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Abstract
Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne 
diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces 
challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-
occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the 
goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their 
microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The 
majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species 
for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito 
genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, 
Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.
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Introduction

Mosquito-borne diseases disproportionately impact nations 
in the tropics, with Sub-Saharan Africa bearing a sizable 
burden [48, 61]. Annually around the world, there are 
between 100 and 400 million cases of Dengue fever, 200,000 
cases of yellow fever, 249 million cases of malaria, and sev-
eral hundred periodic cases of Rift Valley fever [6, 10, 14, 
21, 38, 50, 61–63]. While some control efforts have stag-
nated over time, Rwanda has effectively reduced the number 
of malaria cases by 3.8 million from 2020 to 2022 [27, 63].

Despite this remarkable reduction, challenges still exist 
in further reducing arbovirus and parasite transmission. 
One mode of control that shows potential in pushing toward 
reduction goals is microbial manipulation of mosquito 
hosts [7, 15, 19, 24, 32, 35, 54, 56, 58, 59]. Introduction 

of bacteria of the genera Asaia, Serratia, and Wolbachia 
into the mosquito microbiome have all been implicated as 
potential methods for pathogen and parasite control. These 
bacteria can either trigger an immune response in the mos-
quito that can help reduce prevalence of pathogens and para-
sites or can directly compete with invading microbes [29, 23, 
28, 46, 51, 56, 58]. Though the World Mosquito Program 
has begun implementing the release of Wolbachia-infected 
Aedes mosquitoes with success, there are still numerous 
uncertainties regarding in situ release and efficacy of these 
methods [25, 36, 42, 64].

In order to better understand the probability of success for 
microbial methods of control in East Africa, a background 
understanding of naturally formed mosquito host and micro-
biome communities is needed. While we are still building 
our understanding of factors that influence the formation of 
mosquito microbiomes, we know that the environment plays 
an important role and is scale dependent [2, 13, 18, 57].

In this study, we aimed to characterize the mosquito and 
microbial communities of two sites in Rwanda. We hypoth-
esized that there would be differences in microbial compo-
sition among mosquito taxa, mosquito sexes, and whether 
mosquito females were visibly blood-fed or not. Future 
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studies may better characterize regional differences using 
this study as a baseline description of mosquito communi-
ties and establishment of novel records for mosquitoes in 
Rwanda.

Methods

Site Selection and Research Permit

Two sampling sites in Rwanda were selected for characteri-
zation of mosquito microbiomes. Samples were collected in 
February 2019 between the peak dry and wet seasons. Sites 
were selected that had nearby (< 500 m) frequently traversed 
walking paths. Sites were also secondary growth forests with 
similar canopy and ground cover. Site 1 (Nyabugogo dis-
turbed) was near Kigali, upland of Nyabugogo marsh, and 
in a grove of trees in a highly disturbed area with densely 
packed temporary housing with poor sanitation conditions. 
Site 2 (Huye campus) was the arboretum on the Huye cam-
pus of the University of Rwanda which contains a footpath 
frequently traversed by members of the community but no 
settlements in the immediate vicinity of the site.

Ethics Statement

Field sampling was performed under the authority of the 
Rwandan National Council for Science and Technology 
(NCST) under Permit # NCST/482/62/2018.

Specimen Collection, Storage, and Extraction

Mosquito samples were collected by kicking through the 
brush along the transect away from the trail and catching 
mosquitoes that emerged from the brush. These were then 
caught by gloved hand or by aspirator for a 3-h period at 
sunrise. A new pair of gloves was used between specimens 
or cleaned with 70% ethanol between grabs or aspirator 
collections. Additional samples at each site were collected 
while resting on surrounding foliage using either aspirator or 
hand catch with gloves. Samples were frozen at − 20 °C upon 
collection until they could be processed, and then had the 
head and legs removed before being homogenized. Samples 
were individually stored in 1X DNA/RNA Shield (Zymo 
Research) and were extracted using Quick DNA/RNA Mag-
Bead kits (Zymo Research) and stored at − 80 °C.

Cytochrome C Oxidase Subunit I Barcoding

Mosquito species identification was performed using 
cytochrome c oxidase subunit I conserved gene barcod-
ing. PCR was performed using the standard LCO1490 
and HCO2198 primers to target a 710-bp fragment [20]. 

Polymerase chain reaction (PCR) was executed in duplicate 
using 10 µL 5Prime HotMasterMix (Quantabio), 11 µL PCR 
grade water, 1 µL 10 uM LCO1490), 1 µL 10 uM HCO2198, 
and 2 µL template DNA [20]. The PCR cycling conditions 
were 94 °C for 3 min, 35 cycles of 94 °C for 45 s, 50 °C for 
60 s, and 72 °C for 90 s, followed by 72 °C for 10 min. Sam-
ples were then pooled and sent to MC Lab (South San Fran-
cisco, CA, USA) for PCR clean-up and sequencing using 
an ABI 3730XL sequencer. Upon retrieval of sequences 
from MC Lab, FASTA sequences were matched to mos-
quito species-level identifications using the BOLD Systems 
Identification Engine for all records on BOLD as of March 
2020 [47]. The highest percentage match at the species level 
of identification was used as the positive identification of 
the sample. Samples with exceptionally poor species level 
matches (< 85%) were not included in further analyses uti-
lizing the taxonomic identification. To ensure that identifi-
cation of each species would be highly likely in Rwanda, 
species were all cross-referenced in BOLD, the Walter Reed 
Biosystematics Unit Systematic Catalogue of Culicidae, 
and the broader literature for known records of presence in 
East Africa (see the Supplementary information). Identified 
species of mosquitoes were broadly classified into gener-
alized habitat use groups (Domestic, Sylvatic, Ubiquitous, 
Unknown, or Wetland) based on existing literature of habitat 
use, particularly in East Africa whenever possible (see refer-
ences in the Supplementary information).

Microbiome Sequencing and Preparation

The 16S rRNA gene V4 region was amplified by PCR using 
the standard 515F and 806R primers with barcodes on the 
forward primer consistent with the Earth Microbiome Pro-
ject (EMP) protocols [4, 12, 13, 44, 55]. PCR was performed 
with minor modifications to the EMP protocols, amplifying 
samples and controls (including extraction controls and PCR 
controls) in duplicate using 10 µL 5Prime HotMasterMix 
(Quantabio), 8.5 µL PCR grade water, 3.5 µL 10 uM 806R, 
3.5 µL 10 uM barcoded 515F, and 2 µL template DNA. 
Cycling conditions followed the standard EMP protocol and 
can also be found listed above in the methods section on 
COI barcoding. PCR-amplified samples were then normal-
ized using the Mag-Bind Pure Library Normalization Kit 
(Omega Bio-Tek) and pooled for library quantification and 
subsequent dilution using a Qubit 2 Fluorometer (Invitro-
gen). PhiX was added according to recommendations from 
the Earth Microbiome Project and the library was sequenced 
using an Illumina MiSeq v2 300-cycle kit at the University 
of Massachusetts Boston [52, 53].

Sequencing adaptors were removed prior to fastq gen-
eration on the sequencer. Due to the OTU picking method, 
we analyzed only the first read generated by the sequencer. 
Reads were quality filtered with a minimum quality score 
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of 20 and reads with ambiguous bases were removed. 
Reads were truncated after three low quality bases and 
we kept sequences that were at least 80% of the origi-
nal read length of 151 bp. Reads were trimmed to 120 bp 
and deblur was used to resolve sub-operational taxonomic 
units (sOTUs; [3]). A phylogenetic tree was generated with 
fasttree [45] and taxonomy was assigned to sOTUs with 
sklearn [40] using the GreenGenes database as a reference 
(version 13.8; [17]).

Bioinformatic and Statistical Analyses

Analysis of mosquito microbiomes were performed 
using QIIME2 and the R packages vegan, MicrobeR, 
and qiime2r [8, 9, 41]. Samples were rarefied to 2000 
sequences per sample in QIIME2 as this depth rarefac-
tion curves plateaued (Fig. 1). Kruskal–Wallis pairwise 
tests were performed to analyze differences in sOTU rich-
ness and Shannon Diversity between experimental groups. 
PERMANOVAs were performed to assess statistical dif-
ferences in the beta diversity of microbial communities 
between experimental groups using the PERMANOVA 
function in QIIME2. PERMANOVAs were performed on 
both Jaccard and unweighted UniFrac [31] distance matri-
ces with 999 permutations. We found no significant dif-
ferences in metrics (Mantel test, R = 0.89, p < 0.01), thus 
we only report unweighted UniFrac distances. Finally, we 
analyzed the core microbiome by examining the distribu-
tion and abundance of the top twenty sOTUs across all 
samples.

Results

Mosquito Community Results

Between both the Nyabugogo disturbed and Huye campus 
sites, 447 individuals belonging to forty species of mosqui-
toes were successfully identified across six genera (Table 1). 
Female captures greatly outnumbered male captures, at 
approximately double the rate across both sampling sites. 
Based on BOLD and the Walter Reed Biosystematics Unit 
Systematic Catalogue of Culicidae, 36 of the 40 species col-
lected were potentially the first record of these mosquitoes 
in Rwanda when they were collected in 2019, though nearly 
all of these species were found in other east African nations. 
Culex was the most prevalent genus of mosquitoes at both 
sites. Aedes mosquitoes were highly prevalent at the Huye 
campus site and Lutzia mosquitoes were common at the 
Nyabugogo disturbed site. Overall, Lutzia tigripes, Culex 
univitattus, and Culex decens were the most frequently cap-
tured species. At the Huye campus site, Culex univitattus, 
Culex decens, and Aedes mcintoshi were the most frequently 
encountered species, while Lutzia tigripes, Culex univitat-
tus, and Culex striatipes were the most encountered at the 
Nyabugogo disturbed site. (See the Supplementary infor-
mation, mapping file for complete identification and site 
information.)

The community composition of mosquitos differed sub-
stantially between sites (Fig. 2). The Huye Campus site 
had greater numbers of Aedes sp., Coquilletidia sp., and 
Eretmapodites sp., whereas Nyabugogo had more Lutzia 
sp. and accounted for the single Anopheles sp. mosquito 
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Fig. 1  Rarefaction curves of bacterial amplicon sequence variants (ASVs) from mosquito genera at two sites in Rwanda. Line at 2000 reads indi-
cates rarefaction depth chosen for inclusion of most samples for analysis representing the majority of ASVs
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collected. Culex sp. mosquitoes were the majority of mos-
quitoes at both sites, though the species composition of 
Culex sp. differed.

In terms of the generalized habitat use assignments, 
mosquitoes classified as ubiquitous were the most abun-
dant overall, in particular at the Huye campus site (Fig. 3). 
At the Nyabugogo disturbed site, domestic mosquitoes 
were most common and nearly double the number of 
ubiquitous mosquitoes captured. Sylvatic mosquitoes were 
highly abundant at the Huye campus site, while they were 
far less prevalent at the Nyabugogo disturbed site. Spe-
cifically in terms of relative abundance, there were more 
wetland mosquitoes at the Huye campus site than at the 
Nyabugogo disturbed site.

Microbiome Diversity

Alpha Diversity of the Microbiome

Visibly blood fed and non-blood fed mosquitoes were mar-
ginally different in terms of microbiome sOTU richness 
(p = 0.06) but not Shannon Diversity (p > 0.05) in a pairwise 
Kruskal–Wallis test using (p = 0.06). There was no other 
significant difference between any groups in terms of micro-
biome sOTU richness or Shannon Diversity, including sex, 
location, catch method, collection date, or processing date.

Beta Diversity of the Microbiome

There were significant differences when tested using PER-
MANOVAs between weighted Unifrac values for sampling 
locations (n = 442, pseudo-F = 9.02676, p = 0.001), gen-
era (n = 466, pseudo-Fc = 2.48844, p = 0.002), species 
(n = 466, pseudo-F = 2.01142, p = 0.001), catch dates 
(n = 466, pseudo-F = 5.16716, p = 0.001), and processing 
dates (n = 466, pseudo-F = 2.97262, p = 0.001). As only 
one site was sampled per day and which groups of mos-
quitoes were processed on which date was non-random, 
these were considered to be an artifact of these vari-
ables strongly co-varying with location. Mosquito sexes 
(n = 454, pseudo-F = 2.02918, p = 0.068), visibly blood-
fed status (n = 466, pseudo-F = 0.964349, p = 0.457), and 
catch methods (n = 466, pseudo-F = 1.53627, p = 0.115) 
were all not significantly different. Principal coordinate 
analysis (Fig. 3) demonstrates the differences in commu-
nity composition of the mosquito genera at both sampling 
locations. Aedes and Coquillettidia from the Huye cam-
pus site have visually high dispersion in their microbial 
community compositions compared to those genera at the 
Nyabugogo disturbed site. Lutzia has higher dispersion at 
the Nyabugogo disturbed site, while Culex is fairly dis-
perse at both sites (Fig. 3). Principal coordinate analysis 
based on weighted Unifrac distances demonstrate the rela-
tive community composition of the microbiome for each 

Table 1  Mosquitoes sampled in Rwanda in this study and classified 
using cytochrome c oxidase subunit I (COI) gene sequencing. Path-
ogens and parasites that each genus is capable of transmitting are 

listed. No viruses were directly characterized as being present in any 
of the collected samples and this list is not intended to be exhaustive. 
See Supplementary information for a list of references
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species by sampling location (Supplementary information, 
Figure S1).

The Core Microbiome

Core members of the mosquito microbiome were considered 
to be the top 20 most abundant sOTUs across all mosquito 
samples (Fig. 4). The most abundant sOTUs were Massillia 
spp., Leifsonia spp., and Delftia spp. Other notable members 
of the core microbiome include Wolbachia spp. and Asaia 
spp.

Wolbachia and Bacteria of Anti‑arboviral Interest

Wolbachia, Asaia, and Serratia are genera of bacteria that 
have been implicated in controlling transmission of some 
arboviruses and parasites [29, 1, 15, 35, 39, 56, 58], and 
mosquito genera differed in beta diversity profiles with this 
component of the microbiome (Fig. 5). All Coquillettidia 

species caught in Rwanda were strong carriers of Wolbachia 
(Fig. 6). Aedes, Culex, Eretmapodites, and Lutzia all had 
some species that carried Wolbachia.

The average number of sequences for each of the bacterial 
genera of interest varied widely by mosquito host species. 
Overall, the Nyabugogo disturbed site, which was close to 
human habitation, had higher numbers of average sequences 
of Asaia, Serratia, and Wolbachia than the preserved and 
heavily forested Huye campus site (Table 2). Interestingly, 
some mosquito host species that were found in abundance 
at both sampling locations had considerably different aver-
age numbers of sequences. For example, Lutzia tigripes was 
more relatively abundant at the Nyabugogo disturbed site 
and also had substantially higher average sequences of Asaia 
and Wolbachia at that same site. Culex striatipes (domestic) 
and Culex rima (sylvatic), which were also more abundant 
at the Nyabugogo disturbed site, had substantially higher 
average Asaia and Serratia sequences compared to the Huye 
campus site as well. Culex theileri, a sylvatic mosquito, also 
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Fig. 2  Stacked barcharts comparing the relative abundance and 
assemblage of mosquitoes captured at the Huye Campus (arboretum) 
and Nyabugogo (highly disturbed) sites (A, upper panel), and relative 
abundance in percentage of all mosquitoes by sampling site for each 
generalized habitat-use categorization (B, lower panel)
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Fig. 4  Heatmap of the 20 most abundant sOTUs across all mosquito 
samples grouped by genus. Massilia spp. was the most overall abun-
dant sOTU, with high abundances of Leifsonia spp., Delftia spp., 

Pantoea spp., and Pseudomonas spp. Other notable members of the 
core microbiome include Wolbachia spp. and Asaia spp. that have 
been noted for their role in the control of arboviral transmission

Fig. 5  Principal coordinate 
analysis based on Bray–Curtis 
distances to compare among 
mosquito genera the relative 
community composition of the 
microbiome component thought 
to contribute to arboviral trans-
mission dynamics (includes 
only Asaia, Serratia, and 
Wolbachia)
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had higher average sequences of Serratia and Wolbachia at 
the Nyabugogo disturbed site. In contrast, Aedes mcintoshi 
(ubiquitous) was found at both sites and was much more 
abundant at the Huye campus site, and had higher average 
sequences of Asaia and Serratia (but not Wolbachia) at the 
Huye campus site.

Discussion

Rwandan mosquito microbiomes remain understudied and 
have the potential to provide imperative information in the 
regional fight against arboviral and Plasmodium infections. 
Here, we present the first study in Rwanda and one of the 
very few studies in the broader East African region analyz-
ing the microbial assemblages present in communities of 

field-collected mosquitoes [43, 57]. The two sites studied 
here provide a survey of mosquito and microbial commu-
nity assemblages in both disturbed, human-occupied habi-
tat (Nyabugogo disturbed), and preserved, natural second-
growth forest habitat (Huye campus). To best understand 
how to control arboviral and mosquito-borne parasite trans-
mission using microbial control methods, it is essential to 
understand both domestic and sylvatic mosquito systems 
(Table 2). We focused on mosquito gut microbiomes. Pre-
vious studies of insects indicated that the abundance of 
microbes in the gut vastly overwhelms the surface micro-
biome signal [22]. Surface microbiomes are not necessarily 
environmental contaminants but could be important physi-
ologically [60].

While the two sampling sites did not have significant 
differences in microbial communities and were composed 

Fig. 6  Phylogenetic tree of mosquito species found at Rwandan 
sampling sites created with publicly available high-quality and long-
length cytochrome c oxidase subunit I (COI) sequences from BOLD 
derived from primarily Ugandan, Kenyan, and South African mos-
quitoes. Sequences were aligned and the tree was created using the 

neighbor-joining method with 100 Maximum Likelihood bootstrap 
replicates in MEGA X [30]. Asterisks denote Rwandan species cap-
tured in this project that carried Wolbachia spp., with the blue aster-
isks indicating between 0.5 and 100 average sequences and red aster-
isks indicating > 100 average sequences
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of a mixture of mosquito species preferring habitats from 
sylvatic to wetland to domestic, a broader survey of sites is 
needed to determine the scale at which both mosquito spe-
cies and microbiomes are environmentally impacted. Addi-
tional studies to build our understanding of naturally formed 
microbial communities are essential to safely employing 
microbial control methods and further reducing the burden 
of mosquito-borne diseases.

In terms of alpha diversity metrics (Observed sOTU rich-
ness and the Shannon Diversity Index), we did not see any 

strong trends or differences between groups, including gen-
era, species, and sampling location. We hypothesize that this 
lack of differences between genera, species, and locations 
may be due to similar habitable area and selection pressures 
in the internal environment of the mosquitoes, though fur-
ther work must be undertaken to address this. Differences in 
alpha diversity between visibly blood-fed and non-blood-fed 
mosquitoes were anticipated based on prior studies regard-
ing the reducing environment in the mosquito gut following 
blood-feeding by females [37, 57, 29]. However, our data 

Table 2  Average number of sequences for mosquito microbiome 
members of arboviral control interest (Asaia, Serratia, and Wol-
bachia). Mosquito species are separated by sampling location and are 

designated with their general habitat use classification as determined 
in Supplementary information references. These average sequence 
values are based on samples rarefied to 2000 sequences per sample
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showed a weak difference between these groups. This is 
likely due to the visual nature of confirming blood-fed status 
of females in this study. Only female mosquitoes that were 
visibly engorged upon capture were considered blood-fed, 
which does not include females that had previously fed but 
digested the blood and were no longer engorged.

In terms of beta diversity metrics (Jaccard and Weighted 
Unifrac distances), several interesting trends emerged in the 
data. Genera, species, and location were all highly signifi-
cantly different, demonstrating that taxa and broader habitat 
play a key role in the community assemblage of the mos-
quito microbiome under field conditions. The lack of differ-
ence between catch methods indicated that there was not a 
sampling bias based on the method of capture utilized for 
mosquitoes. The absence of difference in beta diversity for 
blood-fed status indicates that, similarly to our alpha diver-
sity measures, recently fed females that had digested blood 
were probable in the non-blood-fed group. Mosquito sexes 
were not different in terms of microbial community assem-
blage, though they were anticipated to be different based on 
differences in feeding between sexes. Here, we hypothesize 
that environmental drivers and mosquito microhabitat use 
are more important than sex in terms of the formation of 
internal microbial communities, though this will also require 
additional investigation to better understand these dynam-
ics. Several previous studies demonstrated differences in gut 
microbiomes among male and female mosquitoes [33, 34].

The core microbiome, or the 20 most abundant sOTUs 
appearing in nearly all samples in high relative abundance, 
included numerous members well documented as being 
abundant in mosquito microbiomes in other studies around 
the world [5, 11, 16, 18, 39, 43, 57]. Asaia, Serratia, and 
Wolbachia are genera of bacteria of particular interest for 
controlling arboviral transmission, and all three were well 
represented in the core microbiomes of the mosquitoes col-
lected in this study. The average abundance of these genera 
was much higher at the Nyabugogo disturbed site than at the 
Huye campus site. The distribution of mosquitoes carrying 
these microbes was not continuous across any given genus, 
but rather varied greatly by species. Several mosquitoes that 
appeared in abundance at both sites had much higher average 
sequences of these bacteria at the Nyabugogo disturbed site 
than at the Huye campus site. Our results also reflect previ-
ous negative associations between Asaia and Wolbachia in 
individual mosquitoes [26, 49]. While these interactions are 
inherently complex, we suggest that the likelihood of sym-
biosis with these microbes of interest indicates that micro-
bial establishment in mosquito hosts is strongly impacted 
by microhabitat use.

In order to more fully understand mosquito microbial 
interactions in situ, studies further examining the level 
of influence that specific environmental factors, such as 

temperature and rainfall, have over the formation of sym-
bioses between microbes and mosquitoes. These studies 
should be undertaken both in a laboratory and field setting, 
as controlling variables in the field can present challenges, 
whereas work in the lab does not fully realize all poten-
tial variables influencing microbe-mosquito symbiosis. 
We would also recommend pursuing additional studies on 
the eukaryotic, fungal, and viral members of the mosquito 
microbiome for a more complete picture of these micro-
bial communities in a field setting. Studies of the natural 
microbiota are critical for disease mitigation measures that 
seek to manipulate microbial taxa because some commu-
nities are more refractory than others and may impede 
Wolbachia or other beneficial species [26].

Our findings help to expand on our understanding of 
wild mosquito microbiomes in an area of the world that 
is particularly at risk for high arboviral transmission. In 
order to safely utilize microbial tools for mosquito control, 
such as Wolbachia-infected mosquito releases, we must 
first understand the natural communities of both mosquito 
hosts and microbial inhabitants and the factors that influ-
ence these interactions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 024- 02382-3.
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