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Abstract
Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, 
which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic 
and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the 
composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutri-
ent statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic 
bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxida-
tion rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and 
Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon 
contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre 
in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher 
average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects 
of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum 
moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.
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Introduction

Peatlands is a unique type of wetland ecosystem that occu-
pies approximately 3% of the land area and stores about 600 
Pg carbon, identifying it as an important carbon pool [1, 

2]. However, global warming and changes of precipitation 
patterns have substantially undermined peatland stability 
[3–5]. For example, the speed of peat soil decomposition 
has accelerated [6] and emissions of methane (CH4) and 
carbon dioxide (CO2) have increased [7]. It is well known 
Sphagnum mosses are the “engineers” of peatlands; they 
largely increase long term carbon sequestration and greatly 
accelerate biogeochemical cycling. As a dominant bryo-
phyte, Sphagnum mosses influences the surrounding envi-
ronments as well as provides primary productivity to peat-
land ecosystems [8–12].

Sphagnum mosses are among the oldest nonvascular ter-
restrial plants and have adapted to highly acidic and nutri-
ent deprived habitats that are often waterlogged and anoxic. 
By releasing H+ to acidify their surroundings or by gener-
ating phenolics and releasing them into the environment, 
Sphagnum mosses create an unfavorable environment for 
their competitors [11, 13]. These biochemical compounds 
can suppress the activity of extracellular enzymes of micro-
organisms and thus prevent the Sphagnum moss from being 
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degraded [14], resulting in consistent accumulation of 
Sphagnum moss residues. Moreover, Sphagnum moss can 
activate aluminum and iron oxides in soils, thus facilitat-
ing the accumulation of mineral-associated organic carbon 
which is more stable in carbon poor environments [15]. 
Sphagnum mosses not only shape favorable microhabitats 
for their own growth and to maintain primary productivity 
[12], but also the Sphagnum-associated microbiome plays 
a critical role in the acquisition of nutrients and the protec-
tion against pathogenic bacteria [16, 17]. Water-filled hya-
line cells are a special cell type accounting for ~90% of the 
volume of Sphagnum moss. Hyaline cells are essential for 
Sphagnum moss, as they provide the space for interactions 
between plant and the microbial community [18].

Sphagnum mosses possess a diverse microbiome includ-
ing endophytic and epiphytic microorganisms [19, 20]. 
Especially, endophytes inhabiting hyaline cells are crucial 
to moss development and ecosystem function [21]. For 
example, Sphagnum-associated methanotrophic bacteria in 
hyaline cells can oxidize CH4 and provide additional carbon 
(C) to green cells engaged in photosynthesis [22–24]. In 
addition, N2-fixing prokaryotes fix nitrogen (N) from the 
atmosphere which is supplied to the plant host to compen-
sate for the nitrogen deprived ecosystem [25–28]. There-
fore, it is vital to better understand the relationship between 
Sphagnum mosses and microbiomes, especially endophytes 
that are not only involved in nutrient acquisition, but also 
those that impact C and N cycling in Sphagnum-dominated 
peatland ecosystems.

Several studies have shown that ecological factors are 
the main drivers that control the structure and function of 
the microbiome, such as the effectiveness of nutrients, pH, 
and temperature; these factors have a distinct association 
with the community composition of the microbiome [20, 
29–31]. Moreover, a recent study reported that Sphagnum 
moss metabolites are an important predictor of the microbial 
community [32]. Physiological and biochemical properties 
of Sphagnum mosses can also shape the microbiome. How-
ever, many studies regarded both the endophytes and epi-
phytic microorganisms of Sphagnum mosses as a whole, and 
little is known about the specific role of endophytic bacteria. 
This study focused on the endophytic bacteria of different 
species of Sphagnum mosses, and clarified the microbiome 
community composition in detail. A previous study reported 
that plant species drive microbial communities [33], and 
the genotype of Sphagnum mosses may result in different 
structures and functions of endophytic bacteria. Moreover, 
endophytic bacteria are influenced by soil nutrient loading, 
temperature, and precipitation [34, 35]. Feather mosses 
are a dominant order in boreal forests and have an impor-
tant nitrogen fixation capacity; however, moss-associated 
bacteria have been shown to vary between two dominant 
species, shaped by climatic, environmental, and nutritional 

factors [36]. However, it still remains whether endophytic 
microbial communities are affected by different types of 
peatlands, soil nutrients, or moss species, and which factors 
are crucial. To better understand the key factors affecting 
endophytic bacterial communities and the mechanism of 
how the endophytic bacteriome drives carbon cycling, an 
experiment was carried out involving two different typical 
peatlands. The dominant endophytic bacterial communities 
of Sphagnum mosses were analyzed, and the influences of 
Sphagnum moss physiological and biochemical factors as 
well as soil factors on these bacterial communities were 
assessed. Further, metagenomic metabolic functions and the 
C/N cycling the endophytic bacterial community is involved 
in were predicted.

A previous study suggested that the CH4 oxidizing abil-
ity varied between different species of Sphagnum mosses, 
although the inter-species influence was found to be small 
compared to that of habitats [37]. Furthermore, all Sphag-
num moss species were shown to have the ability to support 
methanotrophic bacteria, but the methanotrophic activity 
was influenced by the water level [38]. However, these stud-
ies shared the limitation that sampling areas were located in 
the same climate and environmental zones. Therefore, one 
of the species in this study, Sphagnum palustre, was sampled 
in both ombrotrophic peatlands and poor minerotrophic fens. 
This experimental design was used to identify whether the 
same species of Sphagnum moss growing in different types 
of peatlands possesses the same CH4 oxidation activity, 
which was determined by activity assay. This approach bet-
ter unlocks an understanding of how peatland types govern 
methane-oxidizing bacteria communities and their activity. 
The objectives of this study were to (1) examine the compo-
sition and structure Sphagnum moss endophytic bacteriome 
among different peatland types and species; (2) assess the 
influence of plant (Sphagnum moss physiological and bio-
chemical) characteristics on these bacterial communities; 
(3) examine CH4 oxidation activity of the same species of 
Sphagnum moss between different peatland types (those 
sampled from Hani (SP) and those sampled from Taishan-
miao (HSP)). In addition, PICRUST and FAPROTAX were 
used to predict the function of endophytic bacteria based on 
16S rRNA genes.

To reach these objectives, five Sphagnum moss species 
were collected: S. palustre, S. magellanicum, S. fuscum, and 
S. capillifolium were sampled from the Hani peatland, which 
is a temperate poor fen in the Changbai mountains, northeast 
China; S. palustre was sampled from Taishanmiao, which 
is a subtropical bog in southwest Hubei province, central 
China (Fig. 1). The endophytic microbial community was 
analyzed based on 16S rRNA marker genes, utilizing their 
metabolic and C/N element cycle functions. In addition, the 
incorporation of 13C-CH4 was measured to assess the activ-
ity of methanotrophic bacteria in S. palustre.
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Materials and Methods

Study Sites

The Sphagnum moss samples were collected from two 
different types of peatlands (Fig. 1). Hani peatland is a 
poor minerotrophic peatland (i.e., a poor fen, where pre-
cipitation and underground water are the main sources of 
nutrients), located in the Changbai Mountains region of 
northeast China (42°13′05″N, 126°31′05″E, 900 m above 
sea level). Hani peatland is situated in the continental 
monsoon climate with a mean annual temperature of 3.9 
°C and mean annual precipitation of 780 mm, respectively. 
The vegetation of Hani peatland includes shrubs, herbs, 
graminoids, and Sphagnum mosses. The dominant shrub 
is Betula fruticose Pall. var. ruprechtiana Trautv and herbs 
include Eriophorum polystachion L., Carex lasiocarpa 
Ehrh., and Smilacina japonica A. Gray [39]. Taishanmiao 
is an ombrotrophic peatland (i.e., a bog, where precipita-
tion is the main source of nutrients) located in western 
Hubei province of central China (30°7′44″N, 109°47′12″E, 
1800–1920 m above sea level), located in the subtropi-
cal subalpine region with a mean annual temperature of 
7.20–8.27 °C, and a mean annual precipitation of 1768 
mm. At Taishanmiao, vegetation types are mainly divided 
into shrubs, herbs, and mosses. Enkianthus serrulatus, 
Rhododendron auriculatum, Carex taliensis, and Juncus 
effusus are dominant shrub and herb species [40].

Sample Collection and Processing

Because of the different development periods and environ-
mental conditions, the dominant Sphagnum moss species 
in the two peatlands differed. S. palustre, S. magellanicum, 
S. fuscum, and S. capillifolium dominate Hani peatland 
[41], while Taishanmiao is dominated by S. palustre only. 
The habitats of these Sphagnum mosses are located in 
hummocks or midway between hummocks and hollows.

Sphagnum moss samples were collected into sterile zip 
lock bags and were transported to the laboratory with ice bag. 
Sphagnum moss samples were collected in triplicate. Upon 
arrival at laboratory, every sample was divided into three 
parts. In one part, the green parts were cut into pieces of 3–5 
cm, the surface of which was sterilized for DNA extraction 
and sequencing; the other two parts were used to determine 
physicochemical indexes and stable isotope labeling activity 
assays. In addition, each kind of Sphagnum moss was incu-
bated in a culture tray in an artificial climate chamber.

Peat soil samples (0–20 cm) were collected below the 
surface of growing Sphagnum mosses as the background 
value in two peatlands. The specific approach was to 
remove the vegetation cover and take peat cores by drill-
ing; then, 0–20m peat soil cores were sliced and put into 
sterile bags. Peat soils samples were collected in three 
replicates in both Hani and Taishanmiao. Each sample was 
homogenized and stored at 4 °C until determination of 
physicochemical characteristics.

Fig. 1   Sampling sites. Location of the study area in China (a). Sampling sites in the Hani peatlands (b) and Taishanmiao peatlands (c)
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To extrac the DNA of Sphagnum moss endophytes, the 
samples were processed according to the following steps: 
First, the Sphagnum moss sample surface was slowly washed 
with tab water. Then, samples were placed into a beaker of 
75% alcohol for 1 min and rinsed in sterile deionized water 
5–6 times. Next, samples were immersed in 1% NaClO for 1 
min and rinsed in sterile deionized water 7–8 times. Finally, 
using sterilized filter paper, the surface moisture of samples 
was dried. The final sterile water that had been used to rinse 
the samples was used to inoculate Rudolph culture medium. 
Sphagnum moss materials were frozen at −80 °C until DNA 
extraction [42, 43].

Water‑Holding Capacity

The water-holding capacity of Sphagnum mosses was char-
acterized by measuring the water absorption until saturation. 
Three 2 cm × 2 cm quadrats of each species were placed into 
culture trays, and the green parts of the Sphagnum mosses 
capitulum were cut (approximately 3 cm). Samples were 
placed into a 50-ml centrifuge tube with 20 ml deionized 
water to adequately absorb water. Then, samples were taken 
out upside down until water dripping ceased, and the sample 
weight (W1) was recorded. Then, samples were placed in a 
drying oven at 72 °C and were dried to a constant weight 
48 h and record dry weight (W2). Water-holding capacity 
= (W1 − W2)/W2 × 100%. The method has been described 
before [44] and adjustments were minor.

Physiological and Biochemical Index

Carbon and Nitrogen Contents

Sphagnum moss samples (green segments of  collected 
Sphagnum mosses) were dried in an oven at 105 °C for 30 
min. Then, the temperature was adjusted to 72 °C, drying was 
continued for 48 h, and dried samples were ground with a ball 
mill. The dried and ground Sphagnum moss samples were 
used for subsequent analyses. C and N contents were deter-
mined using an elemental analyzer (CNS analyzer, EA 1110 
Carlo Erba, Thermo Fisher Scientific, Waltham, MA, USA).

Chlorophyll Content, Total Phenols, Total Carbohydrates, 
Malondialdehyde, and Proline

Chlorophyll content was determined by the spectrophotomet-
ric method [45]. Briefly, fresh green capitulum of Sphagnum 
mosses (0.1 g) was put into a sterilized centrifuge tube with 
80% (v/v) acetone solution (5 ml) to extract chlorophyll. The 
tube was wrapped with foil to protect it from light until the 
sample was extracted completely, followed by centrifugation 
for 10 min at 4 °C and 8000 rpm; then, the supernatant was 
absorbed. The supernatant (200 µl) was transferred into a 

96-well plate to measure the absorbance value at 645 nm 
and 663 nm with a microplate reader (Thermo Scientific™ 
Varioskan™ LUX, Thermo Fisher Scientific, Waltham, MA, 
USA). Chlorophyll content was expressed in milligram of 
chlorophyll per a fresh weight (mg/g FW).

The total phenol content was determined by the Folin-
Ciocalteu method [46]. First, dried Sphagnum moss sam-
ple (0.10 g) was extracted by 60% ethanol (2.5 ml) for 30 
min and ultrasonicated for 30 min at 60 °C, followed by 
centrifugation for 10 min at 4 °C and 8000 rpm to obtain 
the supernatant. Then, Folin-Ciocalteu (250 µl) and 20% 
Na2CO3 (250 µl) were added to the supernatant (50 µl) of 
each sample. After incubation for 10 min, the absorbance 
was determined at 760 nm. Gallic acid was used as standard 
to calculate the total phenol content.

The total carbohydrates content was determined using the 
phenol-sulfuric acid method with minor modifications [47]. 
Fresh frozen Sphagnum moss samples (40 mg) were ground 
in liquid N; then, 50% methanol solution (4 ml) was added 
and the mixture was ultrasonicated for 40 min at 20 °C and 
8000 rpm to obtain extracts. These extracts were shaken in 
an orbital shaker for 18 h at room temperature and 150 rpm, 
after which, the previous ultrasonication extraction step was 
repeated, followed by centrifugation for 5 min at 4 °C and 
8000 rpm and absorption of the supernatant (final extract). 
Absorbed extracts (20 µl) were put into an Eppendorf tube 
to which distilled water (200 ml) was added for dilution, 
then 5% phenol solution (200 µl) and 98% H2SO4 (1 ml) 
were added. After incubation for 30 min and absorbance 
was determined at 490 nm. Glucose was prepared to draw 
the standard curve.

Malondialdehyde (MDA) is the product of lipid peroxida-
tion in plants and the contents of MDA reflects the degree of 
lipid peroxidation. MDA was determined by the thiobarbitu-
ric acid method [48]. Fresh frozen Sphagnum moss samples 
(0.1 g) were ground in liquid N; then, 10% trichloroacetic 
acid (5 ml) was added, and the mixture was centrifugated 
for 10 min at 4 °C and 8000 rpm. Then, the supernatant (2 
ml) was added to thiobarbituric acid (2 ml). After 15 min 
in the water bath, followed by centrifugation for 10 min at 
4 °C and 8000 rpm, the absorbance was determined at 600, 
532, and 450 nm.

Proline is a kind of osmoregulatory substance and the 
acid ninhydrin method was used to measure the proline 
content [49]. Briefly, the proline was extracted from dried 
Sphagnum moss samples (0.025 g) by 3% sulfosalicylic acid 
(1 ml), followed by centrifugation for 10 min at 4 °C and 
4500 rpm to obtain the extracts. The supernatant (700 µl) 
was added to 5-ml glass tubes, and then the acid ninhydrin 
(2 ml) was added into the tube. In a water bath, samples 
were shaken gently to achieve uniform mixing. Absorbance 
was determined at 520 nm using l-proline as standard to 
calculate proline contents.
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Enzyme Activity

The oxidative enzyme activities of phenoloxidase (PO O2) 
(PPO) and peroxidase (PO H2O2) (PER) were quantified 
[50, 51], using O2 and H2O2 as acceptors, respectively. First, 
enzymes were extracted: Green parts of fresh Sphagnum 
moss samples (3 g) were submerged in CaCl2 (50 ml, 0.10 
M) with Tween 80 (0.05%) and polyvinylpolypyrrolidone 
(20 g) and the mixture was shaken for 1 h at room tem-
perature. After centrifugation for 10 min at 4 °C and 10000 
rpm, the supernatant was filtrated (1.2 µm, Waterman GF/D 
filters). Then, the enzyme activity was quantified. For PPO, 
concentrated extracts (150 µl) with 2,7-diaminofluorene (2 
µl) in 96 wells microtiter plate. For PER, in addition to the 
above, 0.3% H2O2 (10 µl) was added to the rection system. 
PPO and PER were monitored at 600 nm by a microplate 
reader (Thermo Scientific™ Varioskan™ LUX, Thermo 
Fisher Scientific, Waltham, MA, USA). The enzyme activ-
ity was expressed as 1 nmol of substrate oxidized per min 
per mg of dry mass. In addition, another method (guaiacol 
method) was also used to determine peroxidase, expressed in 
POD [52]. Fresh sample (0.5 g) was added to 5 ml phosphate 
butter (pH = 5.6, containing 1% polyvinylpolypyrrolidone 
and 0.1% mercaptoethanol), followed by grinding in an ice 
bath. After centrifugation for 10 min at 4 °C and 10000 rpm, 
enzymes extracted with phosphate butter, 2% H2O2 and 2% 
guaiacol were determined by a spectrophotometer (FC-1100, 
Thermo Fisher Scientific, Waltham, MA, USA) at 470 nm. 
The absorbance was recorded every minute for five times in 
total. The enzyme activity was obtained by measuring the 
change in absorbance.

Glutamine synthetase activity was determined by the 
appropriate enzyme activity detection kit (Qiyi Biological 
Technology, Shanghai, China).

Soil Physicochemical Analysis

After soil samples were processed including air-drying, 
grinding, and passing through a 2-mm sieve, total carbon 
(TC) and total nitrogen (TN) concentrations were deter-
mined by elemental analyzer (CNS analyzer, EA 1110 
Carlo Erba, Thermo Fisher Scientific, Waltham, MA, USA). 
Before determining the soil total phosphorus (TP) of sam-
ples by elemental analyzer, the nitric acid and perchloric 
acid digestion method was used first to extract phosphorus 
from the sample to obtain an extraction solution. The dis-
solved organic carbon (DOC) concentration was determined 
by a total organic carbon analyzer (LIOYIL TOCII, Elemen-
tar, Germany). The peat soil water content was determined 
by gravimetric method. The pH value of the peat soil sam-
ple was measured by an acidity meter (OxyScan 300, UMS 
GmbH & Co. KG, Germany). Peat soil physiochemical prop-
erties are showed in Table S1.

CH4 Oxidation Activity Assay

To estimate the CH4 oxidation activity of Sphagnum-
associated methane microbes in SP an HSP, the incorpo-
ration of the stable isotope (13C-CH4) in Sphagnum moss 
samples was measured [53]. Briefly, all test samples were 
in consistent vigorous growth condition (3-cm length of 
Sphagnum mosses capitulum). Into sterilized glass bot-
tles (100 ml) with airtight plugs, three plantlets (of which 
the fresh weight was determined) were added and each 
species had three replicates. To all bottles, 5 ml (0.05%) 
13C-CH4 was added to the headspace and controls were 
incubated without any labelled gassed. All samples were 
incubated in an artificial climate chamber for 48 h at 24 
°C, including light/dark treatment (16 h with light and 
8 h without light) and dark treatment (without light for 
48 h), respectively. After this incubating step, samples 
were placed in oven at 72 °C for 48 h until a constant 
weight was reached (the dry weight) and ground by a 
ball mill (Retsch: MM 400). Then, the dried mass of each 
sample was weighted (approximately 4 mg) and put into 
tin cups. An elemental analyzer (CNS analyzer, Thermo 
Fisher Scientific) coupled to an isotopic ratio mass spec-
trometer (Finnigan Delta Plus, Thermo Fisher Scientific 
(Bremen) GmbH, Germany) was used to determine the 
fraction of 13C that had been incorporated into each sam-
ple. The activity of CH4 oxidation was expressed in nmol 
CH4 g−1 DW d−1.

DNA Extraction, Amplification, and 16S rRNA 
Sequencing

Sterilized frozen samples were used for DNA extrac-
tion. The total genomic DNA of endophytic bacteria from 
Sphagnum moss samples was extracted using the OMEGA 
DNA Kit (M5635-02) (Omega Bio-Tek, Norcross, GA, 
USA) according to the manufacturer’s instructions. Using 
a NanoDrop NC200 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA), the quantity and quality 
of samples were measured and 0.8% agarose gel electro-
phoresis was used to measure the integrity of the extracted 
DNA. The V5 and V7 regions of the microbial 16S rRNA 
gene were amplified using 799F (5′-AACMGGA​TTA​GAT​
ACC​CKG-3′)/1193R (5′-ACG​TCA​TCC​CCA​CCT​TCC​-3′) 
[54, 55]. PCR amplicons were purified with Vazyme Vaht-
stm DNA Clean Beads and quantified the by the Quant-iT 
PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, 
USA). Amplicons were pooled in equal amounts and pair-
end 2250 bp sequences were used, obtained by Illumina 
NovaSeq platform with NovaSeq 6000 SP Reagent Kit 
(500 cycles) at Shanghai Personal Biotechbology Co., Ltd 
(Shanghai, China).
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Bioinformatics Analysis

The raw data were stored in FASTQ format and reads were 
performed with QIIME2 (2019.4) [56]. Raw paired-end 
reads primers and chimera were removed by the DADA2 
plugin [57]. Quality filtering, denoising, and merging were 
also performed using DADA2. The sequence was processed 
by the above steps and dereplication. Using the cluster 
size module in Vsearch (v2.13.4_linux_x86_64) [58], the 
sequences with ≥ 97% similarity were clustered. The ampli-
con sequenced variants (ASVs) were aligned by MAFFT 
[59] and further used for annotation. Prokaryotic taxonomy 
was assigned with QIIME (2019.4), utilizing the Greengens 
database [60] (http://​green​genes.​secon​dgeno​me.​com/) and 
Silva database [61] (http://​www.​arb-​silva.​de). ASV matrices 
were rarefied according to the sample with the least reads 
and depth was set to 95% of the lowest sequencing. All sub-
sequent analyses were based on these rarefied data.

The Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt2) [62] 
was used to predict the metabolic functions of marker gene 
sequence abundance in the samples based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
[63] (http://​www.​genome.​jp/​kegg/​pathw​ay.​html). The 
database of Functional Annotation of Prokaryotic Taxa 
(FAPROTAX) [64] was also used to predict the function 
of prokaryote in Sphagnum mosses, with a specific focus 
on the processes of C and N elements cycling the mem-
bers of the endophytic bacterial community are involved 
in. All original 16S rRNA sequences data were uploaded 
to the Sequence Read Archive of the National Center for 

Biotechnology Information (NCBI) database (accession 
number: PRJNA1006557).

Statistical Analysis

Differences between Sphagnum moss endophytic micro-
biome (such as richness, Shannon’s diversity index, and 
Pileou’s evenness) were calculated in R with the vegan 
package. Non-metric multidimensional scaling (NMDS) 
with Bray-Curtis dissimilarity was used to identify the 
dissimilarities in endophytic bacterial communities. An 
analysis of similarities (ANOSIM) was conducted to 
examine the clustering of bacterial communities. Permu-
tational multivariate analysis of variance model (PER-
MANOVA) was used to examine species-level differen-
tiation in communities of endophytic bacteria. Canonical 
correspondence analysis (CCA) was performed to study 
the relationship between the relative abundance of the 
dominant endophytic bacterial communities as well as 
soil and plant variables (see Tables 1 and S1). Mantel 
test was used to examine the relationship between plant 
factors and the average relative abundance of the top 10 
phylum, family, and genus endophytic bacteria communi-
ties. LEfSe analysis was used to identify biomarkers of 
endophytic microbial community in different Sphagnum 
mosses. The above analysis was carried out in R (4.1.3) 
using phyloseq, DESeq2, ggcor, geosphere, tidyverse, 
microbiomeViz, ggtree, phyloseq, and vegan packages, 
and figures were drawn using the ggplot2 package.

Spearman’s correlation test was calculated by SPSS 
18.0. Soil and plant parameters were normality tested 

Table 1   Physiological and biochemical characteristics of Sphagnum moss at Hani and Taishanmiao peatlands

Values are mean ± SE (n = 3). Values with the lowercase letters in the same row indicate significant differences at p < 0.05 level. SM, SC, SF, 
and SP represent Sphagnum magellanicum, Sphagnum fuscum, Sphagnum capillifolium, and Sphagnum palustre which was sampled in Hani; 
HSP represents Sphagnum palustre which was sampled in Taishanmiao. C, carbon contents; N, nitrogen contents; , PPO, phenol oxidase (PO 
O2); PER, peroxidase (PO H2O2); POD, peroxidase; GS, glutamine synthetase

Parameters SP SM HSP SC SF

C (%) 41.25 ± 0.02c 40.33 ± 0.08e 43.10 ± 0.03a 40.63 ± 0.06d 41.94 ± 0.02b
N (%) 1.12 ± 0.01d 1.01 ± 0.01e 1.86 ± 0.01a 1.57 ± 0.01b 1.46 ± 0.01c
C:N 36.90 ± 0.20b 40.06 ± 0.20a 23.17 ± 0.18e 25.92 ± 0.16d 28.73 ± 0.18c
Chlorophyll (mg g−1) 1.87 ± 0.10b 1.67 ± 0.15b 1.20 ± 0.09b 2.65 ± 0.05ab 4.23 ± 0.91a
Total phenols (mg g−1) 0.63 ± 0.15a 0.46 ± 0.14a 0.72 ± 0.10a 0.52 ± 0.21a 0.44 ± 0.11a
Total carbohydrate (mg g−1) 66.91 ± 5.22c 91.59 ± 0.72ab 63.35 ± 12.95c 134.80 ± 18.57a 79.75 ± 5.23c
Proline (mg g−1) 0.81 ± 0.18a 0.96 ± 0.02a 1.02 ± 0.01a 1.01 ± 0.05a 0.83 ± 0.21a
MDA (nmol g−1) 1.04 ± 0.21a 1.04 ± 0.21a 1.45 ± 0.28a 1.60 ± 0.23a 1.34 ± 0.04a
Water retention capacity (%) 58.44 ± 5.98a 57.04 ± 9.18a 33.35 ± 3.90ab 57.68 ± 5.23a 29.44 ± 1.51b
GS (µmol·h−1·g−1) 2.91 ± 0.45ab 4.35 ± 1.16a 0.45 ± 0.05c 3.43 ± 0.46ab 4.70 ± 0.87a
PPO (mmol·min−1·mg−1) 6.62 ± 2.68a 1.30 ± 0.48a 2.80 ± 0.44a 4.32 ± 1.48a 2.80 ± 1.24a
PER (mmol·min−1·mg−1) 2.62 ± 0.54ab 2.58 ± 0.41ab 2.62 ± 0.54ab 1.81 ± 0.38b 3.72 ± 0.27a
POD (mmol·min−1·mg−1) 0.69 ± 0.08b 4.11 ± 0.46a 2.05 ± 0.42ab 0.33 ± 0.17b 3.38 ± 0.77a

http://greengenes.secondgenome.com/
http://www.arb-silva.de
http://www.genome.jp/kegg/pathway.html
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before analysis. Differences in physiological characteristics 
between different species of Sphagnum mosses were evalu-
ated using one-way ANOVA and multiple comparisons in 
SPSS 18.0. The results of predicting prokaryote C/N element 
cycling and metabolic pathway function were tested with the 
Kruskal-Wallis test.

Results

Physiological and Biochemical Characteristics 
of Sphagnum Mosses

The physiological and biochemical characteristics of Sphag-
num mosses showed significant differences among Sphag-
num mosses, especially the contents of C, N and total carbo-
hydrate (Table 1). C and N in Sphagnum palustre sampled 
from Taishanmiao (HSP) were 43.10% and 1.86%, respec-
tively, and were the highest among these samples (P < 0.05, 
Table 1); while C and N in Sphanum palustre sampled from 
Hani (SP) were 23% and 30%, respectively (Table 1). The 
chlorophyll content of Sphagnum fuscum (SF) was 4.23 
mg/g, which was significantly higher compared to other 
species of Sphagnum mosses (P < 0.05, Table 1). Sphag-
num capillifolium (SC) had the highest concentration of total 
carbohydrates (134.80 mg/g) while HSP had the lowest con-
centration (63.35 mg/g) (Table 1).

Sphagnum species from Hani had similar water-holding 
capacities except for SF (29.44%) (P < 0.05, Table 1) and SP 
(58.44%) which had higher capacities than HSP (33.35%). 
These results showed that the contents of proline and MDA 
did not vary significantly between species. The activity of 
POD had clear differences among different moss species, 
where the highest was SM with 4.11 mmol·min−1·mg−1, 
followed by SF (3.38 mmol·min−1·mg−1), and SC was the 
lowest (0.33 mmol·min−1·mg−1) (Table 1).

Endophytic Bacterial Community Structure 
and Composition in Different Sphagnum Species

In total, 33,481 ASVs were obtained in all samples after 
quality control and rarefaction. The rarefaction curves across 
all samples almost reached stable values (Fig. S1), indicat-
ing that most of the endophytic bacteria in Sphagnum moss 
samples were captured.

Based on ASVs, alpha diversity indexes of endophytic 
bacteria were estimated using Shannon, Chao1 (Fig. 2a, b) 
and Pielous evenness indexes (Table S2). Alpha diversity 
was the highest in SC, followed by SF and SP had the low-
est alpha diversity (P < 0.05, Fig. 2 and Table S2). Between 
HSP and SP, Chao1 and Shannon diversity indexes were 
significantly different (P < 0.05, Fig. 2a, b).

NMDS analysis showed the dissimilarities in endophytic 
bacterial communities based on the Bray-Curtis matrix. Dif-
ferent Sphagnum moss species were distinguished by differ-
ences in their prokaryotic ASV composition (Fig. 2c), and 
communities of the same Sphagnum moss species clustered 
together. Notably, the endophytic communities of HSP were 
separated from the other four groups on the first axis, and the 
endophytic communities of SP were completely separated 
from the other three species from Hani on the second axis 
(Fig. 2c). ANOSIM test showed that the endophytic commu-
nities differed significantly between Sphagnum moss species 
(R = 0.9481, P = 0.001). PERMANOVA was further used 
to examine species-level differentiation in communities of 
endophytic bacteria (F = 3.832, P < 0.001).

To clarify the composition of the endophytic bacteria com-
munity among the sampled Sphagnum mosses, the relative 
abundances of the top 10 bacterial phyla, families, and gen-
era were analyzed. In total, 36 phyla were identified from all 
sequences and the most abundant top 10 phyla are depicted in 
Fig. 3a. The endophytic bacterial community in Sphagnum 
mosses was mainly composed of Proreobacteria, Actinobac-
teria, Acidobacteria, Firmictes, and Bacteroidetes; however, 
the proportions differed (Fig. 3a and Table S3). Proteobacteria 
was more abundant in SP than in other mosses, accounting 
for 86.00% of the total relative abundance, while Bacteroi-
detes and Firmicutes were the lowest among all moss samples 
(Fig. 3a and Table S3). The average relative abundance of 
Acidobacteria in HSP was 0.40% lower than in other species, 
while Chlamydiae were significantly more abundant in HSP 
compared to other species (P < 0.05, Table S3). At the family 
level, the average relative abundance of Acetobacteraceae was 
higher in SP (P < 0.05, Fig. 3b and Table S3). Conversely, 
Rhizobiaceae were significantly higher in HSP (10.05%) than 
in other Sphagnum mosses (P < 0.05, Fig. 3b and Table S3). 
The average relative abundance of Beijerinckiaceae was 5.10% 
in SP, which is significantly higher compared to HSP (P < 
0.05, Fig. 3b and Table S3). Moreover, the endophytic micro-
biome between SP and HSP had distinct genera (Fig. S2); an 
example can be found in the average relative abundances of the 
Acidocella and Bacteroides (P < 0.05, Table S3).

To identify biomarkers of the endophytic microbial commu-
nity in different Sphagnum moss, LEfSe analysis was performed 
(Fig. 3c, d). According to the results of LDA score (LDA > 3, 
P < 0.01, Fig. 3d), SF had five discriminative biomarkers from 
phylum to genus, which were affiliated with phylum Firmicutes, 
class Bacilli, order Lactobacillales, family Lactobacillaceae, and 
genus Lactobacillus. In SC samples, two biomarkers were family 
Beijerinckiaceae and genus Roseiarcus. HSP and SP had differ-
ent biomarkers; according to the evolutionary clustering analyses 
diagram, Rhizobiaceae were abundant in the blue parts, repre-
senting HSP, while Aquabacterium were most abundant in the 
brown parts, representing SP (Fig. 3c).



	 Y. Wang et al.   47   Page 8 of 18

Relationship Between Phytochemical Parameters 
and Endophytic Bacterial Abundances in Sphagnum 
Mosses

To better understand the linkages between plant physiologi-
cal and biochemical characteristics and endophytic bacte-
ria communities, CCA and Mantel test were used to detect 
important environmental factors that influence the relative 
abundance of the top 10 phylum, family, and genera of endo-
phytic bacteria. CCA analysis showed that the correlation 
between chlorophyll contents, water-holding capacity, and 
PPO activity and endophytic bacteria communities at the 
phylum level (R2 = 0.7231, Fig. 4a). Similarly, chlorophyll 
contents and water-holding capacity also shaped the relative 
abundance of the top 10 family and genera endophytic bac-
teria in Sphagnum mosses (Fig. S3, Table S5and Table S6). 
Significant Spearman’s correlations were found between 
the relative abundance of Proteobacteria and water-holding 
capacity, while Firmicutes were negatively correlated with 
water retention capacity (P < 0.05, Table S4). Chlorophyll 
contents were identified as a crucial factor affecting the 
endophytic bacterial communities at the family level. The 

relative abundance of Acetobacteraceae and Muribaculaceae 
were significantly positively correlated with chlorophyll con-
tents (P < 0.05, Table S5).

Moreover, the Mantel test also presented correlations 
between plant parameters and the microbial community 
(Fig. 4b). Significant correlation were found between the 
relative abundance of top the 10 genera endophytic bacteria 
and C contents (Mantel’s r = 0.303, P = 0.017), and the 
relationships with chlorophyll content (Mantel’s r = 0.459, P 
= 0.006); further, the chlorophyll content correlated signifi-
cantly with the top 10 families of endophytic bacteria com-
munities (Mantel’s r = 0.492, P = 0.003), and correlated sig-
nificantly with the relative abundance of the top 10 phylum 
endophytic bacteria and PPO (Mantel’s r = 0.448, P = 0.01).

Endophytic Bacterial Communities Enrich 
Functional Roles Related to C Cycling

Based on 16S rRNA gene taxonomic analysis, the functions 
of putative methanotrophic prokaryotic taxa are discussed. 
Methanotrophic communities at the family or genus level 
varied between different Sphagnum moss species (Fig. 5a and 

Fig. 2   Endophytic bacterial 
communities in Sphagnum 
moss. Alpha diversity of 16S 
rRNA gene in different species 
Sphagnum mosses including 
Chao1 index (a) and Shannon 
index (b). Non metric multi-
dimensional scaling (NMDS) 
ordinations of prokaryotic ASV 
compositions among different 
Sphagnum moss species (c). 
Different color points represent 
different species of Sphagnum 
mosses. Significant differ-
ences (p < 0.05) are indicated 
with lowercase letters. SM, 
Sphagnum magellanicum; SF, 
Sphagnum fuscum; SC, Sphag-
num capillifolium; HSP, Sphag-
num palustre (sampled from 
Taishanmiao); SP, Sphagnum 
palustre (sampled from Hani)
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Table S7). The relative abundance of Beijerinckiaceae family 
comprised 5.10% of the total endophytic bacteria communi-
ties in SP; at the genus level, SP had the highest relative 
abundance of Methyloferula (family Beijerinckiaceae). The 
relative abundance of Methyloferula in Sphagnum mosses 
from Hani was higher than in mosses from Taishanmiao. 
However, the genus of Methylobacteriu accounted for 1.24% 
in HSP, which was the highest among all Sphagnum mosses. 
Moreover, methanotrophic communities showed differences 
between HSP and SP, as depicted in Fig. 5b.

Because the methanotrophic communities show differences 
between SP and HSP (see Fig. 5b and Table S9), whether 
these differences influence the methane oxidation efficiency 
was examined. An activity experiment was conducted to 
explore whether there were differences between SP and HSP 
(Fig. 5c, d). The CH4 oxidation rate of methanotrophic com-
munities in SP (3.0702 ± 0.2554 nmol CH4 g−1 DW d−1) was 

higher than that of HSP (2.2752 ± 0.8289 nmol CH4 g−1 DW 
d−1) (Fig. 5c and Table S9). Similarly, SP was also higher than 
HSP in the dark treatment (Fig. 5d and Table S9). However, 
no significant difference was found between HSP and SP.

Element Cycling (C and N) and Prediction 
of Metabolic Pathway Function

Given the key role endophytic microbes play in Sphagnum 
mosses, combined with functions and activity assays of 
putative methanotrophic prokaryotic taxa, functional anno-
tation of prokaryotic taxa was performed (FAPROTAX) to 
analyze the putative function of the Sphagnum microbiome 
(Fig. 7a). Most of the functional genes showed similar 
abundances across different Sphagnum species. The aver-
age functional abundances of methylotrophy, methanol 
oxidation, and ureolysis were higher in HSP than in other 

Fig. 3   Sphagnum moss endophytic bacterial community composi-
tion. Average relative abundance of the top 10 phylum (a) and fam-
ily (b) in different species Sphagnum mosses. Taxonomic cladogram 
(c) through linear discriminant analyzes effect size (LEfSe) and 
biomarker of endophytic bacterial communities in different spe-
cies Sphagnum mosses with LDA SCORE > 3 (d). Significant dis-
criminant taxa of SP (Sphagnum palustre was sampled from Hani), 

SM (Sphagnum magellanicum), SF (Sphagnum fuscum), SC (Sphag-
num capillifolium), and HSP (Sphagnum palustre was sampled from 
Taishanmiao) are colored in brown, pink, purple, orange, and blue, 
separately. Colorless nodes represent taxa that do not significantly 
discriminate among Sphagnum mosses. The dimension of nodes is 
positively correlated with the relative abundance of the taxon
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mosses. The average functional abundance methanotrophy 
in SP was the highest among all Sphagnum moss sam-
ples, followed by SF. Specifically, the number of ASVs 
of methanotrophy in SP was approximately twice that of 
HSP (Fig. 6a).

In addition, microbial functions were also involved in 
N cycling (e.g., nitrogen fixation, nitrification, and nitrate 
reduction). Nitrogen fixation differed significantly among 
sampled mosses; the average functional abundance of 
nitrogen fixation was higher in HSP than in other species 
(Fig. 7a), and the number of ASVs involved in nitrogen 
fixation was also higher in HSP (Fig. 6b). Combined with 
putative diazotrophic communities based on 16S rRNA gene 
taxonomic analysis (Fig. S4), diazotrophic communities 
included Magnetospirillaceae, Sphingomonadaceae, Rhizo-
biaceae, Pseudomonadaceae, and Beijerinckiaceae. The 
relative abundance of Rhizobiaceae was the highest in HSP 
among all sampled mosses, and the relative abundance of 
Sphingomonadaceae within all endophytic bacterium com-
munities was 3.11 ± 0.01% in SP (Table S5). Furthermore, 
the relative abundance of Beijerinckiaceae (including C and 
N cycling functional microorganisms) was also the highest 
in SP. Correlation analysis was conducted between the func-
tion predicted by FAPROTAX and the relative abundance 
of the top 10 family endophytic bacteria (Table S10). These 
results showed that Rhizobiaceae exhibited a highly positive 
Spearman’s correlation with the functions of N fixation (P 
< 0.01), ureolysis (P < 0.01), and methanol oxidation (P < 
0.01, Table S10).

PICRUSt2 was used to predict the potential metabolic 
functions of the endophytic microbial community. The 

results showed that different species of Sphagnum mosses 
had similar relative abundances on the KEGG level I path-
way (Fig. S5). Metabolism and genetic information process 
pathways differed significantly between Sphagnum mosses 
(P < 0.05) (Table S11). Metabolic pathways including 12 
pathways in level II, the relative abundance of carbohydrate 
metabolism, amino acid metabolism, as well as the cofac-
tors and vitamins metabolism were elevated in every species 
moss (Fig. 7b). Metabolism of terpenoids and polyketides 
differed significantly between species (P < 0.05, Kruskal-
Wallis test, Table S11,) and SC was the highest.

Discussion

Endophytic bacteria have great implications to the growth 
and development of Sphagnum mosses, and the mosses, 
in turn, influence the C and N cycles in the peatland eco-
system [11, 65]. This study demonstrated the differences 
of endophytic bacteria communities in Sphagnum mosses 
across two sites and various species. These differences 
have important implications for clarifying the endophytic 
microbial community structure, thus contributing to a better 
understanding of the function of endophytic microbes. This 
knowledge furthers research on how to promote Sphagnum 
moss growth and its development under climate change, 
as well as on how to evaluate C and N cycling functions 
in peatlands. Previous studies reported that plant-associ-
ated microbiomes are influenced by both biotic and abi-
otic factors [25, 66, 67]. Similarly, endophytic bacteria are 
also influenced by many factors including environmental 

Fig. 4   Correlation between plant phytochemical parameters and 
bacterial communities. Canonical correspondence analysis of the 
relative abundance of the top 10 phyla endophytic bacteria in asso-
ciation Sphagnum moss characteristics (a) and correlation between 
Sphagnum moss physiological and biochemical characteristics and 
the relative abundance of the top 10 phyla, families, and genera of 

endophytic bacteria (b). C, carbon contents; N, nitrogen contents; 
Chl, chlorophyll contents; Tp, total phenol contents; Tc, total carbo-
hydrates; Pro, proline; MDA, malondialdehyde; Wr, water retention 
capacity; PPO, phenol oxidase (PO O2); PER, peroxidase (PO H2O2); 
POD, peroxidase; GS, glutamine synthetase
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conditions, plant species or genotypes, and even growth 
periods [68, 69].

In this study, differences were found among the sampled 
Sphagnum moss species regarding physiological and bio-
chemical characteristics. S. palustre (HSP and SP) grown 
in different types of peatlands also showed physiological 

differences (Table 1). Sphagnum moss species also differed 
in morphological traits, for example, the shape and size of 
leaves in the capitate branch, which is a critical water reten-
tion characteristic for mosses [18]. Microbiomes are shaped 
by plant host species, microbial interactions, and environ-
mental factors including latitude, precipitation, and soil 

Fig. 5   Comparison of the relative abundances of methanotrophic 
prokaryotic taxa functions. The relative abundances of methano-
trophic in five Sphagnum mosses (a), Sphagnum palustre was sam-
pled from Hani (SP) and Taishanmiao (HSP), respectively (b). Meth-
ane oxidation activity (represente by 13C-CH4 incorporation rate) of 
Sphagnum palustre was sampled from Hani (SP) and Taishanmiao 

(HSP) at light/dark (c) and dark treatments (d), respectively. Light/
dark treatment represents samples kept in artificial climate chamber 
for 16 h with light and 8 h without light at 24 °C. Dark treatment rep-
resents samples kept in artificial climate chamber without light for 48 
h at 24°C

Fig. 6   The number of ASVs of 
methanotrophs function (a) and 
nitrogen fixation (b) in Sphag-
num moss based on FAPRO-
TAX prediction
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nutrients [70–72]. These factors also affect the endophytic 
microbiome to a certain extent. Indeed, the characteristics of 
the sampled Sphagnum moss species significantly affected 
the structure of endophytic bacterial communities (Fig. 4). 
Sphagnum moss gametophytes can acquire specific micro-
biomes from sporophytes which feature abundant bacterial 
diversity [19], emphasizing that host specificity and genetic 
factors are determinants of the moss plant microbiome. The 
identity of host species influences bacterial gene expression, 
and it was proposed [73] that feather moss can upregulate 
certain genes, thus promoting cyanobacterial abundance and 
growth to a certain degree. Except for species identity, in 
this study, remarkable correlation between the relative abun-
dance of the top 10 phyla or families of endophytic bacterial 
communities in Sphagnum moss and water-holding capacity, 
chlorophyll contents, and the activity of PPO (Fig. 4). These 
factors vary with Sphagnum moss species, and can further 
influence endophytic bacterial communities. Chlorophyll, 
water, and CO2 are indispensable for photosynthesis. On the 
one hand, abundant bacteria associated with methane oxida-
tion in both the green photosynthetic cells and hyaline cells of 
Sphagnum mosses provide additional CO2 thus guaranteeing 
supplementation with sufficient CO2 [24, 74]. On the other 
hand, sufficient water showed that the Sphagnum moss hya-
line cells perform well. Porous hyaline cells not only play a 
vital function as water storage organs and transport water to 
adjacent green photosynthetic cell but also provide a habitat 
for an abundance of microbial communities [18, 19]. Hence, 
this also reflects the positive correlation between the dominant 
microbiome at the phylum and family levels with chlorophyll 
contents. Water-holding capacity was another important fac-
tor for shifts in endophytic bacterial communities. The results 

of Spearman correlation test indicated that there is a positive 
relationship between water-holding capacity and the family 
of Burkholderiaceae (Spearman’s ρ = 0.564, P < 0.05). The 
members of Burkholderiaceae are distributed throughout a 
variety of habitats including animals, plants, and soil [75], and 
this community adapted acidic peatlands [76]. Previous stud-
ies have shown that in Sphagnum moss, both endophytic and 
entophytic bacteria, possess a high diversity of the genus of 
Burkholderia. Burkholderia was dominant in S. magellanicum 
and S. fuscum [17], and ingredients with antifungal activities 
were detected in Burkholderia species [77].

Global warming will change the stability and carbon 
sequestration may suffer from a series of influences. These 
influences can be partly attributed to the change of the activ-
ity of extracellular phenol oxidases which could degrade 
complex polyphenols and play important roles in the soil 
carbon cycle in the peatland ecosystem [78]. In this study, 
the PPO activity did not show differences between the sam-
pled Sphagnum moss species, while the activities of PER 
between SC and SF were significantly different (Table 1). 
Previous research examined the activities of PPO and PER 
in S. fuscum in Sphagnum-dominated peatlands under simu-
lated warming climate; the findings showed that warming 
treatment also did not alter PPO activity but increased PER 
activities in the living top segments [79]. Overall, the dif-
ferences in the phenol oxidases activity between different 
species of Sphagnum mosses may be related to differences 
of endophytic bacteria. Activity is also affected by abiotic 
factors, and phenol oxidase activity was positively related 
to the moisture content [80].

Among these Sphagnum moss species, HSP and SP 
belong to the same species but grow in different peatland 

Fig. 7   Element cycling functional genes and potential metabolic 
pathways prediction. Heatmap of C and N cycling functions of endo-
phytic bacteria based on FAPROTAX prediction (a). Heatmap of 
metabolism and genetic information process pathways (KEGG II) of 

endophytic bacterium between Sphagnum mosses by PICRUSt2 (b). 
Data were based on number of ASVs of each function in sphagnum 
moss 
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types and show differences in bacterial composition at the 
phylum level. For example, the relative abundances of Bac-
teroidetes (HSP, 16.46%; SP, 0.43%) and Firmicutes (HSP, 
9.97%; SP, 0.40%) (Fig. 3a and Supplemental Table S3). The 
LEfSe results also showed that Rhizobiaceae were abundant 
in HSP while Aquabacterium were the most abundant in SP 
(Fig. 3c, d). Prior studies reporting that as long as the same 
species of moss was sampled in the same ecological ampli-
tude, the moss-associated microbial composition was similar 
[19, 26]. Moreover, in comparison to other species sampled 
in Hani (i.e., SC, SF, and SM), SP still showed differences. 
According to a previous observation, S. fuscum (hummock) 
and S. angustifolium (broader ecology), which grow in the 
same bog ecosystem, show a high degree of similarity [17, 
20]. These discrepancies can partially be explained as fol-
lows: in each of the experiments, the research object differ. 
More than just endophytes in sampled Sphagnum mosses 
bacteriome in their study, the diversity of the microbial com-
munity on plant surface is generally higher than the diversity 
of the endophytic bacteria [81].

In this study, active methanotrophic endophytic bacteria 
in Sphagnum mosses include Methyloferula and Methylo-
bacterium. A previous study identified Methylferula as one 
of the most active methanotrophs associated with Sphag-
num mosses in peatland [82]. The relative abundance of 
Methyloferula in SP was higher than that of other mosses 
and the activity assay results further showed that the CH4 
oxidation rate was higher in SP than in HSP (Fig. 5c, d). 
This result suggests that Methyloferula has mainly metha-
notrophs function in the Sphagnum moss endophytic bac-
teriome. Beyond Methyloferula, the relative abundance of 
Beijerinckiaceae was higher in SP than in other species 
including HSP (Table S7). Beijerinckiaceae comprise obli-
gate methanotrophs, facultative methanotrophs, and facul-
tative methylotrophs. Moreover, in line with previous stud-
ies, the higher abundance and diversity diazotrophs could 
contribute to higher N2-fixation rates, emphasizing that the 
higher microbiome diversity will promote the microbiome 
function [36, 83, 84]. At the same time, methanotrophs have 
been shown to provide C derived from atmospheric CH4 
to Sphagnum mosses [38], but the rate of oxidation varied 
among Sphagnum moss species. However, it has been sug-
gested that CH4-oxidizing bacteria associated with Sphag-
num mosses are not influenced by the Sphagnum moss spe-
cies [85], but rather, are controlled by abiotic factors [38, 
86]. In the present study, both HSP and SP were collected 
from a moderately rich fen in northeast China and a poor 
nutrient bog located in a subtropical alpine region (Fig. 1), 
respectively; the results highlight the differences between SP 
and HSP (Fig. 5c, d). In addition, the rate of CH4 oxidation 
was higher in the dark than in the light/dark treatment, which 
differed from previously published results showing that light 
can stimulate of CH4 oxidation activity [87]. Moreover, 

physiologic characteristics of Sphagnum moss can influence 
the number of endophytic CH4-oxidizing bacteria in plant 
tissue and thus the CH4 oxidation capacity [37]; the rea-
son is that two different species of Sphagnum mosses with 
physiologic characteristics differences growing at the same 
site showed different CH4 consumption levels. Microbial 
communities growing in similar environments were found 
to have similar functions [88] in Sphagnum mosses; despite, 
these differences in microbiome, functional redundancy in 
CH4 oxidation is a widespread mechanism in peatland, the 
higher rate in SP may be the result of the higher diversity 
and activity of functional endophytic microbes in cells.

Based on the relative abundances results of nitrogen fixa-
tion prokaryotic taxa in the endophytic bacteriome of Sphag-
num mosses, it can be inferred that the N fixing efficiency 
differed among the sampled mosses. It has been shown that 
the order of Rhizobiales contains nitrogen-fixing or meth-
ane-oxidation microbiomes [89, 90] that play a crucial role 
in the growth and development of Sphagnum mosses, espe-
cially in N and C acquisition [22, 24, 65, 91–93]. The results 
of this study show that HSP had the highest average relative 
abundance of Rhizobiaceae, which may be related to the lack 
of N in the ombrotrophic peatland ecosystem; therefore, the 
Sphagnum-associated microorganisms that are linked to N 
acquisition increase. The genus Methyloferula belongs to 
Beijerinckiaceae, which also contribute to nitrogen fixation 
[29, 36, 65, 94]. Follow-up work is required where the 15N-
N2 incorporation method is used to verify which bacterial 
taxa plays a role in N fixation. In addition, cyanobacterial 
diazotrophs also play certain roles in N fixation in Sphagnum 
moss [25, 29]; however, in this study, Cyanobacteria were 
not detected in the endophytic bacteriome of the sampled 
Sphagnum mosses. Except for microorganisms with C and N 
cycling function, chemo-organoheterotrophs were also found 
in Sphagnum mosses. For example, Granulicella and Acidi-
soma are known to degrade arabinose and polysaccharides, 
the main components of cell walls [95, 96]. These genera 
that are associated with Sphagnum mosses and peat soils 
were isolated from peatland.

Combined with metabolic functional predictions of 
endophytic bacterial communities, the results showed that 
both metabolism and genetic information processing path-
ways were more abundant among the sampled Sphagnum 
mosses (Fig. S5). The results show that the abundances 
of terpenoid, amino acid, and carbohydrate metabolism 
genes in the endophytic bacterial community of Sphag-
num mosses were elevated (Fig. 7b). These pathways are 
associated with plant growth, photosynthesis, and survival 
[97]. In a recent study, researchers have identified Sphag-
num moss metabolites as key factors for microbial struc-
ture and characteristics [32]. It remains unclear whether 
the metabolic pathways with high abundance were related 
to the “host” release of an array of metabolites to affect the 
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colonization of endophytes or to recruit specific a micro-
biome [98, 99] and further influence endophytic bacterial 
metabolic pathways. Therefore, metabolites need to be 
considered in further experiments to study the relationship 
with endophytic bacterial in Sphagnum mosses.

Conclusion

In this study, the endophytic microbial community struc-
ture and function of different species of Sphagnum mosses 
were examined in two different types of peatlands in 
China. Significant differences were found in endophytic 
bacterial communities among different Sphagnum mosses, 
including the same species of Sphagnum moss under dif-
ferent types of peatlands. Moreover, methane oxidation 
rates of methanotrophic populations of S. palustre sampled 
from Hani were higher than those sampled from Taishan-
miao. Correspondingly, the average relative abundance of 
Methyloferula (an obligate methanotroph) was higher in 
SP. Moreover, diazotrophic taxa at the ASV level were also 
analyzed, and the average relative abundance of Rhizo-
biaceae was the highest in HSP while other diazotrophs 
were not present among all mosses. In addition, physi-
ological and biochemical characteristics of mosses driving 
endophytic bacterial communities were also determined. 
The remarkable correlation between chlorophyll contents, 
water-holding capacity, and followed by C contents and 
endophytic bacterial communities at the relative abun-
dance level of the top 10 phylum, family, and genus. These 
results enhance the current understanding of dominant 
endophytic bacteria among Sphagnum moss species in 
Hani and Taishanmiao peatland ecosystems. Many endo-
phytic bacteria in Sphagnum mosses are not well known 
and their functions remain uncertain; therefore, 15N-N2 
fixation experiments are required. Further work should 
include more species of Sphagnum mosses inhabiting dif-
ferent microhabitats, to elucidate the endophytic microbi-
ome, including fungi and archaea. Such knowledge will 
improve the available understanding of their ecological 
roles in peatland ecosystems in the face of global climate 
change.
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