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Abstract
Understanding the intricate ecological interactions within the gut microbiome and unravelling its impact on human health 
is a challenging task. Bioreactors are valuable tools that have contributed to our understanding of gut microbial ecology. 
However, there is a lack of studies describing and comparing the microbial diversity cultivated in these models. This knowl-
edge is crucial for refining current models to reflect the gastrointestinal microbiome accurately. In this study, we analysed 
the microbial diversity of 1512 samples from 18 studies available in public repositories that employed cultures performed 
in batches and various bioreactor models to cultivate faecal microbiota. Community structure comparison between samples 
using t-distributed stochastic neighbour embedding and the Hellinger distance revealed a high variation between projects. 
The main driver of these differences was the inter-individual variation between the donor faecal inocula. Moreover, there was 
no overlap in the structure of the microbial communities between studies using the same bioreactor platform. In addition, 
α-diversity analysis using Hill numbers showed that highly complex bioreactors did not exhibit higher diversities than sim-
pler designs. However, analyses of five projects in which the samples from the faecal inoculum were also provided revealed 
an amplicon sequence variants enrichment in bioreactors compared to the inoculum. Finally, a comparative analysis of the 
taxonomy of the families detected in the projects and the GMRepo database revealed bacterial families exclusively found in 
the bioreactor models. These findings highlight the potential of bioreactors to enrich low-abundance microorganisms from 
faecal samples, contributing to uncovering the gut microbial “dark matter”.
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Introduction

In the last 20 years, multiple researchers have contrib-
uted to understanding the impact of the gut microbiome 
on human health, and the growing interest in this field is 
reflected in the escalating body of publications. What started 
as a goal to describe the diversity of the microorganisms 
in the human gut and other body sites has shifted focus to 
the more challenging task of studying the mechanisms by 
which host-microbiota interactions occur [1]. Previous work 
has addressed the limitations surrounding the mechanistic 
study of the gut ecosystem. One significant limitation is that 
some of the regions of the intestinal tract remain mostly 
inaccessible. While invasive methods such as endoscopy 
and nasoenteric probes have provided valuable information 
on the microbial activity and composition of the different 
sections of the gut [2, 3], these procedures are expensive, 
require highly trained personnel and specialised equipment, 
and may face practical and ethical limitations. In addition, 
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this intestinal environment has a very dynamic nature, show-
ing a high intra-individual and inter-individual variation, 
being influenced by confounding factors such as diet, life-
style, and medication, among others [4].

Combining high-throughput sequencing with cultivation-
independent methods has provided valuable insights into our 
understanding of the factors that shape gut ecology. It has 
given access to a large inventory of taxonomic and func-
tional information on the trillions of microorganisms present 
in the human gut. Notably, it has also raised awareness of the 
microbial “dark matter”, which includes multiple bacterial 
and other microbial species still to be cultured and whose 
biological functions are yet to be understood [5]. Multiple 
research groups have highlighted the limitations of culture-
independent techniques with regard to fully capturing the 
bacterial diversity in faecal samples. These include the 
biases introduced by DNA extraction efficiency between 
taxa, selecting a given set of primers, and variable sequenc-
ing depth between samples [6]. In addition, the extrapolation 
of functions from genomic information remains challeng-
ing, with many genes from the microbial dark matter still to 
be annotated [5, 7]. Culturing and isolating this microbial 
diversity is still a challenging task, but it is essential not 
only to aid in the genetic and phenotypic characterisation 
of these microorganisms but also to facilitate the shift from 
correlative studies to causative validation of predicted bac-
terial functions [8]. Promising advances have been made 
in the cultivation of multiple species previously considered 
“unculturable” from the gut microbiota, strongly questioning 
the prevailing belief that much of the gut microbiome can-
not be cultured [9, 10]. However, metagenomic approaches 
suggest that there is still a large microbial diversity that is 
not included in these culture collections [5, 11].

All these limitations have motivated the development 
of multiple models for the cultivation and study of the gut 
microbiota in vitro and in vivo, including gnotobiotic ani-
mals, organoids, cell culture models, microbial cultures, and 
bioreactors [12, 13]. Microbial cultures performed in batches 
are a cheap and efficient method (i.e. multiple culture con-
ditions can be tested simultaneously) for studying multiple 
bacteria-bacteria and bacteria-substrate interactions in short-
term experiments. On the other hand, bioreactors are more 
complex devices whose integrated technology allows them 
to provide an optimum environment for the desired micro-
bial reactions that better mimic some of the environmen-
tal conditions in the human body. This environment can be 
obtained by precisely controlling the operational parameters 
of the cultures, such as pH, redox potential, and nutrient 
feed, among others.

Bioreactors are promising tools that can unlock access 
to the microbial “dark matter”. The precise control of the 

culture conditions allows the recovery and growth of hard-
to-culture microorganisms. A pertinent example is the cul-
tivation of environmental anammox bacteria, which exhibit 
slow growth rates ranging from 2 days to several weeks. 
Moreover, their growth is inhibited by the accumulation of 
their product metabolites in the culture, requiring continu-
ous cultivation methods such as up-flow column reactors 
[14, 15]. The research teams behind the human gut models 
have demonstrated that they can culture reproducible bac-
terial communities with a diversity similar to their initial 
inoculum. Faeces are commonly used as inoculum, but 
other inocula have been tested, such as ileostomy effluents, 
microbial isolates from faeces, and synthetic communi-
ties [16–18]. Based on the number of publications derived 
from these models, the most well-known platforms are 
SHIME [19], TIM-2 [20], SIMGI [21], PolyFermS [22], 
ARCOL [23], and the three-stage model from Macfarlane 
et al. [24]. Although bioreactor technology has made sig-
nificant progress, there are multiple gaps that limit the 
potential of these devices to uncover new biology and be 
fully exploited. For instance, there is still a huge gap in our 
understanding of the impact of operational parameters such 
as nutrient medium, retention time, flow and agitation, and 
pH on the ecology of the microbial communities recovered 
in bioreactors [25]. Moreover, there is a lack of studies that 
describe and compare the microbial communities cultured 
in these devices. This knowledge can be useful for refining 
current models to reflect the composition and behaviour 
of the microbiome within the human gastrointestinal tract 
more accurately. Given the strong inter-individual differ-
ences and impact of operational parameters on composi-
tional analysis, comparison of multiple systems and con-
ditions is essential to allow appropriate interpretation of 
data from bioreactor models. However, the analytical cost 
and required experimental time prohibit high throughput 
analysis. Co-analysis of archived sequencing data from 
multiple studies and research groups has the potential to 
allow a clearer definition of the limits and appropriate use 
of bioreactor technology.

In this work, we aimed to describe and compare the taxo-
nomic diversity and structure of the microbial communities 
cultured in these devices by performing a meta-analysis of 
the 16S rRNA sequences of over 1512 samples available in 
the NCBI Sequence Read Archive (SRA). These samples 
were retrieved from projects that used microbial cultures 
performed in batches and bioreactors seeded with human 
faeces. We explored the relationships between sample input 
and operational parameters in regard to their impact on 
microbial community structure and investigated differences 
in microbial communities before and after the inoculation of 
stool samples in three of the bioreactor models.
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Methods

Search in the NCBI Sequence Read Archive (SRA)

Our search aimed to retrieve 16S rRNA amplicon sequences 
from samples obtained from studies that used either (i) bio-
reactors to simulate the gut environment or (ii) microbial 
cultures performed in batches, both inoculated with human 
faeces. For this purpose, we performed multiple searches in 
the SRA (https:// www. ncbi. nlm. nih. gov/ sra) using each one of 
the following keywords: “continuous flow bioreactor model”, 
“fecal batch culture”, “gut bioreactor”, “gut microbiota cul-
tured in vitro”, “in vitro digestion”, “PolyfermS”, “SHIME”, 
“simulated gastrointestinal”, “simulation of the colon”, “simu-
lation of the gut”, and “TIM-2”. After each search, we used 
the SRA Run selector tool to download the metadata of all 
the samples into an XML file. This search was performed in 
September 2022. Then, in-house scripts in R were used to 
remove duplicates and filter the studies and samples based 
on selection criteria (Fig. 1) (https:// zenodo. org/ doi/ 10. 5281/ 
zenodo. 80456 25—file:1_ Metad ata_ retri eve. Rmd). The acces-
sion numbers of the projects were used to retrieve the FTP 
address of the samples using ffq [26], and their sequences 
were downloaded from the NCBI. Additional metadata, such 
as the operational conditions of the bioreactor and composi-
tion of the culture media, were obtained from the published 
papers of the projects to support further analyses. During the 
search, a special focus was given to projects in which the com-
position of the faecal inoculum could be identified, allowing 
comparisons with the samples obtained from the bioreactors.

Informatic Analysis

Data visualisation was performed using R statistical soft-
ware (v 4.1.2, R Core Team 2022) in RStudio (v2022.12.0, 

Posit Team 2022). High-throughput sequence data were 
analysed using dada2 (v 1.16) [27]. First, we analysed the 
samples from the selected projects individually and manu-
ally adjusted the input parameters of the dada2 package to 
maximise the number of reads that passed the denoising 
and quality filtering steps, while reducing the number of 
total errors in the reads. The parameters used to set up 
the dada2 algorithms are summarised in Additional file 1: 
Table S1. Then, sequences were de-replicated, and high-
resolution amplicon sequence variants (ASVs) were pro-
duced, followed by the removal of chimaeras. Taxonomy 
was assigned to ASVs using the BLASTN algorithm with 
NCBI RefSeq 16S rRNA database as the reference (down-
loaded June 2022—available in Zenodo:https:// zenodo. 
org/ doi/ 10. 5281/ zenodo. 80456 25—file:/ suppo rting_ 
metad ata/ bacte ria. 16SrR NA. zip). Briefly, we filtered and 
selected the top hit with the highest percentage of identi-
cal positions (pident) for each ASV. The subject sequence 
id (sseqid) obtained from BLAST was used to search 
the NCBI unique record identifier (UID) using the pack-
age taxize (v 0.9.100). Taxonomic lineage was retrieved 
using the function classification from the package taxize 
(code available in Zenodo:https:// zenodo. org/ doi/ 10. 5281/ 
zenodo. 80456 25—file: Taxon omy. Rmd). Due to the region 
and length variation of the 16S rRNA sequences obtained 
from the various studies and limitations in accurate taxo-
nomic assignment to genus and species level for short-
read 16S rRNA data, all taxonomy was collapsed to the 
family level to enable meaningful comparison. Data were 
analysed using phyloseq (v 1.38) and other R packages 
(code available in Zenodo:https:// zenodo. org/ doi/ 10. 5281/ 
zenodo. 80456 25).

Fig. 1  Flow diagram showing 
the data retrieval process

https://www.ncbi.nlm.nih.gov/sra
https://zenodo.org/doi/10.5281/zenodo.8045625—file:1_Metadata_retrieve.Rmd
https://zenodo.org/doi/10.5281/zenodo.8045625—file:1_Metadata_retrieve.Rmd
https://zenodo.org/doi/10.5281/zenodo.8045625—file:/supporting_metadata/bacteria.16SrRNA.zip
https://zenodo.org/doi/10.5281/zenodo.8045625—file:/supporting_metadata/bacteria.16SrRNA.zip
https://zenodo.org/doi/10.5281/zenodo.8045625—file:/supporting_metadata/bacteria.16SrRNA.zip
https://zenodo.org/doi/10.5281/zenodo.8045625—file:Taxonomy.Rmd
https://zenodo.org/doi/10.5281/zenodo.8045625—file:Taxonomy.Rmd
https://zenodo.org/doi/10.5281/zenodo.8045625
https://zenodo.org/doi/10.5281/zenodo.8045625
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Comparison of the Community Structure Between 
Samples (β‑Diversity) and Within Samples 
(α‑Diversity)

Samples not directly obtained from the bioreactor (e.g. 
faecal samples), those with zero sequences after bioinfor-
matic analysis, and those with less than 2500 read counts 
were removed from the data set used for diversity analy-
sis. Beta diversity was assessed using principal component 
analysis (PCA) and with the non-linear dimension reduction 
algorithms, t-distributed stochastic neighbour embedding 
(t-SNE), and Uniform Manifold Approximation and Pro-
jection (UMAP) with packages Rtsne (v 0.16) and umap (v 
0.2.9). Hellinger distances were used for β-diversity analysis 
to account for large differences in sequencing depth while 
avoiding rarefying of samples. The limitations of rarefying 
microbiome data have been addressed previously [28]. The 
Hellinger distances were calculated by applying the Hell-
inger transformation to the compositional data matrix and 
then computing the Euclidean distance among samples. For 
α-diversity analyses, a series of Hill numbers were calcu-
lated for each sample at diversity orders q = 0–3 using the 
package hilldiv (v 1.5.1). Subsequently, these variables were 
plotted to obtain a diversity profile of each study. In addi-
tion, traditional diversity indices such as Observed, Chao1, 
Shannon, and inverse Simpson indices were calculated using 
packages phyloseq (v 1.38) and ggstatsplot (v 0.11.0). Statis-
tical analysis of α-diversity measures was performed using 
non-parametric tests with the holm p-adjustment method, 
Kruskal–Wallis one-way ANOVA (no. groups > 2), or 
Mann–Whitney U test (no. groups = 2). Pair-wise compari-
sons for paired combinations of experimental parameters 
(e.g. single versus pooled donor) were produced for ANOVA 
analysis using Dunn’s non-parametric all-pairs comparison.

Analysis of Amplicon Sequence Variants (ASVs) 
Enrichment in the Bioreactors

We explored the metadata of the studies available in the 
NCBI to select the ones that allowed assessment of (i) 
sequences of the initial faecal inoculum; (ii) source donor; 
(iii) if it was a multistage design, the gut compartment that 
was simulated; and (iv) if it included a mucosal component, 
the lumenal or mucosal origin of the sample. By mucosal 
component, we refer to bioreactors in which support media 
such as plastic carriers covered with mucin were introduced 
to allow biofilm growth, whereas lumenal sample refers to 
samples taken from the unstructured culture media. Based 
on these criteria, five projects were further selected to 
evaluate the enrichment of ASVs in the bioreactors. “ASVs 
enrichment” in this study is defined as the ASVs not pre-
sent in the initial faecal sample (inoculum), as determined 
from the sequencing data analysis that appeared after the 

cultivation of the microbial community in the bioreactor. 
In-house scripts in R were used to filter the ASVs absent 
in the initial inoculum (number of reads = 0) but that were 
present in the bioreactors (number of reads > 0). For stud-
ies with multiple donors, the biodiversity comparison was 
made between samples from the same donor. On the other 
hand, if the study included replicates, only ASVs absent in 
both faecal sample replicates and present in both bioreac-
tor sample replicates were selected. Finally, the taxonomic 
classification of these ASVs was obtained from the previ-
ous identification performed with BLAST (see “Informatic 
Analysis” for details). A table describing selected samples 
is available in Additional file 1: Table S5.

Comparison of the Taxonomy Between Samples 
and the Data Repository for Human Gut Microbiota 
(GMrepo)

The overlap of taxonomy at the family level found in the 
vitro models and that previously documented by direct 
sequencing of the human faecal microbiome was explored. 
Firstly, a list of all the species available in the Data Reposi-
tory for Human Gut Microbiota (GMrepo) [29] was down-
loaded (February 2024—available in Zenodo:https:// 
zenodo. org/ doi/ 10. 5281/ zenodo. 80456 25—file:/ suppo rting 
metad ata/ GMREPO). Then, the package taxize was used to 
retrieve the taxonomic lineage by searching for their NCBI 
taxon ID. Finally, the taxa lists obtained from the projects 
and the samples in GMrepo were compared using the func-
tion setdiff in R.

Data and Code Availability

No new sequencing datasets were generated during the cur-
rent study. Details of accession numbers for data analysed 
can be found in Additional file 1: Table S2. Original R 
scripts and metadata files are available in Zenodo (https:// 
zenodo. org/ doi/ 10. 5281/ zenodo. 80456 25).

Results

Search in the NCBI Sequence Read Archive (SRA)

A total of 18 studies were selected after the search in the 
SRA, accounting for 1750 samples from all the projects 
(Additional file 1: Table S2). Subsequently, samples directly 
from faeces (n = 79), those with zero reads after bioinfor-
matic processing (n = 63), and those with less than 2500 read 
counts (n = 96) were removed, leaving the final number of 
samples as 1512. The library size of selected samples was 
between 2661 and 419,940 reads (Additional file 1: Fig. S1). 
Moreover, the rarefaction curves obtained from plotting the 

https://zenodo.org/doi/10.5281/zenodo.8045625—file:/supportingmetadata/GMREPO
https://zenodo.org/doi/10.5281/zenodo.8045625—file:/supportingmetadata/GMREPO
https://zenodo.org/doi/10.5281/zenodo.8045625—file:/supportingmetadata/GMREPO
https://zenodo.org/doi/10.5281/zenodo.8045625
https://zenodo.org/doi/10.5281/zenodo.8045625
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number of observed OTUs against the sequencing depth 
(number of reads) in the samples showed that most cultures 
reached a plateau, suggesting that the sequencing depth was 
adequate (Additional file 1: Fig. S2).

The selected projects included samples from five stud-
ies that used cultures performed in batch and seven bio-
reactors with specific configurations: single-stage model 
(single_stage_Xu_et_al_2019), SHIME, SIMGI, TIM-2, 
PolyFermS, and ARCOL. These configurations are briefly 
described in Additional file 1: Table S2. Most of these stud-
ies (13/18) targeted the V3-V4 region of the 16S rRNA gene, 
followed by the V4 region (3/18), and only two studies used 
each of the V1 or V3 regions, respectively. The metadata on 
the operational parameters used in these models, including 
country, inoculum type, pH, and composition of the culture 
media, were extracted from the papers and are available in 
Additional file 2.

Comparison of the Microbial Diversity Between 
Bioreactor Studies (β‑Diversity)

The t-SNE analysis grouped the samples by study, with no 
overlap between samples from the same bioreactor model 
(Fig. 2). For instance, the samples from SHIME studies 

were not clustered and remained separated in the t-SNE plot. 
However, microbial communities from different studies did 
overlap, except for the ones in SHIME_Ma_et_al_2022, 
which was notably different from that observed in other stud-
ies, as indicated by its remote mapping space (Fig. 2). One of 
the limitations of using t-SNE for β-diversity analysis is that 
it preserves the local distances but not the global distances. 
To overcome this limitation and support our observations, 
we also performed a PCA over the Hellinger-transformed 
compositional data. The PCA showed a similar pattern to 
that observed in the t-SNE (Additional file 1: Fig. S4), indi-
cating that the observations made from the t-SNE are robust. 
In addition, where studies included more than one donor, the 
individual donors did not necessarily map closely, indicat-
ing the greater impact of the donor over the in vitro model 
platform. For example, batch_Korth_et_al_2022 screened 
individual stool samples from four adult volunteers, showing 
high dispersion in the t-SNE plot (Fig. 2) and PCA (Addi-
tional file 1: Fig. S4) based on inter-individual composi-
tional differences. UMAP analysis confirmed the grouping 
patterns observed by t-SNE but overestimated sample simi-
larity, as reflected by the tightness of the clusters relating 
to each study (Fig. S3). Importantly, microbial community 
differences were not driven by variation in the sequenced 

Fig. 2  Comparison of microbiome community structure from 18 different studies with 1512 samples. Multi-dimensional scaling plot using t-dis-
tributed stochastic neighbour embedding (t-SNE) with Hellinger distance measure of compositional data
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16S rRNA gene region once taxonomy was collapsed to the 
family level (Additional file 1: Fig. S4). Based on visual 
assessment, operational parameters, such as the carbon-to-
nitrogen ratio, sample origin, use of vitamins, number of 
bioreactor stages, gut compartment, and mucin amount, did 
not exhibit strong patterns across the dataset (Additional 
file 1: Fig. S5-6).

Mean Species Diversity in a Site at a Local Scale 
(α‑Diversity)

Based on the α-diversity profile determined by Hill numbers, 
the studies that showed the highest diversity of families were 
batch_Bas-Bellver_et_al_2020, batch_Kim_et_al_2022, and 
batch_Kleigrewe_et_al_2022. As can be noted, all these 
projects used cultures performed in batches (Fig. 3, Addi-
tional file 1: Fig. S7). In contrast, the studies that showed the 

lowest diversity across the profile were ARCOL_Leclerc_et_
al_2021 and TIM-2_Vieira_et_al_2021. In addition, samples 
from bioreactors that used formula-fed infants as an inocu-
lum showed significantly higher Shannon diversity indices 
when compared to other inocula (Additional file 1: Fig. S8c).

Comparison of the Taxonomy Between Models 
and the Faecal Microbiome

An evaluation of the effect of the different operational 
parameters and settings of the bioreactor models showed 
that, as expected, the most abundant groups at the phy-
lum level in the samples were Bacillota, Pseudomonad-
ota, Actinomycetota, and Bacteroidota (Additional file 1: 
Fig. S9). In particular, the study SHIME_Ma_et_al_2022 
showed enrichment in Synergistota (50.9%) and Fusobac-
teriota (29.8%). In the current meta-analysis, at the family 

Fig. 3  Diversity profiles of the 18 selected studies determined by 
Hill numbers at diversity orders q = 0–3. Diversity profile plots 
are grouped by bioreactor model type to aid data visualisation and 
comparison. The sensitivity towards abundant and rare families is 
modulated using the diversity order “q”. The larger the q value, the 
higher the importance attributed to abundant families. At diversity 
order q = 0, the Hill numbers represent the total number of families 

in the samples (richness). A value of q = 1 weights families by their 
proportion without disproportionately favouring rare or abundant 
families. This value yields the exponential of the Shannon index. At 
q = 2, abundant families are over-weighted, and the number yields the 
multiplicative inverse of the Simpson index. Vertical bars show the 
standard deviation. This summarised explanation was adapted from 
Alberdi and Gilbert et al. 2019 [30]
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level, the top 5 families that accounted for up to 50% of 
the abundance in the samples were Bacteroidaceae, Lach-
nospiraceae, Oscillospiraceae, Bifidobacteriaceae, and 
Enterobacteriaceae (Fig. 4).

To focus on the less abundant taxa, we compared the tax-
onomy of the enriched families in the projects selected for 
the ASVs enrichment analysis (Additional file 1: Table S6): 
a family was considered to be enriched based on two criteria: 

(i) when it was not detected in the faecal inoculum; in other 
words, there were no ASVs associated to this family in the 
inoculum and (ii) when we detected at least one read from 
an ASV belonging to this family in the samples obtained 
from the bioreactors. The most common enriched families 
detected across all the samples were Enterobacteriaceae 
(11/36), Desulfohalobiaceae (10/36), and Synergistaceae 
(9/36).

Fig. 4  Heatmap of top 40 bacteria families identified in samples (remaining taxa grouped together in bottom row). Compositional data are repre-
sented as the total proportion of sequences from all samples in the project (n = 1512)
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Subsequently, we explored whether there was any differ-
ence between the list of families observed in the bioreactors 
and the list of faecal taxa obtained from GMRepo. We found 
36 families in the bioreactors and batch cultures that have 
not been detected in the curated projects of GMRepo; the 
most prevalent ones were the families Gracilibacteraceae 
(13/18), Muribaculaceae (11/18), Defluviitaleaceae (9/18), 
and Vallitaleaceae (8/18). However, these families were 
mostly observed in low relative abundances (< 0.0001%) 
and occasionally in higher proportions (> 0.1%).

At the phylum level, most of these enriched families 
belonged to Pseudomonadota (25.8%), Bacillota (25.8%), 
Cyanobacteriota (11.1%), and Chloroflexota (12.9%) 
(Fig. 5A). In addition, the phylum Nitrospinota was only 
detected in the bioreactors. On the other hand, 310 families 
found in the faecal samples of the GMRepo database were 
not detected in any of the studies included in the current 
meta-analysis. Similarly, these families that are distinct only 
to the GMRepo database are not highly abundant in faecal 
samples. Most of them belonged to the phyla Pseudomonad-
ota (24.2%), Actinomycetota (12.6%), and Cyanobacteriota 
(9.4%) (Fig. 5B).

Analysis of ASVs Enrichment in the Bioreactors

In our analysis, we found that despite the dominance of a 
few families in the communities developed in the bioreac-
tors, new ASVs appeared in all the selected models when 

compared to the inoculum (Fig. 6). Moreover, the results 
show that modification of the bioreactor design such as add-
ing plastic carriers for promoting biofilm growth increased 
the number of ASVs detected. For instance, the study of 
M-ARCOL_Deschamps_et_al_2020 showed 499 ASVs in 
the faeces of one of the donors. After inoculation in the bio-
reactor, 227 and 238 new ASVs were detected in the lumenal 
and mucosal compartments, respectively. A similar trend 
was observed in the study of SHIME_Firrman_2021.

Discussion

Inter‑individual Variation Is the Main Driver 
of the Difference Between Projects

Our results suggest that inter-individual variation in faecal 
inoculum diversity is the main driver of the difference in 
family-level composition between studies. The variability 
among individuals seems to be greater than the selective 
pressure exerted by the bioreactor model. However, further 
research is required to validate this claim. An interesting 
approach would be to culture faecal samples from the same 
donors in all these bioreactors to determine how the micro-
bial communities are shaped by the culture conditions across 
different platforms. Furthermore, these findings show how 
pooling samples to increase the diversity of the inocula 
comes at the cost of losing information about the community 

Fig. 5  Composition at the phylum level of unique families observed 
in selected studies and GMRepo. (A) Phyla of the families only pre-
sent in the selected studies. (B) Phyla of the families only present in 

GMRepo. The percentages were obtained by dividing the number of 
families within each phylum by the total number of families in each 
category, which are 36 and 310, respectively
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structure of individual samples. Similarly, Isenring et al. [31] 
suggested that the pooling of samples completely removes 
inter-individual differences, leading to an artificial commu-
nity with unpredictable competition and artificial balance 
among taxa. Moreover, each species that establishes itself in 
a microbiome plays an important role. Although we cannot 
observe this importance as a direct metabolic consequence, 
it may impact both the ecological structure of the commu-
nity and the downstream microbial metabolites generated 
by the community as a coherent entity. This information is 
lost in a pooled sample since the combined microbiota rep-
resents multiple independent ecologies. Researchers must 
carefully consider this effect when selecting the inoculum 
used in their in vitro models.

Complex Bioreactor Designs Did Not Achieve 
a Higher Microbial Diversity

Hill numbers have been proposed as a general, robust, 
and flexible statistical framework [30], offering multiple 
advantages over traditional diversity indices such as rich-
ness, Shannon, and Simpson [30, 32, 33]. For instance, the 
interpretation of the Hill measure and its measurement unit 
is always the same, and the q parameter can modulate the 
sensitivity towards abundant and rare taxa. The steep slope 
of the profiles in Fig. 3 indicates a high unevenness of the 
community structure inside the bioreactors, with strong 
variation in abundance between the represented families. In 
other words, a few highly abundant families dominate these 
communities, a common feature of the microbiome of differ-
ent body sites, such as the vagina and the gut environment. 
Nevertheless, low-abundance families can still fulfil crucial 
biological functions, such as those residing in specialised 
environments like microvilli crypts. If the role of these less 
common family members is neglected, crucial insights into 
the community’s overall functioning are lost. For instance, 
methanogenic bacteria in the intestine and anammox in 
aquatic environments are challenging to cultivate and often 
go undetected in the direct sequencing of samples. These 
facts do not remove their impact, as methanogens influence 
fermentation, and anammox affects the entire nitrogen cycle.

Moreover, the results suggest that the diversity of the 
original faecal inoculum greatly impacts the diversity recov-
ered in the bioreactor. However, this analysis was limited 
because the available metadata did not allow us to identify 
the samples of the faecal inocula in most of the studies.

Consequently, we could not compare the faecal inocula 
with the bioreactor’s communities. Despite this limitation, 
we did find that microbiome communities originating from 
individuals had a higher α-diversity than those where pooled 
samples were analysed separately (Mann–Whitney U test 
on Shannon diversity indices, p < 0.005. Additional file 1: 

Fig. S7, Table S4). These results contrast those obtained 
by Średnicka et al. (2023), who found higher α-diversity 
metrics in pooled samples from healthy donors than in indi-
vidual stool samples [34].

In addition, it is worth highlighting the low total number 
of reads (less than 10,000) observed in multiple samples 
from the projects TIM-2_Vieira_et_al_2021, ARCOL_
Leclerc_et_al_2021, SIMGI_Zorraquin_et_al_2021, and 
others (Additional File 1: Fig. S1). This low number of 
reads is below an appropriate minimum to obtain reliable 
estimates of diversity statistics from these samples. A low 
number of reads might be obtained due to errors during sam-
ple DNA extraction and sequencing. However, an alternative 
hypothesis is that the operating conditions in those bioreac-
tors might have impacted the number of reads observed in 
the samples. For instance, a total low microbial biomass in 
the system can decrease the DNA yield in the sample dur-
ing extraction, affecting all the subsequent analytical steps.

Bioreactors as Tools for Unlocking the Microbial 
Dark Matter

The cultivation of all the microorganisms present in the gut 
is a challenging task. Although promising advancements 
have been made in this regard [9, 10], a huge diversity of 
microorganisms is still to be cultured. This is supported by 
metagenomic studies that show a huge taxonomic diversity 
that is not included in culture collections [5, 11]. Moreo-
ver, culturomic approaches have demonstrated the distinct 
benefits of using different culture strategies to analyse the 
same sample to evidence uncultured species. When multi-
ple plating or enrichment methods are used, a hidden diver-
sity appears, extending the number of species that can be 
detected compared to traditional culture methods. Also, 
recent research has shown the biases of culture-independent 
techniques such as 16S rRNA amplicon sequencing in the 
deep characterisation of the microbiome, which can result 
in an underestimation of the microbial diversity, especially 
low-abundant species, which can go undetected [35].

Our findings show that both cultures performed in batch 
and bioreactors can not only support the growth of the 
most abundant families in faeces but also uncover a hid-
den diversity inside the faecal inoculum. Although present 
in low abundance, we found 36 new families in bioreac-
tors compared to the ones reported in the GMRepo. It has 
been suggested that modifications promoting biofilm growth 
or introducing a more complex substrate environment might 
encourage a re-organisation of the microbial community 
and encourage the emergence of new functional niches. 
We observed differences in the detected ASVs between 
the lumenal and mucosal compartments of the bioreactors. 
For instance, in the study of M-ARCOL_Deschamps_et_
al_2020, adding a mucosal component increased the number 
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of newly detected ASVs compared to the faecal sample 
(Fig. 6B). Nevertheless, the abundance of the ASVs varied 
greatly, ranging from 500 to 5000. The significance of these 

changes needs further exploration, as it is necessary to rule 
out external contamination as the source of these new ASVs, 
especially considering their low abundance. Nonetheless, 
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if a species of interest is enriched in the bioreactor, further 
enrichment protocols can promote its growth, isolation, and 
characterisation. This approach has proven successful in 
cultivating challenging microorganisms such as anammox 
bacteria at purities of up to 97% [15].

Although some of the families detected in the in vitro 
models were not found in GMRepo, a further literature 
search found documentation of Gracilibacteraceae, Muri-
baculaceae, Defluviitaleaceae, and Vallitaleaceae families 
identified in faecal microbiota samples [36–39]. Finally, the 
detection of the family Vallitaleaceae is surprising, as mem-
bers of this family originated from hydrothermal fields and 
deep oceanic subsurface habitats rich in hydrocarbons [40]. 
Taken together, these results exhibit the potential of bioreac-
tors to recover low abundant bacteria in faecal inocula and 
point to vast diversity yet to be cultured in these devices. The 
detailed list with the names of these families is available in 
Additional file 1: Table S3.

Changes in the Microbial Diversity Inside 
Bioreactors

Regardless of the bioreactor model, once the microbial com-
munity is extracted from its natural environment, subsequent 
ecological changes occur inside this new artificial environ-
ment. Moreover, the culture of the faecal microbiota in the 
bioreactors is marked by a loss of diversity. For instance, 
in the study M-SHIME_Chassaing_et_al_2020, there was 
a decline of 50% in the α-diversity of the bioreactor after 
a stabilisation period of 7 days post-inoculation [41]. This 
loss of diversity might be explained by (1) the loss of species 
that cannot grow because their nutrient requirements rely 
on compounds provided by the host, (2) the loss of species 
whose nutrition relies on co-metabolism and depend on the 
presence of other species, and (3) the artificial selection of 
certain bacterial populations that use more effectively the 
available nutrients.

Alternatively, we propose another complementary expla-
nation to account for the loss of diversity besides the death of 

multiple species [42]. We hypothesise that the selective pres-
sure imposed by the conditions in the bioreactor can cause a 
decrease in the abundance (concentration of cells) of some 
species, which pushes them below the limit of detection of 
the sequencing method. In previous work, Gutierrez et al. 
[43] inoculated a soil sample in packed bioreactors fed with 
citrate as the sole carbon source and tracked the changes in 
the microbial community structure using 16S rRNA gene 
sequencing. Interestingly, some bacterial groups observed 
in the soil were not detected in the bioreactor. However, the 
bioreactor allowed the enrichment of new bacterial species 
undetected in the gene sequences of the soil sample. Then, 
they used the bioreactor’s effluent to fertilise sterile soil and 
found some bacterial species detected in the original inocu-
lum, which apparently had disappeared in the bioreactor.

We suggest that the environmental conditions in the bio-
reactors, especially the absence of a human host, create new 
niche spaces that drive the replacement and proportional 
changes in the microbial community composition. These 
changes allow the growth of microorganisms whose activity 
is obscured by the presence of other, more dominant species 
in the human gastrointestinal tract. This feature highlights 
the potential of using bioreactors to enrich these microor-
ganisms, allowing the role of these low-abundant species to 
be investigated.

Further research is required to understand the effect of 
the operational parameters of the bioreactor on diversity 
and to exploit the full potential of bioreactors to contrib-
ute new knowledge on gut microbial communities and to 
increase the number of species that can be cultured in vitro. 
We propose using bioreactors in tandem with culturomic 
approaches as another potential key to unlocking access to 
the microbial dark matter. More descriptive metadata of the 
environmental conditions of the communities growing in 
bioreactors is required to allow data from different studies 
to be co-modelled, which will accelerate our understanding 
of the value and limitations of bioreactors as a research tool. 
Bioreactors have proven to be powerful tools to enrich and 
even isolate species that are difficult to cultivate; therefore, 
they are emerging as a resource for studying microbial diver-
sity and the ecological relationships of human microbiomes, 
especially those that inhabit the intestine. However, we must 
consider that each configuration and operation allows the 
enrichment of a group of microorganisms, overlapping or 
hiding others. Therefore, while the simulations of the intes-
tine do not include all the environmental variables that the 
intestinal microorganisms experience, we must be cautious 
with drawing conclusions between the results obtained using 
in vitro models and a condition in human health.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 024- 02369-0.

Fig. 6  Enrichment analysis of ASVs for selected samples. This graph 
shows the number of ASVs enriched in five bioreactor models. A 
SHIME_Firrman_et_al_2021. B SIMGI_Zorraquin_et_al_2021. 
C ARCOL_Leclerc_et_al_2021. D M-ARCOL_Deschamps_et_
al_2020. E SHIME_Liu_et_al_2022. The number of ASVs in the 
faecal samples is plotted as a reference (n reads > 0). The samples 
from the original faecal inoculum are labelled as “_faecal”, while 
other labels correspond to samples from the bioreactors. The vertical 
bars represent the number of unique ASVs in each category. The dots 
and lines represent the comparisons that were performed between 
samples. Single dots indicate ASVs enriched in a given sample 
only, while dots connected with a line indicate that ASVs are shared 
between samples. This plot shows that new ASVs are detected in the 
bioreactors compared to the faecal inoculum
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