., C69A

flavodoxin, which is largely similar to WT flavodoxin

(Steensma et al. 1996; van Mierlo et al. 1998)). In addition,

glutamine at position 48 was replaced by cysteine, resulting

in the double mutant C69A-Q48C flavodoxin, hereafter

named Q48C flavodoxin.

Uniformly 15N-labelled Q48C and C69A flavodoxins

were obtained from transformed E. coli cells grown on
15N-labelled algae medium (Silantes, Germany). Uni-

formly 15N-labelled WT flavodoxin was obtained from

transformed E. coli cells grown on 15N-labelled minimal

medium. All protein variants were purified as described

elsewhere (van Mierlo et al. 1998).

Unfolded apoflavodoxin was obtained by denaturing

flavodoxin in 6 M GuHCl. Subsequently, FMN was

removed via gel filtration in 5 M GuHCl. WT and Q48C

protein variants were labelled with MTSL or CMTSL

(Toronto Research Chemicals, Toronto, Canada) by adding

a 3:1 molar ratio of spin-label to unfolded protein at room

temperature. After 2 h, free spin-label was separated from

labelled protein by gel filtration. Spin-labelled WT and

Q48C apoflavodoxin are referred to as WT(C)MTSL and

Q48C(C)MTSL apoflavodoxin, respectively.

N
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O

S

O2S

CH3

O

N

S

SO2

O

H3C(a)

(b)

Fig. 2 Schematic representations of the chemical structures of the

hydrophobic compounds MTSL (a) and CMTSL (b). Because of

the presence of an amide group in the linker between protein and the

proxyl ring in CMTSL this spin-label is more polar than MTSL
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All NMR samples contained about 0.3–0.5 mM apofl-

avodoxin, 10% D2O, and 2,2-dimethyl-2-silapentane-5-

sulfonic acid (DSS) as internal chemical shift reference.

To avoid covalent dimerisation of protein molecules that

are not spin-labelled, a sufficient amount of DTT was

present in samples of WT and Q48C apoflavodoxin.

The buffer used in all experiments was 100 mM potas-

sium pyrophosphate (KPPi), pH 6.0, and refractometry was

used to verify GuHCl concentration (Nozaki 1972).

NMR experiments

Gradient enhanced 1H–15N HSQC spectra were recorded

on a Bruker Avance 700 MHz machine. Sample tempera-

ture was kept at 25�C. In the 1H dimension of the 1H–15N

HSQC experiments, 2048 complex data points were

acquired, whereas in the indirect 15N dimension 360

complex data points were collected. Spectral widths were

6010 and 1750 Hz in t2 and t1, respectively, and the

number of scans was 16. All NMR experiments performed

with spin-labelled protein in the paramagnetic state were

repeated using spin-labelled protein in the diamagnetic

state. Diamagnetic protein was obtained by adding 5 ll

concentrated stock solution of ascorbic acid to the NMR

samples containing paramagnetic protein (the resulting

dilution of the NMR sample was less than 1%). This

addition resulted in a threefold molar excess of ascorbic

acid compared with protein.

Fluorescence spectroscopy

Thermal unfolding of C69A apoflavodoxin, Q48C apofl-

avodoxin, and Q48CMTSL apoflavodoxin was followed by

fluorescence emission. Protein unfolding was achieved by

increasing the temperature in a 1.5-ml stirred quartz

cuvette (path-length 0.4 cm) from 20 to 70�C at a rate of

0.5�/min. Temperature was measured in the cuvette by

using an internal probe. The excitation wavelength used

was 280 nm, and fluorescence emission was recorded at

340 nm. Excitation and emission slits were set at 5 nm.

In thermal unfolding experiments, protein was in 100 mM

KPPi, pH 6.0, and protein concentration ranged between 4

and 6 lM.

Data analysis

NMR data

All NMR data were processed using NMRPipe (Delaglio

et al. 1995) and analysed using NMRViewJ (Johnson and

Blevins 1994). Paramagnetic relaxation enhancements by

nitroxide spin-labels in unfolded apoflavodoxin variants

were measured as ratios of maximal cross peak intensities,

I, between 1H–15N HSQC spectra of unfolded WT(C)MTSL

or Q48C(C)MTSL apoflavodoxin in the paramagnetic and

diamagnetic state, respectively:

Intensity ratio ¼ Ipara=Idia ð1Þ

Thermally induced equilibrium unfolding data

The change in free energy for thermally induced protein

unfolding, DG(T), is described by the modified Gibbs–

Helmholtz equation:

DGðTÞ ¼ DHm 1� T=Tmð Þ
� DCp Tm � Tð Þ þ T ln T=Tmð Þ½ � ð2Þ

where DHm is the enthalpy change for unfolding measured

at Tm, T is the absolute temperature, Tm, is the temperature

at the midpoint of the (un)folding transition, and DCp is

the difference in heat capacity between the unfolded

and folded states (Pace and Laurents 1989). Under the

assumption that DCp is temperature-independent (Privalov

and Khechinashvili 1974; Becktel and Schellman 1987), a

two-state mechanism of unfolding can be fitted to

individual thermal unfolding curves:

Yobs ¼ ðaU þ bUTÞ

þ aN þ bNTð Þ � aU þ bUTð Þð Þ
1 + exp �DHm=Rð Þ 1=T � 1=Tmð Þð Þ þ DCp=R

� �
Tm=Tð Þ � 1ð Þ + ln T=Tmð Þð Þ

� �� �� �

ð3Þ

where Yobs is the measured fluorescence signal, R is the gas

constant, and a and b are the intercepts and slopes,

respectively, of the pre-unfolding and post-unfolding

baselines.

Results and discussion

Introducing a cysteine at position 48 and subsequent

labelling with MTSL both reduce the thermal midpoint

of unfolding of apoflavodoxin

Thermal-induced unfolding experiments show that

replacement of Gln-48 by Cys-48 destabilizes native apo-

flavodoxin in 100 mM KPPi at pH 6.0. Fluorescence

emission enables monitoring of unfolding of native protein

molecules, because both folding intermediate and unfolded

apoflavodoxin have comparable fluorescence signals.

Using fluorescence emission, the thermal midpoint of

unfolding (Tm) of Q48C apoflavodoxin is determined to be

40.4 ± 0.2�C, whereas C69A apoflavodoxin has a Tm of

48.2 ± 0.1�C (Fig. 3). Attachment of the MTSL spin-label

to Cys-48 further reduces Tm to 33.0 ± 1.6�C.
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Introducing a cysteine at position 48 changes

the dynamic features of unfolded apoflavodoxin

Comparison of chemical shifts of cross peaks in 1H–15N

HSQC spectra of Q48C and C69A apoflavodoxin in 3.4 M

GuHCl previously showed that replacement of a glutamine

by a cysteine at position 48 leads to chemical shift changes

in unfolded apoflavodoxin. These chemical shift changes

indicate long-range non-native interactions between tran-

siently formed helices in unfolded apoflavodoxin (Nabuurs

et al. 2008).

In 3.4 M GuHCl, several cross peak intensities of

unfolded Q48C apoflavodoxin are reduced compared with

the cross peak intensities of the backbone amides

of unfolded C69A apoflavodoxin, because of broadening of

cross peaks. This broadening is caused by reduced flexi-

bility of backbone amides. Fig. 4 shows that four distinct

regions in unfolded Q48C apoflavodoxin have reduced

flexibility of their backbone amides compared with the

corresponding amides of unfolded C69A apoflavodoxin.

These distinct regions coincide with the four regions with

restricted flexibility detected in unfolded C69A apoflavo-

doxin (Nabuurs et al. 2008), which are highlighted by

grey bars in Fig. 4. Consequently, upon replacing Gln-48

by Cys-48 the four regions with restricted flexibility

in unfolded apoflavodoxin become even less flexible,

probably because of non-native hydrophobic interactions

between Cys-48 and the four ordered regions identified.

Unfolded Q48C apoflavodoxin in 6.0 M GuHCl

behaves as a random coil; subsequent attachment

of MTSL causes the protein to become more ordered

Far-UV CD data and transverse relaxation rates (Nabuurs

et al. 2008) show that C69A apoflavodoxin in 6.0 M Gu-

HCl behaves as a random coil. The Q48C variant of apo-

flavodoxin is also a random coil in 6.0 M GuHCl. This

random coil behaviour is concluded because the 1H–15N

HSQC spectra of both Q48C and C69A apoflavodoxin at

this concentration denaturant are very similar regarding

both cross peak positions and cross peak intensities (data

not shown).

The ratios between cross peak intensities of reduced

Q48CMTSL and Q48C apoflavodoxin, both unfolded in

6.0 M GuHCl, are shown in Fig. 5. The direct sequential

neighbours of Cys-48 are either not visible or could not be

assigned in the 1H–15N HSQC spectrum of Q48CMTSL

apoflavodoxin. In 6.0 M GuHCl, the backbone amides of

Ser-40, Ala-41, Glu-42, Ile-51, Leu-52, and Gly-53 of

reduced Q48CMTSL apoflavodoxin have reduced intensities

compared with the corresponding intensities in the HSQC

spectrum of Q48C apoflavodoxin (Fig. 5). Restricted

motions of these residues because of interactions with

MTSL most likely cause this decrease.
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Fig. 3 Thermal unfolding of apoflavodoxin shows that replacement

of Gln-48 by Cys-48 and subsequent attachment of an MTSL spin-

label to Cys-48 both destabilize the protein against thermal unfolding.

Through detection of changes in fluorescence emission at 340 nm

thermal unfolding is measured for C69A apoflavodoxin (black dots),

Q48C apoflavodoxin (red dots), and Q48CMTSL apoflavodoxin (blue
dots). Midpoints of unfolding are 48.2 ± 0.1�C for C69A apoflavo-

doxin, 40.4 ± 0.2�C for Q48C apoflavodoxin, and 33.0 ± 1.6�C for

Q48CMTSL apoflavodoxin
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Fig. 4 Upon replacing Gln-48 by Cys-48 the four regions with

restricted flexibility in unfolded apoflavodoxin in 3.4 M GuHCl

become less flexible. Shown are the ratios between cross peak

intensities of backbone amides of unfolded Q48C apoflavodoxin

(IQ48C) and unfolded C69A apoflavodoxin (IC69A). The ratio IQ48C/

IC69A of residue 179 is set to 1. Horizontal grey bars highlight the four

regions of unfolded C69A apoflavodoxin with restricted flexibility on

the (sub)nanosecond timescale (Nabuurs et al. 2008)
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Fig. 5 Attachment of MTSL to unfolded Q48C apoflavodoxin in

6.0 M GuHCl causes the protein to behave in a more ordered fashion

than random coil apoflavodoxin. Shown are the ratios between cross

peak intensities of backbone amides of unfolded Q48CMTSL apofl-

avodoxin in the diamagnetic state (IMTSL) and unfolded Q48C

apoflavodoxin (Inolabel), which are both in 6.0 M GuHCl. The ratio

IMTSL/Inolabel of residue 179 is set to 1. The green dot indicates the

position of the spin-label
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In conclusion, attachment of MTSL to unfolded Q48C

apoflavodoxin in 6.0 M GuHCl causes the protein to

behave in a more ordered fashion than random coil

apoflavodoxin.

Use of PRE experiments

Magnetic interaction between an unpaired electron in a

paramagnetic nitroxide spin-label and a nearby proton

causes broadening of the corresponding 1H NMR signal

because of the increased transverse relaxation rate of the

proton involved (Gillespie and Shortle 1997). This relax-

ation rate has an r-6-dependence on electron–proton dis-

tance and thus enables detection of long-range interactions

in proteins. Consequently, ratios of cross peak intensities

(Ipara/Idia) extracted from two redox state-dependent
1H–15N HSQC spectra of the spin-labelled protein enable

estimation of distances between the spin-label and affected

protons in the protein (Teilum et al. 2002). Because of the

ubiquitous backbone fluctuations in unfolded apoflavo-

doxin (Nabuurs et al. 2008), no attempt is made to extract

quantitative distances from the data. Rather, a trend in PRE

as a function of primary structure can be observed, as

shown in the following discussion.

PRE shows that WTMTSL apoflavodoxin in 6.0 M

GuHCl does not behave as a random coil, because

of hydrophobic interactions between MTSL and

unfolded protein

1H–15N HSQC spectra were acquired of MTSL-labelled

WT apoflavodoxin and Q48C apoflavodoxin both unfolded

in 6.0 M GuHCl, with the spin-label either in the para-

magnetic or the diamagnetic state. Subsequently, the ratios

of the intensities of cross peak maxima (Ipara/Idia) of

backbone amides were determined. Fig. 6 shows these

ratios and demonstrates that for both protein variants res-

onances of residues that are sequential neighbours of the

cysteine to which a nitroxide radical is attached are

broadened beyond detection. In addition, for WTMTSL

apoflavodoxin the nitroxide radical also reduces the back-

bone amide cross peak intensities of residues Ser-40–Leu-

62. PRE data of WTMTSL apoflavodoxin thus indicate that

Gln-48 is in the vicinity of the spin-label that is attached to

Cys-69. Our observations show that in 6.0 M GuHCl

WTMTSL apoflavodoxin does not behave as a random coil.

In contrast with the above observation, PRE data of

Q48CMTSL apoflavodoxin (Fig. 6b) show no evidence of an

interaction between Cys-48 and Ala-69. Note however, as

discussed in a previous section, that attachment of MTSL

to unfolded Q48C apoflavodoxin in 6.0 M GuHCl causes

the protein to behave more ordered than random coil

apoflavodoxin. The nitroxide radical of MTSL attached to

Cys-48 does not broaden resonances of residues in the

vicinity of Ala-69 (the cross peak of the backbone amide of

Ala-69 suffers from severe overlap and is thus not

assigned). The interaction between the MTSL spin-label

attached to Cys-69 and region Ser-40–Leu-62 of unfolded

apoflavodoxin in 6.0 M GuHCl is thus due to hydrophobic

interactions of the label with residues in this region. Sim-

ilar hydrophobic interactions with MTSL spin-label were

also observed in dimerization studies of ARNT PAS-B

(Card et al. 2005).

In both WTCMTSL and Q48CCMTSL apoflavodoxin

unfolded in 3.4 M GuHCl the spin-label interacts

with four transiently structured regions

To reduce hydrophobic interactions in unfolded apoflavo-

doxin due to MTSL, another spin-label, i.e., CMTSL (Card

et al. 2005), which is more hydrophilic than MTSL, was

chosen as paramagnetic relaxation agent. Compared with

MTSL, CMTSL contains an additional amide group in the

linker between protein and the proxyl ring (Fig. 2), thereby

introducing a degree of polarity into an otherwise hydro-

phobic compound.

Figure 7a and b show the ratios of the intensities of

HSQC cross peak maxima (Ipara/Idia) of backbone amides

of the paramagnetic and diamagnetic states of WTCMTSL

apoflavodoxin and Q48CCMTSL apoflavodoxin, respec-

tively, which are both unfolded in 6.0 M GuHCl. The

0

0.2
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1
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(b)
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Fig. 6 PRE of amide protons of WTMTSL apoflavodoxin and

Q48CMTSL apoflavodoxin, which are both unfolded in 6.0 M GuHCl.
1H–15N HSQC spectra of both protein variants with the spin-label

either in the paramagnetic or diamagnetic state were recorded at

25�C. Subsequently, the ratio of the intensities of cross peak maxima

(Ipara/Idia) of backbone amides was determined. Shown are Ipara/Idia of

a WTMTSL apoflavodoxin and b Q48CMTSL apoflavodoxin. Green
dots highlight the positions of the spin-label. Red bars in (a) highlight

residues for which no cross peaks are visible in the HSQC spectrum of

the protein with paramagnetic spin-label, but for which cross peaks

are observed when the spin-label is diamagnetic
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pattern of interactions of the CMTSL spin-label in both

unfolded proteins is similar to the pattern of interactions

observed using MTSL as spin-label. Consequently, also

with CMTSL attached to unfolded apoflavodoxin in 6.0 M

GuHCl, hydrophobic interactions exist between the spin-

label at position 69 and the hydrophobic region comprising

residues 40–60 of unfolded apoflavodoxin.

In Fig. 7c and d PRE data of WTCMTSL and Q48CCMTSL

apoflavodoxin in 3.4 M GuHCl are shown. In both

WTCMTSL and Q48CCMTSL apoflavodoxin the CMTSL

spin-label interacts with various regions of the unfolded

protein. In particular, interactions are observed between the

spin-label and the four transiently structured regions in

unfolded apoflavodoxin in 3.4 M GuHCl, strengthening

our previous findings (Nabuurs et al. 2008) that non-native

contacts do, indeed, exist between transiently ordered

structured elements in unfolded apoflavodoxin.

In Q48CCMTSL apoflavodoxin unfolded in 3.4 M GuHCl,

the spin-label interacts with residues spread over the entire

sequence of the protein. Residues 40 to 54 and Leu-78 stand

out, as the corresponding backbone amide resonances are

broadened beyond detection in the paramagnetic state of the

unfolded protein. These residues will be discussed in the

next section. In addition, resonances of residues 82 to 129

are more severely broadened than the resonances of most of

the residues of unfolded Q48CCMTSL apoflavodoxin.

The attached spin-label induces the presence of two

distinct states in unfolded apoflavodoxin

We notice that in the HSQC spectrum of reduced

Q48CMTSL and Q48CCMTSL apoflavodoxin in 3.4 M Gu-

HCl multiple cross peaks are observed for several back-

bone amides. We focus here on Q48CCMTSL apoflavodoxin

for which two cross peaks are observed for each individual

backbone amide of residues Ser-40, Ala-41, Glu-42, Gln-

46, Phe-49, Leu-50, Leu-52, Gly-53, Thr-54, and Leu-78.

In Fig. 8 examples of this cross peak doubling are shown.

For each doubled cross peak it is observed that upon

bringing the spin-label into the paramagnetic state one of

these two cross peaks broadens beyond detection (this

disappearing cross peak is used to calculate Ipara/Idia of the

corresponding residues in Fig. 7c,d). Doubling of the cross

peaks of the residues mentioned is not because of the

presence of non-labelled protein molecules. In the latter

case, additional cross peaks would appear at different

positions in the HSQC spectrum, as the HSQC spectrum of

Q48C apoflavodoxin in 3.4 M GuHCl shows (Fig. 8).

A plausible explanation of the observed doubling of

cross peaks is that the attached spin-label induces the

presence of two distinct states in unfolded apoflavodoxin.

In one of these states the spin-label is in the proximity of

the above-mentioned residues whereas in the other state it

is not. Both folding states are in slow exchange with one

another on the NMR chemical shift time scale, because two

separate, sharp cross peaks are observed per backbone

amide of the residues discussed.

Leu-78 is the only residue that is not sequentially close

to the CMTSL-label at position 48, but nevertheless gives

rise to two backbone amide cross peaks. Indeed, chemical

shift deviations upon replacing residue 48 show that

interactions between Cys-48 and Leu-78 must exist in

unfolded apoflavodoxin (Nabuurs et al. 2008). Residual

structure that is neither an a-helix nor a b-sheet is found in

the region Glu-72–Gly-83 of unfolded apoflavodoxin

(Nabuurs et al. 2008). These observations are further sup-

port for the existence of persistent hydrophobic interactions

between Leu-78 and the CMTSL spin-label in one of the

(a)

(b)

(c)

(d)
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Fig. 7 PRE of amide protons of WTCMTSL and Q48CCMTSL apofl-

avodoxin unfolded in GuHCl at 25�C. The ratio of the intensities of

HSQC cross peak maxima (Ipara/Idia) of backbone amides was

determined as described in the legend of Fig. 6. Shown are Ipara/Idia

of a WTMTSL and b Q48CMTSL apoflavodoxin, both in 6.0 M GuHCl,

and Ipara/Idia of c WTMTSL and d Q48CMTSL, both in 3.4 M GuHCl.

Green dots highlight the positions of the CMTSL spin-label. Residues

Ser-40, Ala-41, Glu-42, Gln-46, Phe-49, Leu-50, Leu-52, Gly-53,

Thr-54, and Leu-78 of Q48CCMTSL apoflavodoxin in 3.4 M GuHCl

each give rise to two backbone amide cross peaks (a few examples are

shown in Fig. 8) and are indicated with red bars in (d)
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two distinct states within unfolded Q48CCMTSL apoflavo-

doxin. The tertiary interaction between residues 48 and 78

in unfolded apoflavodoxin, as revealed by PRE experi-

ments, must be non-native. The latter is concluded because

complete disappearance of the backbone amide cross peak

of Leu-78 implies that the distance between residues 48

and 78 must be much shorter than the 17.28 Å distance

between the corresponding Ca atoms in native flavodoxin

(calculated using the X-ray structure of A. vinelandii fla-

vodoxin (Alagaratnam et al. 2005)).

Introducing cysteine residues in (unfolded) proteins to

enable labelling with probes is used frequently (Fanucci

and Cafiso 2006; Clore et al. 2007). To detect long-range

interactions within (natively) unfolded proteins, for

example apomyoglobin (Lietzow et al. 2002), a-synuclein

(Bertoncini et al. 2005), ACBP (Teilum et al. 2002), and

N-PGK (Cliff et al. 2009), MTSL is widely used as a nitr-

oxide spin-label. However, the results presented here show

that in an unfolded protein covalent attachment of a spin-

label to cysteine can introduce hydrophobic interactions

between the hydrophobic spin-label and various amino acid

residues. These interactions alter the hydrophobic free

energy (Baldwin 2005) of the unfolded state (and possibly

of the off-pathway intermediate) and, as a consequence, the

free energy difference between native apoflavodoxin and

non-native protein molecules diminishes. Indeed, covalent

attachment of a MTSL-label can alter the stability of the

protein involved, as is shown here for native apoflavodoxin

and as is reported for ACBP variants (Teilum et al. 2002).

Remarkably, in contrast with unfolded apoflavodoxin, no

hydrophobic interactions, either short-range or long-range,

with the MTSL-label have been reported for the unfolded

proteins mentioned. Neither has doubling of cross peaks of

these spin-labelled unfolded proteins been reported.

Native apoflavodoxin is an a–b parallel protein and

contains in its core many hydrophobic residues that are

shielded from the solvent. It is possible that in unfolded

protein these residues are susceptible to hydrophobic

interactions with the hydrophobic nitroxide spin-labels

used. These interactions can give rise to the existence of

distinct states in the unfolded protein, as this work shows.

Despite the difficulties mentioned, the spin-label data

obtained here show that non-native contacts exist between

transiently ordered structured elements in unfolded

apoflavodoxin.
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