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Abstract
Microbial interactions function as a fundamental unit in complex ecosystems. By characterizing the type of interaction 
(positive, negative, neutral) occurring in these dynamic systems, one can begin to unravel the role played by the microbial 
species. Towards this, various methods have been developed to decipher the function of the microbial communities. The 
current review focuses on the various qualitative and quantitative methods that currently exist to study microbial interactions. 
Qualitative methods such as co-culturing experiments are visualized using microscopy-based techniques and are combined 
with data obtained from multi-omics technologies (metagenomics, metabolomics, metatranscriptomics). Quantitative methods 
include the construction of networks and network inference, computational models, and development of synthetic microbial 
consortia. These methods provide a valuable clue on various roles played by interacting partners, as well as possible solu-
tions to overcome pathogenic microbes that can cause life-threatening infections in susceptible hosts. Studying the microbial 
interactions will further our understanding of complex less-studied ecosystems and enable design of effective frameworks 
for treatment of infectious diseases.
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Introduction

Microbial communities are critical to the functioning of var-
ious ecosystems and critically impact nutrient cycling, agri-
culture, health, and disease [1]. These communities exhibit 
a variety of emergent behaviors such as biofilm formation 
and quorum sensing as a consequence of several inter/intra-
species interactions that range from competition for nutrient 
sources to cooperative networks coordinated by metabolite 
exchange [2, 3]. An understanding of the nature of microbial 
interactions can help us better understand mechanisms of 
their stability and function [4]. However, dynamic and com-
plex interactions within microbial communities can rarely be 
classified under one category. This brings forth the question: 

why is it vital to characterize and profile the interactions 
within the microbial consortia? At the microscale level, the 
primitive microbial multicellular structures display remark-
able spatial structure and malleability to external stimuli. 
In a spatially structured community, cooperative behaviors 
are prevalent due to increased frequency of interactions 
between cells of same genotype. Spatially unstructured or 
well-mixed communities predominantly exhibit competition 
[5]. Arrangement of microbes in monospecies and mixed co-
cultures is driven by their social behavior which ultimately 
alters growth and survival, gene expression, and physiology 
of individual cells. This would further impact the commu-
nity’s social dynamics and structure, which in turn vastly 
influences its functional landscape [6].

Microbial interactions can be classified as positive, 
negative, or neutral based on its impact on the microbes 
involved [7]. Positive interactions are defined as those 
wherein at least one of the partners is benefited as a direct 
consequence of the interaction. A well-known example 
of cooperative behavior is quorum sensing that allows for 
synchronized gene expression coordinated by release of 
diffusible signaling molecules sensed by bacterial quo-
rum [8]. Positive interactions wherein both partners benefit 
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either by sharing nutrients, enzymes, and/or metabolites 
are described as mutualism or symbiosis. An example is 
the beneficial metabolic exchange between mycorrhizal 
fungus Laccaria bicolour and bacterium Pseudomonas 
aeruginosa [9]. P. aeruginosa contributes thiamine for 
fungi growth while L. bicolour releases trehalose, a vital 
chemoattractant for P. aeruginosa. Commensalism is a 
positive interaction where one partner benefits while 
the other remains unaffected. Mathis and Bronstein [10] 
argued that commensalism cannot be defined as a single 
type of interaction and discussed two possible interactions 
from the viewpoint of the unaffected partner; a “no-effects 
commensalism” where the partner gains neither benefit 
nor cost from the interaction and a “balanced-costs-and-
benefits commensalism” wherein a partner might gain 
both benefits and costs but the net effect being zero. Both 
forms of positive interactions, bidirectional mutualism and 
unidirectional commensalism serve to increase a commu-
nity’s productivity albeit with a decrease in stability [11]. 
Negative interactions are one where one microbial popu-
lation negatively affect another microbial population. The 
causes of negative interactions can vary from competition 
for shared resources, production of toxic byproducts to 
sequestration of metabolites. Competitive behaviors have 
been found to be crucial to community assembly in soil 
ecosystems allowing for niche segregation that prevents 
infiltration of rare communities [12]. Parasitism, wherein 
one partner experiences costs and benefits at the disad-
vantage of the other has been best illustrated in the gut 
microbiome. Commonly reported gut parasites such as 
Entamoeba histolytica, Giardia intestinalis, and Tritrich-
omonas suis cause host damage by producing mucolytic 
enzymes that degrade mucins (glycosylated macromol-
ecules) present in epithelial barrier of the gut thereby 
facilitating their entry into the host cells while causing 
extensive damage to the host [13]. Amensalism is a type 
of negative interaction wherein one partner causes harm to 
the other while receiving no harm or benefit. These inter-
actions are often observed in metabolic networks wherein 
one partner’s metabolite affects the other with no benefit 
or harm to the former. An example is the interaction of 
Saccharomyces cerevisiae with Oenococcus oeni in wine 
wherein S. cerevisiae produces ethanol as a fermenta-
tion byproduct which harms O. oeni by interfering with 
its genes encoding cell wall, membrane biogenesis, and 
metabolite transport [14]. Other mechanisms of inhibition 
commonly employed in negative interactions are sidero-
phore production (depletes partner of essential nutrient 
such as iron), antibiotic production (direct cell killing), 
or quorum sensing inhibition [15]. The study of micro-
bial interactions has often focused on inhibitory interac-
tions to aid in the development of antimicrobials. The 
focus is gradually shifting towards gaining a mechanistic 

understanding of the structure and behavior of all dynamic 
interactions [16].

Microbial interactions can be understood by deciphering 
the signaling molecules/metabolites exchanged, shared or 
cross-fed among the microbial partners and their ecological 
outcomes. They can be inferred via classical microbiology 
methods such as co-culturing the microbes together and 
measuring the desired metabolites, treating microbes with 
supernatant, extracellular vesicles or specific proteins and 
metabolites derived from the interacting microbial partners 
and/or via fluorescence labeling [17–19]. These methods are 
broadly classified as qualitative methods. With the advent 
of high throughput molecular technologies, the interaction 
between microorganisms is beginning to be elucidated at an 
unprecedented level. Data obtained with technologies such 
as metagenomics, transcriptomics, proteomics, and metabo-
lomics coupled with qualitative experiments [20, 21] can 
provide information even on unculturable microbes, which 
accounts for the majority of microbes currently known. 
The combined data from these methods can be fed into 
mathematical equations to form microbial networks, the 
fundamental unit of computational models that can help 
contextualize the data obtained from molecular methods. 
These models enable the construction of synthetic micro-
bial communities that can provide predictions at a com-
munity level [22]. These represent quantitative methods 
that enable the formulation of hypothesis for experimental 
validation. The method of choice depends on the param-
eters to be explored. Some parameters include directionality 
(positive, negative, or neutral), reciprocity (unidirectional 
or bidirectional), strength, mode of action, and spatiotem-
poral variation (hours, weeks, order of colonization) [23, 
24]. A combination of qualitative strategies and quantitative 
models will enable discovery of interdependencies in net-
works with several interconnected partners such as those in 
syntrophic communities [25]. Although frameworks exist in 
literature to describe microbial interactions, there are limita-
tions in understanding the terminologies used for inferring 
the data. Data is often represented with a single parameter 
using graphical axes, which can sometimes be misleading 
about the interaction among the partners [26]. This hinders 
the understanding of the nuances crucial to describing how 
individual interactions affect a community and its functional 
specialization. Therefore, there exists an imminent and per-
tinent need to develop systematic and rigorous methods to 
study microbial interactions [27]. While there are several 
reviews that have explored the topic [28–30], most delve into 
mathematical equations for network inference with a focus 
on computational aspects of microbial network construction/
elucidation [31–35]. There is a notable absence of a compre-
hensive review to pique scientific curiosity of empirical and 
theoretical scientists alike [36]. The current review provides 
an overview of the traditional and upcoming qualitative 



Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions﻿	 Page 3 of 16     56 

methods commonly employed in the field of microbiology 
with quantitative frameworks involving microbial network 
construction to infer microbial interactions with a discus-
sion of the relevant analysis methods to choose based on 
design of the study. The aim is to provide scientists with the 
relevance and validity of microbial mathematical models, 
enabling an integration of experimental as well as modeling 
methodologies which will go a long way in furthering our 
understanding of microbial community dynamics, allowing 
for novel inventions in infection prognosis, diagnosis, and 
therapy.

Qualitative Methods to Study Microbial 
Interactions

Qualitative assessment of microbial interactions involves 
determination of phenotypic changes such as morphology, 
spatial arrangement, metabolic activity, cross-fed metabo-
lites, and quorum sensing (Table 1, Fig. 1).

Co‑culturing

Co-cultures provide a simple system to observe cell–cell 
interactions (direct and indirect), allowing for qualitative 
observation of directionality, mode of action and spatiotem-
poral variation. Cultivating microbial species together with 
the host provides an in vitro system to study host-microbe 
interactions that mimics in vivo conditions. Co-culture sys-
tems involving cell–cell contact include plating assays such 
as direct contact assay or mixed inoculum assays. Straight 
et al. [45] employed lawn cultures to study interactions 
between Bacillus subtilis and Streptomyces coelicolor which 
demonstrated an antagonistic interaction involving inhibition 
of aerial hyphae development and sporulation of S. coeli-
color. McCully et al. [46] utilized plating assays to docu-
ment interspecies social spreading between two soil bacteria, 
Pseudomonas fluorescens and Pedobacter isolates to gain 
mechanistic understanding of motility phenotypes generally 
exhibited by Pseudomonas spp. such as swimming, swarm-
ing and twitching. Antonic et al. [47] employed co-culture 
assay to study the effect of microbial interactions between 
Pseudomonas aeruginosa and Staphylococcus aureus on 
production of staphyloxanthin, a pigment produced by the 
latter known to be responsible for its virulence.

Co-culture systems to study contact independent inter-
actions involving diffusible molecules using membrane-
divided co-culture assay, conditioned media assay, or via 
microfluidics platform [48]. Membrane-divided co-cultures 
assay involves the physical separation of two microbial 
populations with semi-permeable membranes. Jo et al. [49] 
developed BioMe culture plate that offers higher throughput 
measurement of up to 30 pairwise interactions. Co-cultures 

can also be used to assess interkingdom contact–dependent 
interactions. Bor et al. [50] analyzed the interaction between 
predominant oral commensals Fusobacterium nucleatum 
and Candida albicans via a “two chamber assay” that uti-
lized a polyester (PET) Transwell-Clear insert membrane. 
F. nucleatum cells were plated into the lower chambers of 
a 12-well plate. After placing 0.4-μm pore size membrane 
inserts, the upper chamber was filled with C. albicans. Mem-
brane separation allowed for visualization of C. albicans 
hyphal cells without interference from F. nucleatum cells 
[51]. Conditioned media exchange involves growth of the 
interacting partner in spent growth medium of the other, 
which can reveal aspects of microbial interactions such as 
metabolic cross-feeding, metabolic exchange, nutrient avail-
ability, and release of metabolic byproducts [52].

While co-culture systems have been equipped with vari-
ous modifications (membrane separation and microfluidics 
integration) to vastly improve its capability to capture micro-
bial interactions, there exist several limitations. Setting up a 
mixed co-culture in laboratory conditions requires optimiza-
tion at many levels especially when it involves interspecies 
interactions. Each microbial participant needs to be provided 
with optimal and uniform growth conditions, which includes 
catering to individual substratum and nutrient specificities 
[53]. Other optimization parameters include timing and 
ratio of inoculation of microbial partners and competition 
among partners. Poor experimental design leads to ineffec-
tive data acquisition and analysis at later interaction stages 
[54]. This can result in skewed experimental results, which 
cannot be used to extrapolate our knowledge of microbial 
interactions occurring within the system. Major limitation 
of pairwise co-culture methods lies in its ability to accu-
rately reflect complex higher order interactions, those that 
are commonly found in natural microbial ecosystems. To 
obtain a more complete picture, co-culture techniques need 
to be integrated with experiments that can provide quantita-
tive measures such as automated plate reader technology 
[49] and omics technologies [55]. The combined data can 
be used to build computational models that can be harnessed 
to build synthetic communities that can predict the nature 
of higher order interactions crucial to the functioning of the 
ecosystem [56].

Imaging Technique to Study High Density Microbial 
Communities

Advancement in microscopy techniques such as scanning 
electron microscopy and confocal microscopy has allowed 
for the multidimensional imaging of complex 3D high-
density microbial communities such as biofilms. Ramírez 
Granillo et al. [39] visualized monomicrobial and polymi-
crobial biofilms of microbes involved in infectious kera-
titis, Aspergillus fumigatus and Staphylococcus aureus. 
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Fig. 1   Overview of qualitative methods used to study microbial interactions
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Differences in texture and distribution of extracellular matrix 
(ECM) were observed in mixed biofilms. Haagensen et al. 
[42] employed three channel flow chambers to study the 
dynamic interactions in the polymicrobial biofilm compris-
ing of Pseudomonas putida and Acinetobacter sp. isolated 
from creosote-polluted aquifer. The setup using silicon tubes 
and microelectrodes ensured supply of oxygen and allowed 
dynamic measurement of oxygen concentration. The confo-
cal images revealed that abundance of Pseudomonas putida 
were the highest within microcolonies of Acinetobacter sp.

Mass Spectrometry

Mass spectrometry imaging (MSI) when integrated with 
genomic and transcriptomic studies provides precise infor-
mation on chemical signaling and spatial profiles of com-
plex microbial communities [57]. Additionally, metabolite 
exchanges, secondary metabolite production, and meta-
bolic cross-feeding among microbial species can be visual-
ized over space and time. Shih et al. [58] employed MSI to 
study bacterial cannibalism in Bacillus subtilis wherein the 
sporulating cells are known to kill the non-sporulating cells. 
Here, standard liquid co-cultures followed by quantification 
of metabolites could not be performed since the cannibalistic 
phenotype could only be observed on solid media which 
was not readily amenable for metabolic characterization. 
Therefore, researchers employed MSI wherein the cultur-
ing was done on a thin layer agar, photographed, exposed 
to a 1:1 mixture of acids (α-cyano-4-hydroxycinnamic acid 
and 2,5-dihydroxybenzoic acid), dried for three hours and 
subjected to matrix-assisted laser desorption/ionization-time 
of flight mass spectrometry imaging. This allowed for identi-
fication of two cannibalism-associated proteins produced by 
B. subtilis namely sporulation killing factor and sporulating 
delaying protein [58].

Quantitative Network Models 
for Assessment of Microbial Interactions

Since there remains a vast majority of microbes that cannot 
be cultured in a laboratory, the composition of the various 
species in the microbial community can be determined by 
procuring environmental DNA samples and conducting a 
next generation sequencing analysis. 16S metagenomics 
involves profiling the hypervariable regions of the bacterial 
taxonomic barcode gene coding for 16S rRNA [59]. Anal-
ogous to 16S sequencing, identification of fungal species 
involves sequencing the internal transcribed spacers along 
with gene coding for 5.8S rRNA (ITS1-5.8S-ITS2 region). 
Omics approaches are frequently used in microbial ecol-
ogy for enumeration of microbes as operational taxonomic 
units (OTUs). However, this approach fails to test the causal 

relationships and microbial interactions that drive the micro-
biome’s structure and composition. [60]. Coupled with a 
quantitative framework, high throughput sequencing data 
can be harnessed to test significant species associations and 
make metabolic predictions of microbial behaviors. A fine 
example of the use of a quantitative framework to test for 
significant species associations driving microbial communi-
ties is demonstrated by Ontiveros et al. [60]. In this study, 
microbial populations thriving in extreme habitats such as in 
high altitude mountain lakes (Pyrenees) were profiled using 
16S rRNA gene sequencing. Taxon abundances were then 
used to build co-occurrence networks using probabilistic 
methods. Significant co-exclusion and co-occurrence pairs 
along with the influence of relevant environmental param-
eters such as pH were tested with one-way ANOVA and chi 
square tests, providing means to identify significant associa-
tions that can be experimentally validated. It further follows 
that integrated experimental data obtained from multiple 
sources can be amplified and harnessed to yield meaningful 
insights into the functioning of microbial ecosystems with 
relatively inexpensive infrastructure albeit with significant 
technical expertise. This brings forth the need for under-
standing and developing quantitative computational models 
that can harness culture and omics data for inferring micro-
bial interactions (Fig. 2).

Networks and Network Inference

Networks lie at the heart of computational models and rep-
resent diversity in a microbial community. Associations 
between taxon abundances of microbes present may be 
hypothesized allowing for network inference [61]. Following 
this, correlations can be validated by direct evidence such 
as co-culture experiments and 16S metagenomics. Network 
inference–based approaches can be taken to decipher the 
ecological relevance of unknown taxon groups (“microbial 
dark matter”) towards community structure [62]. Transi-
tioning from co-cultures to complex ecosystems is a pro-
gressively difficult task. One way to streamline the analysis 
would be to feed this data into statistical methods such as 
correlational and association analyses to analyze co-occur-
rence and dependence of different microbial species. This 
can be used to create a computational model that can be fur-
ther used to develop better tools and predict new microbial 
interactions that can be harnessed to understand less studied 
microbial ecosystems.

Computational modeling involves the construction of 
network models (static or dynamic) and/or reconstruction 
of existing microbial networks or creation of new networks 
as a synthetic microbial consortium. For example, a typi-
cal metagenomics study analysis would involve preparing 
a list of different microbial species present in the commu-
nity as OTUs with an associated quantitative measure of 
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Fig. 2   Overview of quantitative 
methods used to study microbial 
interactions



	 S. Srinivasan et al.   56   Page 8 of 16

abundance in terms of the number of reads representing 
each OTU. Each attribute of the interacting partners such 
as time dependence, spatial dependence, site of interaction, 
habitat in which interaction takes place, and the predicted 
compounds involved based on the known metabolic capabili-
ties of the microbes will be assigned a numerical value fol-
lowed by network inference for further validation. Network 
inference with the abundance patterns can be quantified with 
pairwise (similarity-based) and complex (regression-based 
and rule-based) approaches [63].

Pairwise or Similarity‑Based Network Inference

Pairwise or similarity-based network inference is used to 
evaluate the similarities between two interaction partners 
[64]. A quantifiable factor measures the similarities based 
on mutual exclusion of the interaction partners over multi-
ple samples. All permutations based on the abundance data 
are then combined to construct the network. Freilich et al. 
[65] created an ecological pairwise network by mining cen-
tral repositories of research such as PubMed for pairwise 
interactions. Researchers obtained annotations for all the 
bacterial species whose complete sequences were available 
and queried the database for each pairwise interaction. The 
number of abstracts that matched the query were counted 
followed by network construction such that networks of 
species forms “nodes” and the interactions between micro-
bial species were termed as “edges”. Ecological parameters 
used to characterize the different clusters included maxi-
mal growth rate, respiration mode, and competition level 
for natural resources. With these methods, researchers were 
able to plot the first complex ecological model of bacterial 
interactions.

Complex/Regression or Rule‑Based Network Inference

Natural/synthetic microbial communities generally can-
not be reduced to simple pairwise interactions. Such an 
approach affects the resolution of higher-order interactions 
and hinders classification of interactions affected by abiotic 
and biotic factors. Inference of networks with a multidimen-
sional approach can provide insights into the nature of inter-
action, such as the fitness or metabolic cost, spatiotemporal 
dynamics, and several other parameters that determine the 
ecological outcome [27]. Regression-based network infer-
ence involves predicting relationships between dependent 
(abundance of target species) and independent variables 
(abiotic and biotic factors). Here, network inference from 
multivariate linear regression models [66] incorporates envi-
ronmental traits as additional factors, allowing us to predict 
relationships between species and environmental traits [61]. 
The statistical techniques used for analysis include Pearson 
or Spearman correlation and local similarity analysis for 

procuring abundance data. For presence–absence data, Fis-
cher’s exact test is used to determine hypergeometric dis-
tribution. Rule-based network inference involves listing all 
possible combinations of taxa and then generating feasible 
rules for each set of taxa. Complex interactions are depicted 
as directed hypergraphs which represent edges connecting 
two nodes (hyper edge; three nodes).

Dynamic Modeling

Static networks when complemented with dynamic models 
capture the dynamics and stabilities of microbiomes, giving 
a biological perspective of microbial interactions (Table 2). 
Static methods analyzing co-variances of the abundances 
of each microbe can efficiently determine whether positive 
or negative correlations exist between the different taxa 
within a microbiome. However, they fail to point out the bi-
directionality of interactions and the underlying mechanisms 
behind taxon abundance patterns observed in a microbial 
community [67]. Hence, construction of dynamic models 
based on static networks provides improved and reliable 
network inference. These models predict the directionality 
and map time-dependent properties mediated by factors such 
as environmental fluctuations, which can operate over spa-
tial–temporal scales [68]. Stein et al. [69] employed dynamic 
ecological models to study stability of intestinal microbiota 
following administration of antibiotic clindamycin. Using 
non-linear first order ordinary differential equations (ODE) 
based model which considers ecological time resolved data, 
the authors were able to observe the differential composi-
tion of microbial communities within their treatment groups. 
Data obtained were described using a set of ODE or Boolean 
functions which contained variables attributed to all factors 
that could play a role in mapping the interactions. Similarly, 
high throughput data obtained from qualitative laboratory 
culture techniques can be described with these equations 
[70]. Dynamic models are often used to infer synthetic 
microbial consortia. They allow for rigorous and reproduc-
ible analysis of microbial interactions by reducing envi-
ronmental heterogeneities common in natural higher order 
interactions [71]. When encountering a spatially constructed 
environment, partial differential equations can be used for 
network inference. These models can be linear, non-linear, 
discrete, continuous, probabilistic or constraint-based mod-
els [3].

Linear models

Dynamic linear models (DLMs) analyze auto-correlated 
time series data sets using Bayesian approach and are com-
monly used to describe the robustness of a microbial com-
munity [34]. DLMs are usually used in its multivariate form 
since it takes into account the co-dependencies between 
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different variables [84]. Silverman et  al. [73] extended 
DLMs to a multinominal logistic normal model to study 
artificial human gut microbiota. A continuous flow anaero-
bic bioreactor system was constructed that functioned as an 
ex vivo artificial human gut microbiota model. DLM cou-
pled with generalized dynamic linear models was used for 
time series data modeling framework (MALLARD). This 
system allowed for the characterization of the impact played 
by technical sources of variation observed in ex vivo experi-
ments, specifically in artificial human gut.

Non‑linear Lotka Volterra Model

Choice of the mathematical equation/model is crucial to the 
interpretation of the model. Most popular models are non-
linear Lotka Volterra (LV) models that were first employed 
to describe predator–prey relationships. Simple systems 
involving a maximum of two species can be captured, mak-
ing these models relevant for competitive interactions. Using 
equations to reflect on magnitude of the influence of interac-
tions on the fitness of an organism without considering any 
other aspect of the interaction, these models are an attrac-
tive and appropriate choice to study pairwise interactions. 
Shibasaki and Mitri [85] employed LV models to assess the 
stability and spatial dynamics of a gut microbiome commu-
nity and found that stability of the downstream communi-
ties was improved by enhancing positive interactions in the 
upper communities. However, the classic LV model fails to 
capture the diversity of pairwise interactions in cases where 
additivity cannot be assumed. They often fail to capture eco-
logically relevant aspects of microbial interactions and need 
to be supplemented with in vitro experiments to assess the 
applicability of the model [86]. Hence, classic LV models 
cannot be used to model multispecies interactions [87]. The 
generalized Lotka-Voltera (gLV) model is an extension of 
the logistic growth model and can represent any number of 
species using absolute abundances data [30]. It is inclusive 
of interactions such as neutralism, competition, and coop-
eration. Venturelli et al. [74] used gLV model to assess the 
gut microbiome dynamics by measuring relative abundances 
of species as a function of time for pairwise interactions. 
Alshawaqfeh et al. [75] took this further with the addition 
of a noise term to compensate for uncertainties in dynamics 
along with reduced computational time and other modeling 
errors. A GUI-based interactive platform was developed for 
gLV-based modeling providing mathematical models using 
the temporal microbial abundance data [88].

Continuum/Discrete Models

Microbial communities with dense biomass and an abundance 
of physico-chemical and biological processes, such as biofilms, 
can be represented by dynamic continuum [76] and/or discrete 

models. Both these models investigate how the biomass 
spreads and diffuses into the external environment. Discrete 
models (bottom up approach) [77] represent the interactions 
between microbes present in the biomass with their surround-
ings [89]. Discrete models include cellular automaton mod-
els and individual-based models (IBM). Cellular automaton 
simulation represents individual cells in biofilms as discrete 
units that are then dynamically rearranged to provide detailed 
simulations of biofilm morphologies [90]. IBM models of bio-
film represent bacterial cells as rigid spheres and are described 
with several parameters (phenotype, position, mass, volume, 
velocity, growth rate). Jayathilake et al. [91] coupled IBM 
with large scale atomic/molecular massively parallel simula-
tor (LAMMPS) and used this integrated model to detect both 
biological and physical processes that take place in a biofilm 
during its formation, detachment, and deformation under dif-
ferent environmental conditions.

Probabilistic Models

Probabilistic models allow for measurement of uncertainty 
in higher order interaction networks with minimal bias using 
probability theory [92]. Dynamic Bayesian networks (DBN) 
is an example of a probabilistic graphical model, frequently 
used to capture temporal changes in clinical and ecologi-
cal settings. McGeachie et al. [79] utilized DBN analysis to 
investigate progression of colonizing microbiota in infant, 
revealing Bacilli as initial colonizers (facultative anaer-
obes), temporarily out-competed by Gamma-proteobacteria 
following colonization by Clostridia (obligate anaerobes). 
DBN are usually used for modeling metagenomic data from 
microbial communities, but they can only analyze a single 
set of omics data. To overcome this obstacle, Ruiz-Perez 
et al. [80] developed a pipeline for analysis of longitudinal 
multi-omics data. This workflow proceeds by first aligning 
multi-omics data followed by usage of DBN to reconstruct 
the model. Probabilistic topic models allow prediction of 
microbial dynamics in individuals by obtaining weight of 
each OTU in gut microbiome [93].

Constraint‑Based Models

To derive the best possible representation of the interactions 
within a microbial community, it is important to cross-link 
different data types with appropriate computational biology 
techniques. One such approach is constraint-based recon-
struction and analysis (COBRA). This analysis method has 
the advantage of integrating with in vivo and in vitro models 
which can present the structure and function of the micro-
biome [94]. It is generally used to map interaction networks 
involving genes involved in metabolism, regulation of tran-
scription and various biochemical functions [95]. Baldini 
et al. [81] developed a microbiome modeling toolbox for 
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analysis of pairwise microbe–microbe and microbe–host 
interactions using constraint-based modeling. Basile et al. 
[83] employed constraint-based models to study variations 
in gut microbiome ecology over 6 months in a single indi-
vidual affected with inflammation of gastrointestinal tract. 
With the help of the model, researchers were able to iden-
tify time-correlated microbe-metabolite networks shaping 
the dynamic disease state.

Pitfalls for Network Models

Obtaining microbial abundance data from microbial taxa 
from “rare biospheres” can cause data sparsity problems. 
Carr et  al. [96] elucidated how correlational data can-
not predict unreported interactions and often reflect true 
interactions only for a very narrow range of conditions. 
Choice of mathematical equations remains a key factor in 
the assessment of the dynamic models influencing network 
inference. Differential equations used in ecological models 
often procure absolute abundances as the only variable, 
limiting model’s capability to study interactions in differ-
ent environments. Researchers have incorporated modifica-
tions accordingly to consider the molecular interactions and 
cellular dynamics that would describe the metabolic state 
of the cell. However, it remains a challenge to accurately 
describe the substrates used, products formed, and tracking 
of the corresponding biochemical responses in a co-culture 
experiment.

Current Challenges in Bridging Theoretical 
and Experimental Data

Theoretical microbial models present an attractive method 
to visualize, predict, and validate experimentally observed 
microbial interactions [32]. For example, computational 
modeling of taxon abundances obtained via high through-
put sequencing in combination with omics data on meta-
bolic status allows for capturing unbiased dimensionality 
of microbial interactions. Mathematical models often help 
complement conventional experimental studies and in vitro 
models [77]. However, while one can agree that integrating 
theoretical models with experimental data can mutually help 
both enhance the predictive capabilities of the experimen-
tal data as well as provide validation to the computational 
model, it is debatable whether such a correlation has been 
observed in practice. There exist several reports wherein 
computational models have been experimentally validated 
[66, 68, 75, 80]. For example, Ruiz-Perez et al. [80] devel-
oped a bioinformatics pipeline to enhance the capabilities 
of DBN networks by allowing for integration of longitu-
dinal data obtained from a variety of omics technologies 
including metabolomics and metatranscriptomics. Briefly, 

the pipeline begins with normalization of taxon abundance 
data extracted from metagenomic sequencing studies. This 
is followed by “spline interpolation” of time versus abun-
dance data to obtain a “best fit” curve to correct for exter-
nal factors such as missing time points. The application of 
mathematical functions to study bacterial communities were 
described as early as 1976 when they were introduced to 
study bacterial motility using information from photon cor-
relation spectroscopy experiments. A key feature of splines 
is it allows for ready integration of multiple data points as 
“constraint” parameters allowing to achieve the best fit of 
approximation data to experimentally observed data. This 
significantly enhances the validity of each predicted data 
point [97]. Ruiz-Perez et al. [80] tested the in silico metab-
olite taxon edges/predictions in organisms such as Pseu-
domonas aeruginosa and Escherichia coli and found a posi-
tive correlation between theoretical and experimental data. 
However, inference of microbial interactions from predicted 
co-occurrence networks can be sometimes erroneous [98]. 
Microbial communities are often found in heterogeneous 
environments with a gradient of factors contributing to its 
highly varied ecological interactions. Simple co-occurrence 
networks from computational models that are insufficiently 
trained to capture the directionality and causality of com-
plex and dynamic interactions will be significantly limited 
in its predictions [99]. Therefore, while positive correlations 
might corroborate the reliability of the model, lack of experi-
mental validation for a predicted interaction might not mean 
that the prediction is necessarily wrong but only that certain 
critical parameters might be missing.

Microbes are rarely solitary in nature, often found 
engaged in highly heterogeneous networks as communi-
ties. A common reason for lack of correlation between the 
model prediction and observed data is because community 
phenotypes are modeled based on individual phenotypes, 
a problem that is prevalent even in inferences made from 
qualitative experimental methodologies [100]. Models often 
trade between optimizing individual species’ fitness and the 
entire community’s fitness function [26], leading to inac-
curate assumptions about the super-optimal behavior of 
members in the community. Metabolic networks are often 
mathematically analyzed using flux balance analysis (FBA) 
[101]. FBA allows for prediction of microbial growth rate 
and production rate of metabolites of interest. Traditional 
genome scale metabolic models assume instantaneous bio-
mass maximization of all members of a microbial commu-
nity (community-level objective function) [102]. However, 
this approach is flawed since microbes, similar to higher 
order organisms, display varied phenotypes, as a result of 
several decisions influenced by the community with known 
rate-yield trade-offs where maximum biomass production 
may not be the desired goal [103, 104]. Hence, prediction 
of a microbial community’s emergent properties remains 
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a challenge in systems biology [102]. Some models that 
have been introduced to overcome this include the optCom 
model [100] which is a constraint based modeling approach. 
This model has been used to explain syntrophic interactions 
involving transfer of a key metabolite as well as complex 
interactions of phototrophic microbial mats found in Yellow-
stone National Park. While existing models may be modified 
with additional parameters/constraints and appropriate data 
acquisition to predict different facets of microbial interac-
tions, an integrational gap exists between experimental data 
and computational models [36]. So far, prediction tools have 
been validated with corresponding high throughput data 
and experimental models. However, extending the horizon 
towards predicting unknown interactions between taxons 
remains to be studied.”

Conclusion

Microbial interactions remain the driving force behind the 
establishment and maintenance of a microbial population. 
Extensive efforts have been put towards obtaining microbial 
abundance data from different communities existing in dif-
ferent ecological states to build reliable microbial compu-
tational models. With the advent of machine learning and 
deep learning algorithms, adoption of quantitative frame-
works to study microbial studies has increasingly become 
more accessible and feasible [105]. However, there still exits 
several limitations in distinguishing true microbial interac-
tions and non-random process or casual relationships. An 
understanding of how microbial communities assemble and 
how this translates to their functionalization and ecological 
outcome has vast potential applications in avenues of medi-
cine, agriculture, bioprocessing, and food industries [106]. 
Potential to engineer metabolic network models comprising 
of commercially important microbial species remains unful-
filled. Standardized adaptation of qualitative and quantitative 
methods can enable mechanistic and reproducible explora-
tion of microbial interactions and provide relevant informa-
tion on key molecules, interactions, and strategies to better 
understand polymicrobial communities and better the health 
of plant, animal, environment, and human alike.
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