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Abstract
It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic 
systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, 
it is speculated that they can also record the lake’s critical transition. We studied Lake Dali-Nor in the arid region of Inner 
Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the 
succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. 
Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two 
alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance 
of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series 
from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial com-
munities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the 
community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strong-
est antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community 
stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.
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Introduction

Limnologists have long been fascinated by the critical transi-
tion of lake ecosystems. After the initial proposal by Hol-
ling [1], the conception of tipping points, alternative stable 
states, and abrupt changes have spread throughout limno-
logical research and management. The critical transition is 
often defined as an ecological process in which a small dis-
turbance suddenly triggers the ecosystem into an alternative 

stable state after a tipping point [2]. It is this “small changes 
bring big effects” pattern that makes the critical transition 
important for lake ecosystems. However, the detection of 
critical transition is particularly challenging because of the 
need for a long time series of high-resolution data. Yet, most 
studies are designed for cross-sectional observations, which 
do not meet this requirement [3, 4]. Thanks to advances in 
paleolimnology, sediment archives can extend our temporal 
perspective on multi-decadal timescales, tracking the histori-
cal changes of lake ecosystems [5]. In particular, a wealth 
of studies has suggested that the microbial communities 
reconstructed from sediment DNA can reveal the historical 
evolution of lake ecosystems [6, 7]. However, the robust 
proof is lacking about whether the microbial community 
from sediment DNA can detect the complex behavior of a 
critical transition.

Critical transition is theoretically announced in advance by a 
phenomenon known as critical slowing down (CSD), referring 
to the fact that the return time to the previous state increases 
strongly as the ecosystem moves toward the tipping point [8]. 
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Practically, this phenomenon could be captured by several 
early warning signals (EWS), including amplified autocorre-
lation and variance in the fluctuation of the ecosystem state 
[9, 10]. Such measures of EWS have been applied to detect 
statistical signals of critical transitions from phytoplankton 
to zooplankton to fish communities. [11, 12]. Charms of the 
EWS-based CSD techniques are their generality and non-case-
specificity; however, they only inform us about the dynamic 
behavior of system processes, not the diagnostic information 
about the underlying mechanism(s) [13]. To complement the 
application of CSD, recent studies perceive the critical transi-
tion as a dynamic system in which the equilibrium of biotic 
communities loses stability before being replaced by another 
equilibrium [14–16]; thus, the crux of critical transition lies in 
community stability [17]. However, this perspective is usually 
difficult to prove due to the different criteria for stability, such 
as resilience, resistance, persistence, and robustness [18–20].

Inspired by the pioneering work of Robert May [21], the 
ecological stability of microbial communities is explored by 
fitting mathematic models with long-time series data. The most 
evoked model is the generalized Lotka-Volterra (gLV) model, 
which describes the dynamics of a population of N species as 
a function of their intrinsic growth rates and species interac-
tions [22]. Based on this, the stable microbial community is 
equivalent to the fixed point in the phase space, which is deter-
mined by the dominant eigenvalue of the Jacobian matrix: The 
microbial community is stable if all the eigenvalues’ real parts 
are negative [16, 20]. This method, known as local stability 
analysis, has the benefits of being both extremely general, and 
it is able to analyze communities with numerous species [23]. 
Furthermore, the gLV model can directly assess interactions 
between pairs of species, which influences community stability 
[24]. Commonly, disentangling species interactions is built on 
correlation networks – identifying species that occur together 
more often than expected by chance alone [25, 26]. However, 
this method may introduce biases, particularly in highly diverse 
communities [27], producing confusion about the effects of spe-
cies interactions on stability [23, 28–30]. For instance, if two 
species frequently co-occur, it is hard to conclude whether they 
facilitate one another by cooperation or occupy a similar niche 
by competition. Therefore, much current research infers species 
interactions through the gLV model, which investigate beyond 
the co-occurrence to scrutinize how species change in response 
to one another. In this way, Mounier and colleagues (2008) [31] 
modeled cheese fermentation community interactions, which 
predicted negative interactions that were afterward confirmed 
by co-culture experiments. Similarly, Stein et al. (2013) also 
quantified species interactions of the human gut microbiome 
after antibiotic perturbations [32].

Collectively, characterizing the dynamics of micro-
bial communities through the gLV model offers a window 
into their critical transition from the perspective of stabil-
ity and species interactions. Empirically, we reconstructed 

the historical dynamics of bacterial communities in a sedi-
ment archive through a gLV model. By this approach, we 
addressed three major questions: (1) whether the critical 
transition of microbial communities could be detected by 
sedimentary DNA; (2) if so, how does the community sta-
bility change during the critical transition; and (3) what 
is, or are, the underlying mechanism(s) by which species 
interaction affects community stability. Together, our results 
provide an unprecedented picture of the critical transition 
in paleolimnological records and also provide evidence to 
support that studying sediment DNA is an essential tool for 
understanding community dynamics in lake ecosystems.

Materials and Methods

Study Site, Sampling, and Core Chronology

Lake Dali-Nor (43°13′–23′ N, 116°29′–45′ E, ~ 1230 m above 
sea level) is an inland closed-basin lake in central Inner Mon-
golia, which has an area of 238 km2 and an average depth of 
10 m. Given its location at the modern limit of the East Asian 
summer monsoon, the lake sedimentation process is highly 
sensitive to climate change, suggesting that the sediments of 
Lake Dali-Nor provide valuable paleo-climate archives [33]. 
We choose our exact study site (43°16.68′ N, 116°37.26′, 
Fig. 1) because its sedimentation rates and visible lamination 
have been well characterized by Xiao et al. (2008) [34]. A 
137-cm uncontaminated sediment core was collected in the 
center of the lake in October 2020 using a gravity multi-corer. 
The core was split and cut at 4-cm intervals on average, which 
produced 35 sub-samples. They were then bagged in labeled 
Whirlpak bags on the day of field coring and refrigerated 
until laboratory analyses. Half of each sub-sample was sieved 
(100-μm mesh) after drying. The total sediment samples were 
disposed for accelerator mass spectrometry (AMS) radiocar-
bon dating. We compounded the graphite in the 14C dating 
laboratory in Lanzhou University by the normative approach 
and dated by accelerator mass spectrometry (AMS) in Peking 
University. All 14C ages were recalibrated to calendar years 
using the IntCal20 calibration curve [35].

Molecular Analyses

The total microbial genomic DNA was extracted from sedi-
ment samples by the PowerSoil DNA Isolation Kit (Mo 
Bio Laboratories, Inc., Carlsbad, CA, USA). To determine 
the 260/280  nm and 260/230  nm absorbance ratios, we 
used a NanoDrop ND-2000 spectrophotometer (NanoDrop, 
ND-2000, Thermo Scientific, 111 Wilmington, DE, USA). 
The V4 hypervariable region of the 16S rRNA gene was 
amplified to assess the bacterial community using the prim-
ers 515F (5’-GTG​YCA​GCMGCC​GCG​GTAA-3’) and 806R 
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(3’-GGA​CTA​CNVGGG​TWT​CTAAT-5’).  As prior study 
suggested, older sediment layers favor the shorter fragments, 
we  chosen 2 × 250 bp paired-end sequencing to extract the 
bacterial communities in sediment core [36].

The raw data for pools of samples were separately trimmed 
and de novo assembled in a unique file using CLC Genomics 
Workbench (Version 6.0.2, CLC Bio, Denmark) alignment 
and annotation tools. We removed sequences if they (1) con-
tained more than one ambiguous nucleotide, (2) lacked a com-
plete barcode and primer at one end, or (3) were shorter than 
200 bp after removal of the barcode and primer. The overlap 
settings for this assembly were a mismatch cost of 2, an insert 
cost of 3, a minimum contig length of 200 bp, a similarity of 
0.8, and a trimming quality score of 0.05. The sequences were 
clustered at 97% similarity cutoff into operational taxonomic 
units (OTUs). The representative sequence of each phylotype 
was aligned against the SILVA database (release 132) with 
a confidence threshold of 80%. All archaeal and chloroplast 
sequences were removed before downstream analysis.

Model Analyses

To simulate the dynamics of bacterial communities, we 
adopted the well-known gLV model:

where Ni is the relative abundance of class-level group i, 
i = 1, …, S, ri is its intrinsic growth rate, and aij is the inter-
action strength that captures how strongly class j inhibits 

(1)
dNi

dt
= Ni

(

ri −

S
∑

j=1

aijNj

)

class i. One of the key features of this model is the ability to 
consider three types of biotic interactions: mutualism (both 
aij and aji are positive, + / +), antagonism (both aij and aji 
are negative, − / −), and exploitation (aij is positive and aji is 
negative, and vice versa, + / −).

By reconstructing Eq. (1) and applying forward differ-
ence to the time-continuous dynamical system, the follow-
ing discrete system of equations was obtained.

Based on this linear system, the bacterial composition data 
we extracted from the sediment core can be used to solve the 
parameters ri and aij . To ensure the stability of the solution, we 
implemented Tikhonov regularization in this work, coupled 
with the application of k-fold cross-validation, in an effort to 
achieve the best predictive performance. Taking into account 
both the complexity of the model and the predictability of the 
unknown parameters, this kind of regularization approach can 
effectively reduce the risk of overfitting.

Moreover, we analyzed the steady states of the dynamic 
system (1) which refers to the states where Ni no longer 
change over time, i.e.,

The spectrum distribution of the Jacobian matrix 
(

�fi∕�Nk

)

i,k
 in the steady states can provide an approach for 

qualitative analysis of stability. According to the principle of 
linearized stability, if the real part of the eigenvalues of the 

(2)
ΔlnNi

(

tk
)

Δtk
= ri −

S
∑

j=1

aijNj

(

tk
)

fi(N) = Ni

(

ri −

S
∑

j=1

aijNj

)

= 0, i = 1,… , S.

Fig. 1   Sampling site of Lake 
Dali-Nor (left) and the age of 
sediment core with depth (right)
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Jacobian matrix are all negative, the states are asymptotically 
stable. If they are not, the states are unstable.

Statistical Analyses

All analyses and visualizations were performed by R environ-
ment (Version 3.2.2, http://​www.r-​proje​ct.​org) and Matlab (ver-
sion 2021b).

For the 16S rRNA gene amplicon sequencing data, rare-
fied OTU tables were created according to the minimum num-
ber of reads among all samples. The relative abundance of 
specific phylogenetic groups was assessed as the number of 
sequences affiliated with that group divided by the total number 
of sequences per sample. The alpha diversity was represented 
by Richness, Shannon, and Simpson indices. The statisti-
cal differences of each index were tested by non-parametric 
Kruskal–Wallis test. To determine the beta diversity of the 
bacterial community, we performed Bray–Curtis dissimilarity-
based non-metric multidimensional scaling (NMDS) analysis. 
To statistically test the difference in bacterial community com-
position, we performed an analysis of similarity (ANOSIM) 
and PERMANOVA with 999 permutations. The ANOSIM then 
generated a test statistic r, with a score of 1 indicating complete 
separation and 0 indicating no separation. By assuming the 
future will resemble the past [13, 37], an ARIMA-based model 
based on the community state (score of NMDS1) was identified 
by autoregressive integrated moving average, with the R func-
tion arima (p, d, q), in which p is the autoregressive order, d is 
the degree of differencing, and q is the moving-average order. 
To identify the major change moment of alpha-diversity in the 
time series, we applied structural-change analysis the R package 
strucchange through minimizing the residual sum of squares in 
multiple regression segments.

Data Deposition

The raw sequence data reported in this paper have been depos-
ited in the Genome Sequence Archive (Genomics, Proteomics, 
and Bioinformatics 2017) of the BIG Data Center, Beijing Insti-
tute of Genomics (BIG), Chinese Academy of Sciences, under 
the accession number CRA011047. The data are publicly acces-
sible at https://​bigd.​big.​ac.​cn/​gsa.

Results

Historical Succession of Microbial Communities 
through the Sedimental Core

After all the filtering and processing steps applied for 
sequencing raw data, 77,885 high reads were produced and 

were clustered into 1828 OTUs, with 814 ± 58 OTUs per 
site. Alpha diversity, as expressed by Richness, Shannon, 
and Simpson indices, temporally experienced a major break-
point in years between 1336 and 1366: Each index sharply 
decreased and then immediately increased in the vicinity of 
the breakpoint (Fig. 2a). After the late 1300 s, they oscillated 
and eventually reverted to their original levels (Fig. 2b, all 
P > 0.05).

The beta diversity of the bacterial communities also indi-
cated an abrupt change in the late 1300 s during their historical 
succession. The stratigraphically constrained cluster analysis 
based on the Bray–Curtis distance clearly divided the succes-
sion into two distinct states (ANOSIM test, P < 0.001): the 
years from 1200 to 1300 s and years from 1400 to 2010s. By 
interpreting the ordination plot as a representation of the phase 
space, the historical trajectory of bacterial communities showed 
a unidirectional, non-replacement succession, with little overlap 
between these two states (Fig. 3a). Furthermore, the frequency 
distribution of states (the Gaussian kernel density estimation) 
for the periods 1200 s–1300 s (red) and 1400 s–2010s (blue) 
showed a bimodality of bacterial communities (Fig. 3a), sug-
gesting the classic bistable system. Together, the significant dif-
ferences in the bacterial communities between the two states 
implied that the critical transition occurred in the late 1300 s. To 
verify this implication, we forecast the status response of bacte-
rial communities in the state2 by the ARIMA model derived 
from the state1 and showed that the predicted values signifi-
cantly deviated from observed ones (Fig. 3b). Furthermore, we 
also scrutinized two EWSs to detect the CSD phenomenon: 
Lag-1 autocorrelation and variance of NMDS1 scores, which 
significantly increased from the 1200 s to the 1300 s and sub-
sequently declined until the 2010s (Fig. 3c).

Most of the OTUs could be classified into a defined taxo-
nomic group: 97.92% were classified into 92 bacterial class-
level taxonomic groups. During the historical succession, the 
four dominant bacterial classes (with relative abundance > 1% 
in each sample) were Gammaproteobacteria, Cytophagia, Alp-
haproteobacteria, and Betaproteobacteria, which accounted 
for approximately 80% of the whole community, respectively 
(Fig. 4a). Although these four classes numerically prevailed 
in bacterial communities in both states, their dominance ranks 
were different between two states (Fig. 4b). Specifically, 
in state1, the dominant classes (in descending order) were 
Cytophagia, Gammaproteobacteria, Alphaproteobacteria, and 
Betaproteobacteria, whereas in state2, the dominant classes 
were Gammaproteobacteria, Alphaproteobacteria, Cytopha-
gia, and Betaproteobacteria (Fig. 4b).

Species Interactions and Community Stability 
during the Historical Succession

By choosing a window length of 10 cores and a step 
size of 5 cores (half the window length), bacterial 

http://www.r-project.org
https://bigd.big.ac.cn/gsa
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communities through 35 sediment cores were discretely 
split into 7 groups, which are representative of the 7 stages 
(stage1–stage7) during the succession from stage1 to 
state2. The gLV model inferred the change pattern of spe-
cies interactions from stage1 to stage7 (Fig. 5a). Firstly, 
the results showed that the proportion of exploitative 
interactions (43.82%) significantly overwhelmed that of 
antagonism (29.93%) and mutualism (26.25%) (P < 0.01). 
Despite the dominant role of exploitation in the species 
interactions, their interaction strength was generally 
around zero during the whole succession, whereas the 
strength of both antagonistic and mutualistic interactions 
increased from stage1 to stage3 and decreased from stage3 
to stage7 (Fig. 5b). Secondly, the gLV model also inferred 
the community stability by assessing the real part of eigen-
value of the Jacobian matrix (Fig. 5c). The results dem-
onstrated that the bulk eigenvalues contained a mixture 
of negative and positive values. By regarding the centroid 
of bulk eigenvalues as the mean stability level, the real 
parts of eigenvalue were negative in stage1 and passed to 
positive values in stage2–stage3 and then rebounded to 
negative values in stage4–stage7.

Discussion

Bacterial Communities Show the Critical Transition 
during the Historical Succession

Due to regional drying and decreased precipitation, Lake 
Dali-Nor has experienced profound shrinking between 
the 1300 s and 1600 s [34, 38]. Such water imbalance is 
expected to dramatically alter the ecosystem structure and 
function. However, it has been unclear whether there was a 
critical transition of Lake Dali-Nor during this period. By 
our reconstruction of the historical succession of bacterial 
communities derived from the sediment-core DNA in Lake 
Dali-Nor from 1200 to 2010s, we show that these communi-
ties did indeed exhibit a critical transition in the late 1300 s.

Recently, the successful application of paleolimnologi-
cal records in tracking the temporal changes of the lake 
state suggested that the biotic imprints are able to detect the 
critical transition [39]. For instance, Ibrahim et al. (2020) 
revealed two abrupt transitions of microbial eukaryotes, dia-
toms and cyanobacteria during the eutrophication of Lake 
Constance in Germany [6]. Similarly, Sagrario et al. (2020) 

Fig. 2   Alpha diversity of bacte-
rial communities over the sedi-
mental core. (a) The temporal 
change of Richness, Shannon, 
and Simpson from 1200 to 
2010s. (b) The comparison of 
Richness, Shannon, and Simp-
son between 1200 s–1300 s and 
1400 s–2010s
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determined the critical transitions of multiple-trophic prox-
ies in Lake Blanca Chica (Argentina) [40]. Together, these 
results highlight the paleolimnological evidence for a critical 
transition in lake ecosystems [7, 41]. However, most relevant 
studies identify the critical transition only by significant 
distinctness between communities according to sequential 
algorithms and statistical tests, such as the Sequential T-test 
Algorithm for Analyzing and the F-statistic [42, 43]. Appar-
ently, these methodologies largely neglect the non-linear 
response of biotic communities to external disturbances. In 
addition, sediment-core records also have their own biases 
and shortcomings, such as sedimental mixing, irregular tem-
poral integration, and DNA degradation, resulting in that 
paleolimnological data series are not strictly analogous to 
experimental monitoring data sets [44]. To address these 
limitations, we provide a series of judgments to promote the 
robustness and significance of the critical transition detected 
in Lake Dali-Nor.

Theoretically, there is a recognition that the critical 
transition is a re-organization of biotic communities by 
producing a new state [45]. Our results found that the 
temporal succession of bacterial communities in Lake 

Dali-Nor was divided into two significantly distinct states: 
state1 from the 1200 s to the 1300 s and state2 from the 
1400 s to the 2010s. By interpreting the ordination plot as 
the phase space [18], the bimodality along NMDS1 and 
the complete separation between the dispersion of two 
community groups imply two alternative states of bac-
terial communities. Although this ordination plot-based 
method seems intuitive, it can, to some extent, serve to 
depict the behavior of dynamic communities. For instance, 
the ordination plot of the human gut microbiome from 
four countries visualizes three attractors, suggesting that 
there are three states of the human gut microbiome [46]. 
In addition, the critical transition of bacterial communi-
ties also undergoes dramatic shifts in dominated groups 
between alternative states. Primarily, the dominance rank 
of bacterial communities was re-structured between state1 
and state2: Cytophagia was the dominant group before the 
transition, yet dropped to being only the third most domi-
nant group after the transition; in contrast, Gammapro-
teobacteria and Alphaproteobacteria were ranked second 
and third before the transition and rose to be ranked first 
and second after the transition. Moreover, the increase in 

Fig. 3   Beta diversity of bacte-
rial communities through the 
sedimental core. (a) Non-
metric multidimensional scaling 
(NMDS) analysis of bacterial 
communities; (b) the ARIMA 
(1, 1, 0) forecast derived from 
state1; solid lines show the 
observed values, and dashed 
lines show the predictive values. 
(c) Lag-1 autocorrelation and 
variance of NMDS1 scores of 
bacterial communities with 
a sliding window of 5 core 
samples



Sediment DNA Records the Critical Transition of Bacterial Communities in the Arid Lake﻿	 Page 7 of 11     68 

increasing Gammaproteobacteria and Alphaproteobacte-
ria, as typical halophilic bacteria, corresponds with the 
shrinking of Lake Dali-Nor after the 1300 s, when lake 
shrinkage commonly leads to higher salinity [47]. Collec-
tively, the significantly distinct traits at both the commu-
nity level and the class level after the late 1300 s indicate 
two alternative states of bacterial communities during the 
historical succession.

However, the appearance of alternative states alone is not 
sufficient to identify the critical transition of bacterial com-
munities. Another hallmark of critical transition is the non-
linear shift between alternative states [2, 48]. To verify the 
detected critical transition of bacterial communities during 
their historical succession, we therefore provided supportive 
pieces of evidence of the tipping point and the CSD phenom-
enon [49, 50]. First, we found a major breakpoint between 
1336 and 1366 in the change of alpha diversity, which 

coincides with the period of the late 1300 s when the critical 
transition was detected.  The dramatical decrease in alpha-
diversity may stem from that the bacterial species adapted 
to the original environmental set of the previous alternative 
state would suffer intensive stresses as they settled into a 
new environment of the later alternative state. By assum-
ing this breakpoint as the tipping point, it is expected that 
the bacterial communities would jump abruptly to another 
succession trajectory [51]. Consistent with this assumption, 
the ARIMA model showed that the predicted community of 
state2 (NMDS1) deviated from the observed values, imply-
ing that there was a bifurcation of the bacterial communi-
ties at this breakpoint. Furthermore, a wealth of theoretical 
and empirical studies shows a CSD phenomenon in biotic 
communities as they approach the critical transition, which 
is primarily marked by variance and autocorrelation of com-
munity status [8, 10]. In our study, we also found that both 

Fig. 4   The composition of 
bacterial communities through 
the sedimental core, showing 12 
classes. (a) Profile of bacterial 
communities from the 1200 s 
to the 2010s; (b) comparison of 
relative abundance of classes 
between state1 and state2
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variance and autocorrelation significantly increased until the 
late 1300 s, which reflects the bacterial communities become 
more correlated to their past and are pushed stochastically 
in the vicinity of bifurcation. Note, although the rising vari-
ance and autocorrelation have been previously reported dur-
ing the paleo-climate transition and lake eutrophication [6, 
52], it is not to say that it is flawless in their practice. One 
of the major shortcomings is the difficulty in determining 
the casual mechanisms: whether the environmental factors 
fluctuate stochastically, or whether the communities have 
reduced capacity to follow high-frequency environmental 
fluctuations [9, 53]. Nevertheless, our findings that two 

alternative states were bridged by the tipping point and the 
CSD phenomenon do infer the critical transitions of bacte-
rial communities during their historical succession.

Strong Interaction Strength Disrupts the Stability 
of Bacterial Communities

It is predicted that the biotic community is progressively 
unstable prior to the tipping point, suggesting that the col-
lapse of community stability triggers the critical transition 
[54]. Although this hypothesis is esthetically appealing, 
one major obstacle in confirming this is the multi-faceted 

Fig. 5   Species interaction and community stability from stage1 to 
stage7 (St1–St7). (a) Interaction strength in row i and column j repre-
sent the effect of class j on i, where red stands for activation and blue 
for repression. (b) Strength of three interaction types: exploitation, 

antagonistism, and mutualism, respectively. (c) Eigenvalue distribu-
tion of Jacobian matrix for the equilibrium point. In (b) and (c), the 
blue circles are the average value
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definition of community stability, ranging from the persis-
tence of whether a community maintains the species with 
which it started [55] to feasibility which focuses on the coex-
istence of all species [56], and to the level of variability 
displayed by the community over time [57]. Conspicuously, 
these definitions largely limit community stability to the 
community composition. In our present study, we deter-
mined the community stability based on the equilibrium 
population dynamics by fitting the sequencing data into the 
gLV model. The results showed that the real parts of the 
eigenvalue of the Jacobian matrix were a mixture of negative 
and positive values, suggesting that the equilibrium states of 
bacterial communities are not equivalent to the fixed point 
in phase space. Indeed, the equilibrium state of biotic com-
munities in nature actually performed as chaos, periodicity, 
and a limit cycle [58]. Thus, we have here defined stability 
as the likelihood that the community converges to a feasible 
equilibrium state, which is quantitatively evaluated by the 
average value of real parts for all eigenvalues [16, 23]. By 
this criterion, we found that the earlier and later succession 
stages (stage1 and stage4–stage7) were stable, whereas the 
intermediate regime (stage2–stage3) was unstable, which 
signifies that the critical transition consists of two alter-
native stable states separated by an intermediate unstable 
state. Consistently, this implication also fits the prediction 
of dynamical system theory, in which the dynamic shifts of 
microbial communities are a continuum of shifting between 
stability and instability [17]. Furthermore, the largest posi-
tive eigenvalue is in stage3, which contains the detected 
tipping point, suggesting that bacterial communities in the 
tipping point are the most unstable, echoing that the collapse 
of stability causes a critical transition [54, 59, 60].

Microbes do not exist in isolation, but reside with myriad 
individuals through complex interactions [61]. Recently, a 
large body of studies has found that interspecific interactions 
strongly act on community stability [62]; however, the het-
erogeneity of results led to multiple different understandings 
about the roles of interspecific interactions. For instance, some 
researchers suggest that competition destabilizes microbial 
communities [28], yet some others argue that competition 
benefits the stability of microbial communities [23, 63]. Simi-
larly, contrasting roles of cooperation in community stability 
have also been documented [16, 20]. These mixed conclusions 
about the effect of species interactions on stability largely stem 
from two limitations: (1) Detecting causal interspecific interac-
tions is not straightforward because manipulative experiments 
are not feasible when numerous species and interactions are 
targeted under field conditions [27]; and (2) most previous 
studies assumed the pairs of species symmetrically interact 
by antagonistic (− / −) and mutualistic interactions (+ / +), but 
neglect the asymmetrical exploitations (+ / −) in which one 
species tends to gain a fitness benefit at the expense of another 
[64, 65]. To address these questions, our study therefore 

accessed how one species interact with another by applying 
the gLV model. Strikingly, results showed that the proportion 
of asymmetrical interactions significantly overweighed sym-
metrical interactions during the historical succession of bacte-
rial communities. After a careful literature review, however, 
we found few relevant studies with which we could compare 
our work, which also indicates this method is still in its infancy 
and more rigorous exploration is needed.

Nevertheless, this is a new approach to the study of spe-
cies interactions and the stability of bacterial communities. 
By incorporating the key biologically realistic assumption 
of asymmetrical exploitations, we found that antagonistic 
and mutualistic interactions had the strongest strength in the 
period of stage3 when bacterial communities were the most 
unstable. Consistent with this, previous evidence has also 
found that the intensifying competitive interaction of bacte-
rial communities gradually decreased community stability 
[28]. Furthermore, a computational framework also predicts 
that increasing interaction strength transitions the microbial 
ecosystem from a stable equilibrium to a persistent fluctuating 
state by expanding the competitive interaction to coopera-
tive interaction [22]. The detrimental role of strong interac-
tion strength on bacterial communities could be explained 
by two reasons. First, increasing the strength of mutualistic 
interactions can increase the dependency among species so 
that if one species fluctuates, the strong positive feedback 
will amplify the causal responses of another species [23]. 
Second, the higher antagonistic interactions are expected to 
exclude species from the community, leading to partial extinc-
tion and a less stable state [66, 67]. In our current study, we 
speculate that the bacteria of Lake Dali-Nor displayed a trade-
off between interaction strength and community stability to 
promote their survival in the higher salinity habitat after the 
1300 s.

Conclusion

Since the Anthropocene, lake ecosystems have experienced 
an abrupt, non-linear critical transition; however, it has been 
unclear whether sediment DNA could record this critical 
transition. By using a multi-decadal time series from the 
sediment core with the gLV model simulations, we detect a 
critical transition of bacterial communities in Lake Dali-Nor 
that occurred in the late 1300 s. We showed that the histori-
cal succession was divided into two distinct alternative stable 
states, which were punctuated by an intermediate unstable 
state. Furthermore, the most unstable community harbored 
the strongest antagonistic and mutualistic interactions, which 
may imply the detrimental role of interaction strength on 
community stability. Collectively, our results show that 
paleolimnological evidence holds considerable promise for 
studying the critical transition of lake ecosystems.
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