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Abstract
Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strate-
gies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. 
However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments 
were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal 
communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD 
and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal 
interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in 
the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment sig-
nificantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, 
indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex 
and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment 
significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. 
In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities 
to further enhance soil health and plant disease resistance.
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Introduction

Ginseng (Panax ginseng C. A. Meyer) is a popular medici-
nal herb, with rich nutritional value and medicinal effect 
[27]. It has been intensively cultivated in China and South 
Korea in recent years to meet the growing demand for pro-
duction [66]. The availability of arable land for ginseng 
cultivation is limited, so farmers usually grow ginseng 
in the same soil continuously. Unfortunately, continuous 

monocropping of ginseng often accelerates soil quality 
degradation and soil-borne disease development, thereby 
posing a serious threat to plant health and damaging agri-
culture’s sustainable development [14, 18, 26]. Thus, an 
effective management practice is urgently needed to main-
tain crop productivity under highly intensive farming and 
continuous monocultures.

Chemical soil fumigation (CSF) is a common agricul-
tural measure in current production, which has excellent 
control effects on soil-borne pathogens, pests, and weeds, 
but it is not selective and have significant toxic side effects 
on non-target microorganisms [9, 15, 16]. Therefore, the 
application of a large amount of chemical fumigates will 
cause external disturbances in the diversity and composition 
of microflora, which may affect the potential function of 
the soil ecosystem and cause ecological risks [33]. In addi-
tion, increasing concerns about food safety and environ-
mental pollution have further limited chemical fumigation 
use [4]. Reductive soil disinfection (RSD), as an alternative 
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approach to chemical soil disinfection, is generally con-
sidered a promising soil health management practice. By 
applying a large amount of easily decomposed organic 
materials to the soil and preventing air diffusion into the soil 
by means of irrigation and mulching, a strong anaerobic and 
reducing environment can be created in a short time to kill 
soil-borne pathogenic microorganisms, and improve soil 
quality [2, 64]. Until now, RSD has been widely applied in 
the field to successfully improving the soil quality of many 
crops, such as watermelon [38], cucumber [19], tomato 
[37]. However, these applications mainly focus on annual 
plants such as vegetables and fruits, while less research has 
been done on perennials.

Soil microorganisms are widely recognized as the main 
driving factors for soil functional stability and integrity [6, 
28]. Fungi are critical components of the soil microbial sys-
tem and play a vital role in soil structure formation, organic 
matter decomposition, and microecological balance [11, 
61]. Plant rhizosphere is one of the most active hot spots of 
soil fungal community, and most root diseases are caused 
by fungi, such as Cylindrocarpon destructans, Fusarium 
oxysporum, Botrytis cinerea Pers [44, 53]. It has been shown 
that both CSF and RSD treatments significantly inhibited 
Fusarium oxysporum population and the genus Fusarium 
relative abundance [47, 70]. Therefore, changes in the diver-
sity and composition of the fungal community are essential 
mechanisms in suppressing pathogens during soil disinfesta-
tion and are related to the health of the whole soil ecosystem 
[5, 10]. In addition, soil microbiomes are also crucial for 
plant growth, health, and diseases, promoting root nutri-
ent absorption [3, 8], enhancing plant resistance to diseases 
[31], and improving salt resistance [7] and heavy metals 
[45]. Despite such promising results, how CSF and RSD 
affect other physiological properties of plants, particularly 
predictors related to plant defense responses, has not been 
well studied.

Plants create directional changes in soil microbiomes, 
which vary depending on the materials and functional groups 
used between CSF and RSD. Here, we hypothesized that (1) 
CSF and RSD differentially impact soil fungal community 
composition, structure and diversity; (2) CSF and RSD by 
changing soil fungal communities are conducive to manag-
ing plant physiological properties; and (3) RSD can reduce 
the number of pathogenic bacteria and promote plant growth, 
compared with CSF. To test these hypotheses, field experiment 
was conducted in a ginseng monoculture cropping system to 
investigate the effects of CSF and RSD on soil fungal diversity, 
soil nutrient content, and physiological properties of replanted 
seedlings.

Materials and Methods

Field Description and Experimental Design

Field experiments were conducted on August 20, 2019, in 
Zuojia Town, Changyi District, Jilin City, Jilin Province, 
China (44°02′N, 126°15′E, 237 m alt.). The region has a 
temperate continental monsoon climate, with an average 
annual temperature of 5.8 °C and precipitation of 550 mm, 
respectively. Ginseng had been consecutively cultivated for 
3 years and suffered severe disease at this experimental site. 
The soil physicochemical properties of the experiment have 
been described previously [65].

Three treatments, (1) CK, untreated soil; (2) CSF, 
soil with 0.5 t∙ha−1 chloropicrin; and (3) RSD, soil with 
15 t∙ha−1 animal feces, were performed with three repli-
cates and each measured 30 m2 in a randomized complete 
block design. The chloropicrin was purchased from Dalian 
Lvfeng Chemical Co., Ltd. (Liaoning, China). The animal 
feces (chicken feces, cow feces, and pig feces = 1:1:1) were 
obtained from Zuojia Town, Changyi District, Jilin City, 
Jilin Province resident breeding farm (Jilin, China). The soil 
in CSF treatment was firstly irrigated 10 cm of chloropicrin, 
and then covered with 0.04-mm blue plastic film. The soil 
in RSD treatment was firstly added 10 cm of animal feces, 
irrigated to 100% water holding capacity, and then covered 
with 0.04-mm blue plastic film. All treatments except the 
control group were conducted under anaerobic conditions 
lasted for 4 weeks and the soil temperature was maintained 
at 30–40 °C. The plastic films were removed after 4 weeks 
and the soil was over-turned after 2–3 days of natural drying. 
Two-year-old healthy ginseng seedlings of similar size were 
transplanted on October 20, 2019.

Sample Collection and Processing

Soil samples and plants from three treatments were collected 
during the harvesting period (October 1, 2020), and four 
replicates of each treatment were mixed as composite sam-
ples. The sampling depth was 0–20 cm. The collected soil 
samples were sieved and divided into two subsamples, one 
subsample was stored at 4 °C for physiochemical analyses, 
and another subsample was stored at −80 °C for the DNA 
analysis. Meanwhile, separate the aboveground and under-
ground parts of the plant, wash gently, then dry the roots 
with absorbent paper and divide into two subsamples. One 
subsample was stored at −80 °C for physiological and bio-
chemical analysis, and another subsample was dried at 45 
°C for plant nutrient element analysis.
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Soil Physicochemical and Plant Physiological 
Properties

Soil organic matter (OM) was determined by the potas-
sium dichromate external heating method [13]. Available 
nitrogen (AN) was determined using the alkali-hydrolyzed 
diffusion method [71]. Available phosphorus (AP) was 
extracted with NaHCO3 solution, and then molybdenum-
antimony colorimetry [71].

Soluble protein content (SP) content was measured with 
Coomassie bright blue method with the measurement of 
absorbance at 595 nm. Malondialdehyde content (MDA) 
content was determined at 532 nm using 3,5,5′-trimethyl-
oxazol-2,4-dione produced by the thiobarbituric acid reac-
tion. The activities of plant superoxide dismutase (SOD), 
peroxidase (POD) and catalase (CAT) were measured 
using a kit produced by the company Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China), and the activi-
ties were expressed in units per milligram of protein. Plant 
auxin (IAA), abscisic acid (ABA), and gibberellin (GA) 
contents were measured by enzyme-linked immunosorb-
ent assay (ELISA). Plant nutrient elements Mg, K, Ca, 
Fe, Cu, and Zn were extracted by HNO3-HClO4 deboiling 
method and determined by ICP-OES (iCAP 7400 DUO, 
Thermofisher, USA). All measurements were conducted 
in quadruplicate to avoid random data.

DNA Extraction and Miseq Sequencing

Total DNA was extracted from 0.5 g soil samples using 
an E.Z.N.A.® Soil DNA Kit. We used a NanoDrop 2000 
spectrophotometer after extracting DNA to determine its 
quality and concentration. Agarose gel electrophoresis was 
used to validate DNA’s integrity. The hypervariable region 
of the fungi ITS gene was amplified with primer pairs 
ITS1F and ITS2R by an ABI GeneAmp® 9700 PCR ther-
mocycler. Used the protocol described by Tan et al. [54] 
for the amplification of fungal ITS genes and analysis of 
PCR product purity. The diversity and composition of the 
microbial community were measured using the Illumina 
Miseq PE300 platform (Illumina USA) after purification. 
High-throughput sequencing results have been uploaded to 
NCBI (SRA Accession Number: PRJNA822700). FLASH 
(Version 1.2.11) was used to merge raw sequences gener-
ated by MiSeq paired-end sequencing. Used the UPARSE 
(Version 11) to cluster quality-filtered fungal sequences 
into operational taxa (OTUs) with 97% sequence simi-
larity. Representative sequences were taxonomically clas-
sified using the Ribosomal Database Project (RDP) and 
then according to the Unite database, with a confidence 
threshold of 70% for fungi.

Statistical and Bioinformatics Analysis

Using IBM SPSS 21.0 statistical software, we measured 
differences in soil physicochemical properties, and ginseng 
physiological characteristics between different treatments 
using one-way analysis of variance (ANOVA) (P < 0.05). 
Fungal α and β diversity was described by the Chao, Ace, 
Shannon, and Simpson indices, and estimated with QIIME 2 
software. The Bray-Curtis distance was used for PCoA and 
hierarchical cluster analysis. Linear discriminant analysis 
(LDA) effect size (LEfSe) was used to identify taxonomic 
fungal taxa among different treatments. Microbial networks 
were constructed using R (Version 4.2.3) software and visu-
alized using Gephi (Version 0.92). Correlation coefficients 
|r| < 0.6 and P > 0.05 of the correlation R matrix were 
removed. The FUNGuild databases were used to predict 
fungal communities’ functional compositions. Heat map 
correlation analysis was used to visualize the relationships 
between dominant genera, soil physicochemical properties, 
and plant physiological properties.

Results

Soil Physicochemical Properties

Analysis of the collected soil samples showed a clear differ-
ence in physicochemical properties changes after RSD and 
CSF treatment of ginseng planted soil (P < 0.05, Table 1). 
Both RSD and CSF treatment increased soil OM, AN, and 
AP content compared with untreated soil (CK). In particu-
lar, the content of OM and AN was highest in the RSD 
treatment, and the content of AP was highest in the CSF 
treatment.

Soil Microbial α and β Diversities

A total of 843,706 high-quality ITS sequences were obtained 
from 12 soil samples (3 treatments × 4 biological repli-
cates), with sequences ranging from 67,955 to 73,521 per 
sample. After re-sampling, the minimum number of sample 
sequences is used for leveling, and then classified into 1096 

Table 1   Soil physicochemical under different treatments

The one-way ANOVA indicates significant differences at P < 0.05 
between values (mean SD, n = 4) within the same column followed 
by different letters

Treatment OM (g∙kg−1) AN (mg∙kg−1) AP (mg∙kg−1)

CK 58.04 ± 5.06 c 160.30 ± 2.06 c 19.23 ± 0.10 c
CSF 70.65 ± 2.14 b 243.13 ± 4.05 b 22.33 ± 0.37 a
RSD 79.94 ± 2.81 a 267.63 ± 8.01 a 20.51 ± 0.05 b
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OTUs at 97% sequence identity. The sequence depth in the 
present study was sufficient for diverse analyses as revealed 
that the coverage of all samples was above 99.7% (Supple-
mental Table S1).

We found that species richness and diversity of fungal 
communities in CSF-treated soil versus RSD-treated soil 
differed significantly (Fig. 1A–D). The species richness 
(Chao index and Ace index) and fungal diversity (Shannon 
index and Simpson index) of RSD treatment were signifi-
cantly higher than CSF treatment, but there was no signifi-
cant difference between RSD treatment and CK treatment. 
In contrast, the species richness and fungal diversity of 
CSF-treated soils significantly decreased compared to CK 
treatment.

NMDS plots visualize fungal β-diversity patterns at genus 
level with a stress value of 0.043 (Fig. 1E–G). The pattern 
of rhizosphere fungal community is clearly distinguished 
between the horizontal axis and the vertical axis, in which 
the microbial community of RSD treatment is separated 
from that of CSF treatment. The fungal community assem-
blage at genus level between different treatments explained 
the evident difference in treatment effect calculated by 
PERMANOVA test (ADONIS R2 0.6504 and ANOSIM R2 
0.7685; P < 0.001) (Supplemental Table S2,3). Similarly, 

PCoA showed that the dissimilarity between rhizosphere 
fungal communities at species level (56.49% explained by 
PCo1) was largely due to RSD and CSF microbial samples. 
In addition, Bray-Curtis clustering analysis separated the 
distribution of microbial communities (Fig. 1G), where the 
fungal communities of RSD treated microbial samples were 
clustered together and separated from those of CSF treated 
samples.

Soil Microbial Communities Compositions 
and Potential Function Prediction

At phylum level (Fig. S1A-B), the rhizosphere community 
structure of fungi is classified into the top 3 phyla, account-
ing for over 98% of the total fungal sequence. Among 
them, Ascomycota was the most abundant, accounting for 
51.78–92.49% that mostly enriched in CSF treatments. 
Similarly, Mortierellomycota relative abundance decreased 
after CSF, and RSD applications, respectively. As compared 
to CK treatment, fungal genera indicated that the propor-
tion of biocontrol Chaetomium taxa significantly increased 
and pathogenic Neonectria significantly decreased during 
RSD treatment (Fig. 2A). The proportion of biocontrol 
Chaetomium significantly increased by 99.6, under RSD 

Fig. 1   Soil fungal richness and diversity under different soil disinfec-
tion treatments (A–D). Non-metric multidimensional scaling analysis 
(E), principal coordinate analysis (F) and hierarchical cluster analysis 
(G) based on Bray-Curtis distance were conducted for fungal commu-
nities OTU in different soil samples. The Chao index and Ace index 

represent fungal diversity, and Shannon index and Simpson index 
represent species richness. The symbols *, **, and *** indicate sig-
nificant differences at P < 0.05, P < 0.01, and P < 0.001 according to 
the one-way ANOVA, respectively
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soil compared to CSF. In addition, LEfSe analysis revealed 
that the CSF and RSD treatments significantly altered the 
fungal communities from the phyla to the genus and that 
different treatments harbored distinct biomarkers (Fig. 2C, 
D). For instance, the taxa Ascomycota, Helotiaceae, Scyta-
lidium, Leotiomycetes, and Helotiales were significantly 
enriched in CSF soil, Sordariomycetes, Sordariales, Gibber-
ella, Lasiosphaeriaceae, Hypocreales, Nectriaceae, Cysto-
filobasidiales, Mrakiaceae, Tausonia, Dothideomycetes, 
Cladorrhinum, Pleosporales, Chaetomium, Solicoccozyma, 
Piskurozymaceae, and Neocosmospora were significantly 
enriched in RSD soil.

Overall, a total of three fungal trophic modes (patho-
troph, symbiotroph, and saprotroph) were found. RSD-
treated soil exhibited significantly enriched relative abun-
dances of fungi functional groups associated with dung 
saprotrophs, fungal parasites-wood saprotrophs, and dung 
saprotroph, fungal parasite-wood saprotroph, fungal par-
asite-wood saprotroph, and dung saprotroph-soil sapro-
troph, compared to CK-treated soil (Fig. 2B). Notably, the 
relative abundance of fungal plant pathogens, lichenized-
wood saprotroph, and animal pathogen was decreased in 
RSD-treated soil (Fig. 2B).

Fig. 2   Relative abundance of top 15 fungal genera (A) and functional 
groups in fungi (B) in soil samples from different treatments; linear 
discriminant analysis shows the differences of fungal taxa (C) (from 
phylum to genus) among different treatments, and the significantly 
enriched fungal taxa (D) among different treatments. The symbols 

*, **, and *** behind the taxa indicate significant differences at P < 
0.05, P < 0.01, and P < 0.001; red and blue colors indicate the nega-
tive and positive correlations, respectively. Taxa with significant dif-
ferences in abundance (LDA score > 4, P < 0.05) between different 
treatments are colored
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Co‑occurrence Networks of Microbial Communities

We found clear differences in fungal community networks, 
and topological characteristics, between different treatments 
(Fig. 3, Table 2). RSD-treated soil, for example, had more 
nodes and edges, more modularity, longer average paths, 
and more weighted degrees of fungal network (Table 2). All 
the nodes with Zi ≥ 2.5 or Pi ≥ 0.62 were determined as 
the keystone species, that is, nodes in the area of connec-
tors (0.24%), module hubs (0.65%), and network hubs (0%) 
played a crucial role in the co-occurrence networks (Fig. 
S2).

In addition, there were significant differences in the iden-
tity of the top ten fungal keystone taxa between different 
treatments. For example, the fungal keystone taxa Trichocla-
diu, Lectera, and Neonectria were found in CK treatment, 
Scytalidium, Byssochlamys, Cutaneotrichosporon, Issatch-
enkia, Thermomyces, Thermoascus, and Monascus were 
found in CSF treatment, whereas Gibberella, Cladorrhinum, 
and Solicoccozyma were found in RSD treatment (Table S4).

Plant Physiological Properties

Analysis of the collected ginseng samples showed a clear 
difference in the physiological properties of ginseng treated 
with RSD and CSF (P < 0.05, Table 3). Compared with 

untreated ginseng (CK), ginseng SOD, CAT, POD activity 
and SP, Ca, Zn content were increased, and ginseng MDA, 
ABA, Mg, K, and Fe content were decreased by RSD treat-
ment. However, ginseng SOD, CAT activity and Mg, Ca 
content were decreased, and ginseng IAA content was 
increased by the CSF treatment. Furthermore, GA and Cu 
contents did not differ significantly between treatments.

Relationships Between Soil Physicochemical 
Properties, Plant Physiological Properties, 
and Microbial Communities

Most of the dominant genera which the relative abundance 
in CSF and RSD treated soil was significantly (P < 0.05) 
correlated with soil physicochemical properties, and plant 

Fig. 3   Co-occurrence networks of fungal communities and functions under different treatments. The keystone taxa were marked in each network

Table 2   Topological characteristics of fungal community networks in 
different treatments

Topological characteristics CK CSF RSD

Number of nodes 203 82 235
Number of edges 1205 362 1436
Modularity 0.873 0.563 0.895
Average path length 1.165 1.203 1.233
Average weighted degree 11.872 8.829 12.221
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physiological properties (Fig. 4). Gibberella, and Cladorrhi-
num relative abundances were significantly (P < 0.05) and 
positively correlated with SP, Ca content, SOD, CAT, and 
POD activity, and negatively correlated with AP, GA, and 
IAA content (Fig. 4). Mortierella, Lectera, and Trichocla-
dium relative abundances were significantly (P < 0.05) and 
positively correlated with MDA, Mg, and Cu content, and 

negatively correlated with AP content (Fig. 4). Scytalidium 
relative abundance was significantly (P < 0.05) and posi-
tively correlated with AP, and IAA content, and negatively 
correlated with MDA, Mg, and Cu content (Fig. 4). Tausonia 
relative abundance was significantly (P < 0.05) and posi-
tively correlated with SP, Ca content, SOD, CAT, and POD 
activity, and negatively correlated with GA, and IAA content 

Table 3   Plant physiological 
properties under different 
treatments

The one-way ANOVA indicates significant differences at P < 0.05 between values (mean SD, n = 4) within 
the same column followed by different letters

Treatment CK CSF RSD

SP (μg∙mL−1) 84.762 ± 0.924 b 83.084 ± 0.466 b 89.274 ± 0.778 a
SOD (U∙mgprot−1) 39.538 ± 4.162 b 26.536 ± 1.874 c 51.124 ± 1.233 a
MDA (nmol∙mgprot−1) 0.454 ± 0.012 a 0.405 ± 0.006 b 0.423 ± 0.004 b
POD (U∙mgprot−1) 1.157 ± 0.025 b 1.053 ± 0.016 b 2.597 ± 0.079 a
CAT (U∙mgprot−1) 0.387 ± 0.005 b 0.314 ± 0.016 c 0.555 ± 0.037 a
GA (pmol∙mL−1) 122.465 ± 2.376 a 124.302 ± 3.747 a 118.040 ± 2.319 a
IAA (μmol∙L−1) 22.142 ± 0.374 b 28.133 ± 0.401 a 21.149 ± 0.901 b
ABA (ng∙mL−1) 131.064 ± 3.087 a 126.225 ± 0.482 a 103.133 ± 1.997 b
Mg (mg∙g−1) 1.046 ± 000 a 0.843 ± 0.082 b 0.968 ± 0.082 ab
Cu (mg∙g−1) 0.005 ± 0.001 a 0.003 ± 0.001 a 0.003 ± 0.000 a
Ca (mg∙g−1) 1.528 ± 0.082 ab 1.401 ± 0.082 b 1.649 ± 0.082 a
Fe (mg∙g−1) 0.163 ± 0.001 a 0.136 ± 0.000 b 0.123 ± 0.000 c
K (mg∙g−1) 7.648 ± 0.082 a 6.858 ± 0.082 b 5.158 ± 0.082 c
Zn (mg∙g−1) 0.036 ± 0.001 c 0.046 ± 0.001 b 0.121 ± 0.000 a

Fig. 4   Correlations between dominant genera and soil physicochemi-
cal properties, plant physiological properties. The symbols *, **, and 
*** behind the taxa indicate significant differences at P < 0.05, P < 

0.01, and P < 0.001; red and blue colors indicate negative and posi-
tive correlations, respectively
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(Fig. 4). Byssochlamys relative abundance was significantly 
(P < 0.05) and positively correlated with GA content, and 
negatively correlated with Mg, Ca, and Cu content (Fig. 4). 
Neocosmospora relative abundance was significantly (P < 
0.05) and positively correlated with OM, AN, SP, GA con-
tent, SOD, and CAT activity, and negatively correlated with 
GA, IAA, and ABA content (Fig. 4). Chaetomium, Solicoc-
cozyma, Naganishia, and Neonectria relative abundances 
were significantly (P < 0.05) and positively correlated with 
SP, and Ca content, SOD, CAT, and POD activity, and nega-
tively correlated with IAA content (Fig. 4).

Discussion

RSD Combined with Organic Materials Can 
Effectively Restore Soil Health and Functions

It is well known that soil is an extremely complex ecosys-
tem, and unfortunately, soil has rapidly degraded globally 
as a result of continuous monocultures in intensive agricul-
ture [32, 68]. To overcome this problem, solarization, crop 
rotation, intercropping, and antagonist introduction have 
generally been adopted in cultivation [50, 60]. However, 
these practices alone do not always eliminate the negative 
effects of continuous single cultivation, which are either 
restricted by environmental conditions or hampered by 
unstable results. Soil organic matter content is considered 
one of the important indicators for evaluating soil fertility 
and soil quality, which can promote plant growth and devel-
opment, nutrient decomposition, and improve soil prop-
erties [49, 56]. In the present study, the OM content was 
considerably increased in both SFC and RSD treatments, 
with the greatest increase in OM found during RSD treat-
ment, as reported in previous studies [20, 51]. Additionally, 
the effects of addition of decomposable carbon source and 
irrigation on the transformation of large amounts of nutri-
ents are not consistent in different studies. As reported in 
the present study, the AN and AP content was considerably 
increased in both SFC and RSD treatments, with the high-
est content observed in the RSD treatment. The increase 
in macronutrient availability might result directly from the 
anaerobic degradation of animal feces or indirectly from the 
enhancement of nutrient cycling [48]. The abundance, diver-
sity, and functional composition of microorganisms have 
long been considered important predictors of soil health [29, 
46]. It is well known that soil fungi are an integral compo-
nent of the soil microbial system, contributing to soil struc-
ture formation, fertility improvement, and microecological 
balance, participating in a wide variety of ecological pro-
cesses [16, 43]. Many studies have found that RSD and SFC 
treatments can alter soil fungal communities and enhance 
their resistance to soil-borne pathogen invasion [34, 39, 70]. 

Similar to these studies, we found that both RSD and SFC 
treatments significantly reduced known soil-borne pathogens 
Neonectria and increased known disease-suppressive agents 
Chaetomium relative abundance, but the changes in RSD 
treatments were greater than those in SFC treatments. For 
example, Chaetomium can inhibit the growth of pathogenic 
fungi and promote soil nutrient activity by producing cel-
lulase and chaetomin [1, 24].

There is no doubt that SFC and RSD treatment regulate 
the soil microbial community and suppress soil-borne path-
ogens, but their effects on other soil functions do not yet 
appear to be fully understood. We found that RSD signifi-
cantly decreased microbial functions associated with fungal 
plant pathogens, lichenized-wood saprotroph, and animal 
pathogen. This is because the presence of antifungal com-
pounds through the decomposition of different organic sub-
strates during RSD treatment may inhibit fungal taxa growth 
[22, 40]. Likewise, according to previous studies, the fungi 
networks of healthy soils are more complex than those of 
diseased soils, indicating that fungi network characteristics 
can play a major role in predicting plant health [42, 59]. The 
present study revealed that both the complexity and connec-
tivity of fungi networks were greater in RSD treatment soils, 
indicating that RSD treatment can effectively improve soil 
microbial ecosystem stability.

RSD Combined with Organic Materials Further 
Enhanced the Performance of Plant Physiological 
Properties

Maintaining soil health is considered an important prereq-
uisite for successfully alleviating replanting failures, as soil 
factors can affect the physiological and biochemical pro-
cesses of the soil and affect the physiological characteristics 
of plants [36, 41]. As already discussed, RSD treatment can 
significantly increase soil AN and AP content. Alterations 
in soil nutrient availability may cause imbalances in plant 
nutrients [12]. This study found that RSD treatment signifi-
cantly increased Ca and Zn content in ginseng roots and 
reduced Mg, K, Fe content, while the SFC treatment reduced 
Mg and Ca contents. These findings are encouraging since 
these nutrients form part of essential proteins and complexes 
in the plant, so their deficiency can compromise the physi-
ological balance of the plant and the root activity [17].

Previous studies have found that when plants are sub-
jected to stress, the reactive oxygen species and free radi-
cals in their bodies become imbalanced, causing damage to 
the cell membrane system and inhibiting plant growth [67]. 
This study found that RSD treatment significantly increased 
ginseng roots’ SOD, CAT, and POD activities, while reduc-
ing MDA content. It may be because the decrease in MDA 
content after RSD treatment promotes the activity of pro-
tective enzymes such as SOD, CAT, and POD, converting 
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toxic H2O2 into H2O, leading to a dynamic balance of SOD 
dominated disproportionation reactions and reducing cell 
membrane damage [35, 41, 52]. Moreover, soluble proteins, 
as an important osmotic regulator in plants, can also affect 
plant disease resistance by participating in various intracel-
lular enzymatic reactions [30]. From the present study, we 
found interesting results that RSD-treated soils appeared to 
contain substantial increases in TP content, which may con-
tribute to systemic resistance in plants.

As important signaling molecules, endogenous hormones 
play a crucial role in regulating plant growth and develop-
ment, coping with biotic and abiotic stressors, maintaining 
homeostasis, and adapting to environmental changes in 
plants [25, 55, 57, 58]. The study demonstrated that RSD 
treatment significantly reduced the IAA and ABA content 
of ginseng roots, while there was no significant difference 
in GA content between different treatments. This is because 
ABA and IAA play an important role in stress response as 
a signal regulator in the stress chain, and RSD treatment 
can protect ginseng roots from stress in a way that does not 
require altering hormone levels to regulate stomatal closure 
in order to enhance stress resistance [55].

Linking the Reassembled Soil Microbiomes with Soil 
Physicochemical Properties and Plant Physiological 
Properties

Previous studies suggested that EC, pH, OM, UE, SC, and 
ACP are the key factors affecting soil microbial communities 
[63, 69]. This study found significant relationships between 
soil OM, AN, and AP contents and microbial taxa. Soil OM 
and AN are considered a mobile, important C and N sources 
for microorganisms, 10–40% of them can easily be used by 
microorganisms between days and months [23]. This is con-
sistent with the significant positive correlation between OM 
and AN content related to C and N decomposition and some 
microorganisms (i.e., Firmicutes). Meanwhile, Mortierella 
is a potential plant pathogen [21]. Many studies have shown 
that SFC and RSD practices could effectively reduce soil-
borne pathogens [51, 62], which was in line with our study 
that Mortierella abundance was significantly reduced in all 
SFC and RSD treatments. Likewise, soil AP was also sig-
nificantly negative correlated with Mortierella abundance, 
which also verified the above results.

As one of the most active hot zones for soil microor-
ganisms, the rhizosphere of plants not only has extremely 
complex interactions with microorganisms, but also 
integrates the interactions between microorganisms and 
plants [58]. It is not surprising then, that RSD improves 
plant health performance primarily by improving micro-
bial communities. Here, plant physiological differences 
were significantly related to dissimilarities in the relative 
abundance of the dominant fungal genera. For example, 

Mortierella, Lectera, and Trichocladium relative abun-
dances were significantly and positively correlated with 
MDA, Mg, and Cu content. As a result of these results, it 
has been shown that the soil disinfestation and plant pro-
tection processes of RSD treatment are primarily mediated 
by fungal community. Additionally, physiological charac-
teristics of ginseng roots were more significantly affected 
by RSD treatment than by SFC treatment. Such discrep-
ancies could be attributed to differences in the chemistry 
(i.e., degradability) and quantity (i.e., availability) of C 
sources in the organic materials used [40, 54].

Conclusion

Chemical soil fumigation and reductive soil disinfestation 
can considerably alleviate plant replant failure through 
reorganizing fungal communities and repairing the soil 
environment. However, the effect of reductive soil disin-
festation is better than that of chemical soil fumigation. 
In particular, the soil microbiome was rebalanced by an 
increase in the abundance of beneficial taxa and a decrease 
in the abundance of pathogenic taxa. Meanwhile, the 
microbial network processed by RSD is more complex and 
interrelated, and reduces the function of plant pathogens. 
Furthermore, RSD treatment also changed soil properties, 
especially increased soil OM, AN, AP contents. Impor-
tantly, RSD treatment significantly increased plant SOD, 
CAT, POD activity, SP, Ca, Zn content, and decreased 
MDA, ABA, Mg, K, and Fe content. Thus, RSD practice 
may not only improve soil quality, change microbial com-
munity structure, inhibit pathogenic bacteria proliferation 
but also contribute to the growth of replanted crops, a 
potential agricultural practice.
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