
Vol.:(0123456789)1 3

Microbial Ecology           (2024) 87:15  
https://doi.org/10.1007/s00248-023-02326-3

RESEARCH

River Sediments Downstream of Villages in a Karstic Watershed 
Exhibited Increased Numbers and Higher Diversity of Nontuberculous 
Mycobacteria

Helena Modra1 · Vit Ulmann2 · Milan Gersl3 · Vladimir Babak4 · Ondrej Konecny1 · Dana Hubelova1 · Jan Caha1 · 
Jan Kudelka3 · Joseph Oliver Falkinham III5 · Ivo Pavlik1

Received: 24 August 2023 / Accepted: 30 November 2023 
© The Author(s) 2023

Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been 
studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. 
This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum 
of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the 
villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and 
lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP’s effluents. Higher 
phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the 
WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions  (Cl–and 
N-NH3

–), and cations  (Na+ and  K+). The results provide insights into NTM numbers and species diversity distribution in a 
karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water 
and sediment microbes will be influenced as well.

Keywords Village impacts on water streams · Mycobacterium avium · Mycobacterium fortuitum · Wastewater treatment 
effluent impacts · Human activities · Mycobacterial ecology
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WGS  Whole genome sequencing
WWTPs  Wastewater treatment plants

Background

Nontuberculous mycobacteria (NTM) are widely distributed 
in the environment [1, 2], typically, in soil [3, 4] and dust 
[5] followed by surface water sediments [6], indoor water 
biofilms [7], surface water biofilms [8], small-scale dis-
tributed water purifiers [9], in free-living amoebae isolated 
from wastewater [10], and other matrices [11–14]. Due to 
the high surface hydrophobicity of NTM cells, NTM densi-
ties are higher in biofilms and sediments compared to water 
[8, 15]. NTM have an important role in degrading of organic 
compounds arising from anthropogenic activity [16–18] and, 
thus, might be found in higher numbers in villages compared 
to surrounding forests. Due to these characteristics, NTM 
can be considered “persistent bacterial indicators of envi-
ronmental influences” [19, 20].

Limited information is known about the impact of small 
villages on NTM prevalence in surface water and water 
sediments in minor water courses. In this study, we focused 
our interest on a specific karstic watershed. Genus Myco-
bacterium was detected in karst cave environment for the 
first time in 1994 [21]. A karstic watershed has the follow-
ing characteristics including (1) engulfed streams in karst 
landscape and (2) underground water channels, caves, and 
sinkholes due to the solubilization of limestone. These 

factors make karstic caves and aquifers highly vulnerable to 
anthropogenic contamination [22–27]. Focused on microbial 
contamination, special attention in karstic water has been 
devoted to the transport of pathogenic Escherichia coli and 
fecal indicator bacteria [28–36].

We hypothesized that water and wastewater originating 
from villages’ households would trigger a broader diversity 
of NTM spreading detected in cave sediments in one karst 
area (Moravian Karst, Moravský kras; Czech Republic). 
Thus, this study aimed to record the species and types NTM 
in karstic water and water sediments both upstream or down-
stream villages and treated water from wastewater treatment 
plants (WWTPs). In addition, we measured the physical and 
chemical parameters of the water and sediment samples, 
along with the number and species of NTM from samples 
collected upstream, within, and downstream of the villages 
and their WWTP’s outflows of seven selected villages.

Methods

Study Area

The study was carried out in the Moravian Karst (Czech 
Republic) with its Protected Landscape Area (PLA) of 
approximately 92  km2 established in 1956 (Fig. 1) [37] and 
surrounded watershed area in the southeast of the Czech 
Republic. That region has the two most extensive cave sys-
tems in the Czech Republic. Amaterská jeskyně Cave System 
is long; more than 34 km and cave system created by linking 
Rudice Swallow Hole (Rudické propadání), Bull Rock Cave 
(Býčí skála), and Barová Cave (Barová jeskyně) is long as 
well, than 13 km (Fig. 2) [37]. The Moravian Karst PLA is 
in a cold to moderately warm climatic region according to 
Quitt’s classification, average annual precipitation reaches 
550–650 mm, and average annual air temperature ranges 
between 5 and 7 °C [38]. The studied area was defined by 
watersheds created by seven water streams: V1, Žďárský 
voda Stream; V2, Bělička Stream; V3, Bílá voda Stream; 
and V4, Lopač Stream; V5, Kotvrdovický potok Stream; V6, 
Podoský potok Stream; and V7, Ochozský potok Stream.

Sampling Design

Sampling sites (SS) were located in seven villages (villages, 
V1–V7; Figs. 1 and 2) with 318–1117 population [39] based 
on followed criteria:

1. Samples were collected from a minor flow of seven dif-
ferent water streams within seven villages (average flow 
rate Q = 0.015–0.500  m−3/s); all water streams are con-
nected to one river called Svratka, which flows outside 
the studied area.
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Fig. 1  Moravian Karst (Moravský kras) Protected Landscape Area and its watershed with land use, sampling sites, and population sizes in seven 
selected villages V1–7
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Fig. 2  Moravian Karst (Moravský kras) Protected Landscape Area, its watershed with surface and underground watercourses, and with cave and 
cave systems, sampling sites, and population in seven selected villages V1–7
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2. Samples were collected in the first village on the water 
stream from the spring.

3. Samples were collected from parts of water streams in 
which chlorine compounds were used for treating drink-
ing water used in households.

4. Samples were collected from every village treated waste-
water downstream from the WWTP or other type of 
wastewater treatment.

Within each of the seven villages, the water and water 
sediments were sampled in for three different sampling sites 
(SS):

1. SS-A: upstream of the particular village (300–1500 m),
2. SS-B: within the confines of the village (100–300 m) up 

to WWTPs, and
3. SS-C: downstream of the village and the WWTP’s out-

flows (10–30 m downstream of the WWTP’s outflows).

Following seven villages with watercourses were sampled 
(Figs. 1 and 2): V1 Žďár (water stream: Žďárský potok), V2 
Vysočany (water stream: Bělička), V3 Niva (water stream: 
Bílá voda), V4 Ostrov u Macochy (water stream: Lopač), 
V5 Kotvrdovice (water stream: Kotvrdovický potok), V6 
Podomí (water stream: Podomský potok), and V7 Březina 
(water stream: Ochozský potok). The total number of sam-
pling sites was 21.

The Czech Republic lies in the moderate climate zone 
with average annual spring and autumn season temperature 
between 1.1 and 9.7 °C depending on geographical factors. 
To avoid extreme temperature during the summer and winter 
seasons, the samples were taken during the spring (March) 
and the autumn (September), when the average temperature 
reaches 7 to 8 °C. Water from the 21 sampling sites was 
sampled two times per year (42 samples) during the spring 
and the autumn seasons (in March and September) in 2019. 
Water samples were collected in the water column. Sub-
merged water sediments samples were taken four times (84 
samples) at each sampling site (in March and September in 
the years 2018 and 2019).

Water was collected in to two 0.5-L sterile plastic dis-
posable bottles without thiosulfate (Radnor Township, PA, 
USA). The water sediments (i.e., 30 g) were taken at depths 
of 0–3 cm directly into a sterile 60-mL PP sputum container 
(DISPOLAB s.r.o., Troubsko, Czech Republic) for mycobac-
terial investigations. The water sediments for physical and 
chemical analyses were taken in to the plastic storage bag 
in amount 200 g. Samples were transported in a cold box to 
laboratories and stored in a refrigerator at 6 °C in average 
no longer as for 24 h till the analyses. Field measurements 
of water parameters were not conducted upstream of the 
villages (SS-A) due to less reachable terrain for analytic 
equipment.

Mycobacterial Culture and Isolates Identification

Water samples (1000 mL collected in to two 0.5-L sterile 
plastic disposable bottles) were filtered through 0.45-µm Tef-
lon filters (Millipore, Merck, Molsheim, France). Each filter 
was transferred to a 30-mL propylene container intended for 
centrifugation (Medline Scientific, Oxon, UK) filled with 
10 mL of distilled water and around of 20 pieces of glass 
beads (2 mm) and vortexed 30 s. The filter was discarded, 
and the eluate decontaminated to avoid overgrowth of the 
naturally slow-growing mycobacterial culture by substan-
tially fast-growing microbial flora consisting of other com-
mon bacteria and fungi [42, 43].

Each water sediment sample (maximum of 10.0 g) was 
mixed with distilled water up to full volume of 30-mL plastic 
container (Medline Scientific, Oxon, UK) and vigorously 
shaken for 10 min to obtain maximal suspension homogene-
ity and to dissolve large soil clusters and release mycobac-
terial cells. Then, it was centrifuged for 10 min at approx. 
150 × g to allow for water sedimentation of insoluble par-
ticles and most of the residual material, which could ham-
per the decontamination process as they interact with the 
chemicals and weaken their effect [44, 45]. A total of 10 mL 
of each turbid supernatant was transferred to a new 30-mL 
container and centrifuged for 20 min at 3200 × g. Pellets 
obtained as a final product of sediment were homogenized 
and decontaminated adding 10 mL of decontamination agent 
described below.

For water samples, a total volume of 20 mL of decon-
tamination agent was added to 10 mL of microfilter eluate 
obtained previously in 30-mL polypropylene container.

Decontamination of all samples was provided by 4% 
NaOH (Merck, Darmstadt, Germany) in the 1:1 mixed solu-
tion with 1% alkyltrimethylammonium bromide (Merck, 
Darmstadt, Germany). After adding decontamination agent, 
mixtures were shacked using horizontal shaker (Rotamax 
120, Heidolph, Schwabach, Germany) for 15 min. Then, 
the samples were centrifuged for 20 min at 3200 × g, whole 
supernatant was discarded, and to pellet, 15 mL of distilled 
water was added for neutralization. After short time (30 s) of 
vortexing, neutralized content was centrifuged for 20 min at 
3200 × g over again. Whole supernatant was discarded, and 
pellet was re-suspended in 0.8 mL of physiological saline 
solution, as described previously [42, 43].

A total of 800 µL of suspension (re-suspended pellet) 
per 200 µL was inoculated in duplicate into two slants 
with Lowenstein-Jensen medium (in-house made) without 
and with sodium pyruvate. Incubation was done in parallel 
for 3 months at 28 °C and 37 °C. Mycobacterial growth was 
examined after the first week and every other week [40, 41]. 
Due to expected viability affecting action of decontamina-
tion agent even for mycobacteria, evaluation of loss rate/
yield was provided. Using control strains of Mycobacterium 



 H. Modra et al.

1 3

   15  Page 6 of 16

avium DSM 44157 and M. fortuitum DMS 46621 (German 
Collection of Microorganisms and Cell Cultures GmbH, 
Berlin, Germany), the yield of decontamination method for 
water samples was estimated 78% and for solid (sediment) 
samples 69%.

All suspected NTM isolates were first identified by 
macroscopic and by microscopic (Ziehl–Neelsen staining) 
examinations [40, 41]. Indicative identification was done 
by AccuProbe Test (Hologic, Inc., San Diego, CA, USA) 
method, which covers only M.  avium complex species, 
M. kansasii, and M. gordonae. Unidentified mycobacterial 
species by this AccuProbe Test were examined by PCR with 
reverse hybridization on cellulose strips GenoType Myco-
bacterium CM/AS assays (Hain Lifescience GmbH, Nehren, 
Germany), which covers additional 25 mycobacterial spe-
cies. Species not identified by these hybridization methods 
were determined by sequencing 420 bp long region of the 
16S rRNA gene (Applied Biosystems Genetic Analyzer 
ABI3130 series, Thermo Fisher Scientific, Inc., Waltham, 
MA, USA).

The DNA of mycobacterial isolates was extracted and 
used as template for PCR amplification of the 16srRNA and 
hsp65 genes using the universal bacterial primers 5′CCT 
ACG GGN GGC WGC AG3′ and 5′GAC TAC HVG GGT 
ATC TAA TCC3′ of the V3 and V4 variable regions and 
Mycobacterium hsp65 primers 5′ACC AAC GAT GGT GTG 
TCC AT3′ and 5′CTT GTC GAA CCG CAT ACC CT3′, 
respectively. Identification of mycobacterial species was 
performed by BLAST + (ver. 2.14.0) analysis.

Physical and Chemical Analyses

Water parameters, temperature, pH, dissolve oxygen con-
centration (DOC), oxidation–reduction potential (ORP), and 
electrical conductivity (EC), were measured at the place and 
time of sampling. The temperature and pH were determined 
by measurement device GMH 5530 with GE 117 electrode 
(GHM Messtechnik GmbH, Standorf Greisinger, Germany). 
EC was measured by GMH 5450 equipment with LF 425 
electrode, and DOC was determined by GMH 3630 with 
integrated temperature and pressure measuring. WTW 
inoLab Multi 720 tool with a SenTix 41 electrode (WTW 
Ltd, Prague, CR) was used during ORP measurements.

Chlorides and sulfates were measured by HPLC using 
the Dionex ICS-2000 Ion Chromatography System (ICS-
2000, Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
with IonPac® AS 18 analytical (2 × 250 mm) column. Acid 
neutralization capacity to pH 4.5  (ANC4.5) and alkalinity 
were determined by titration with 0.1 N hydrochloric acid. 
Alkalinity was performed using potentiometric titration 
according to the ISO 9963–1:1994 (Water quality—Deter-
mination of alkalinity—Part 1: Determination of total and 
composite alkalinity). Carbonate  (HCO3

–) concentrations 

were calculated based on the results of  ANC4.5 and alka-
linity. Total nitrogen was measured by chemiluminescence 
using Total Organic Carbon Analyzer and Total Nitrogen 
Measuring Unit (VCPH, Shimadzu Corporation, Japan). 
Individual nitrogen forms (N-NH3 and N-NO3

–) were meas-
ured by continuous flow analysis using the Skalar San Plus 
(Skalar Analytical B.V., Breda, The Netherlands). Calcium, 
magnesium, sodium, potassium, iron, and phosphorus were 
detected by inductively coupled plasma mass spectrometry 
(ICP-MS) using ICP-MS Agilent Technologies 7700 (Agi-
lent Technologies Inc., Colorado Springs, CO, USA).

ISO methods were used to measure pH, EC, total organic 
carbon (TOC), and total inorganic carbon (TIC) in sedi-
ments. EC and pH were measured in water extracts. Water 
sediment aliquots (5 g) were mixed with deionized water 
(1:5; AQUAL 27, AQUAL Ltd, Czech Republic), shaken 
for 30 min and then sedimented for 24 h. The WTW inoLab 
Multi 720 tool with a SenTix 41 electrode (WTW Ltd, 
Prague, Czech Republic) was used for pH measurements 
(ISO 10390:2005—Soil quality—Determination of pH), the 
multimeter WTW Multi 3320 with a TetraCon 325 elec-
trode (ISO 11265:1994—Soil quality—Determination of the 
specific electrical conductivity) for EC measurements. TOC 
and TIC were analyzed in dry mass of sediment (drying at 
60 °C to constant weight) using an Analytik Jena multi N/C 
2100S meter equipped with the module HT 1300 (Analytik 
Jena AG, Jena, Germany) according to the standard method 
(ISO 10694:1995—Soil quality—Determination of organic 
and total carbon after dry combustion; elementary analysis). 
Calcium carbonate and tetrasodium ethylenediaminetetraac-
etate tetrahydrate (EDTA) were used for calibrations. The 
homogenized samples (10 g of dry sample) were weighed 
and incinerated at 1400 °C with the final  CO2 concentra-
tion reported as a peak in direct proportion to total carbon 
(TC). Samples containing carbonates were then acidified 
with hydrochloric acid before being analyzed for TOC, and 
TIC was calculated as the difference between TC and TOC.

Total nitrogen was measured by the Dumas combustion 
method using a DUMATHERM Analyzer (C. Gerhardt 
GmbH & Co. KG, Koenigswinter, Germany).  NO3 and 
N-NH3 were extracted from samples by  K2SO4 and ana-
lyzed by using spectrophotometry (N-NO3, 324 nm; N-NH3, 
655 nm). Microelements (aluminum, arsenic, cadmium, 
calcium, copper, chromium, iron, lead, manganese, nickel, 
phosphorus, potassium, silicon, sulfur, and zinc) were ana-
lyzed by X-ray analysis using XRF Innov-X Systems, Inc. 
Value 0.25 × 1σ was added in the case of value lower than 
the limit of detection (LOD).

Statistical Analysis

Data of physicochemical parameters of water and water sedi-
ments were evaluated using one-way analysis of variance in 
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repeated measurements design (RM ANOVA) with within-
subject factor season (spring and autumn), factor sampling 
site (SS-A, SS-B, and SS-C), and subject sampling villages 
(V1–7). Measurements taken at the same place (same village 
V and same sampling site SS) in different seasons (spring 
and autumn) were considered dependent. RM ANOVA for 
each physicochemical parameter was performed on the 
raw data, then residual analysis was performed, and if the 
residuals significantly violated the assumptions of homo-
geneity and normality, the data were logarithmized (data 
of sulfur were transformed using Cox-Box transformation 
with parameter λ =  − 2.32); subsequently, the RM ANOVA 
was repeated on the transformed data. If the RM ANOVA 
showed a statistically significant effect of the sampling site 
factor, subsequent testing was performed using Tukey’s mul-
tiple comparison test. Based on results of this test, we deter-
mined between which sampling sites there is a statistically 
significant difference.

The alpha-diversity of NTM sp. and ssp. isolated from 
three sampling sites (SS-A, SS-B, and SS-C) samples were 
assessed using the Shannon’s diversity index H [46]. The 
Hutcheson test was used to compare H-indexes according 
to the origin of the samples. The beta-diversity of NTM 
sp., ssp., and complexes isolated from these three sam-
pling site samples (SS-A, SS-B, and SS-C) was assessed 
by paired PERMANOVA (Bray–Curtis dissimilarity, 9999 
permutations).

Fisher’s exact test was performed to determine whether 
there were significant differences in NTM positivity (counts 
of positive/negative NTM detection) between different local-
ity sites.

Data analysis was performed using statistical software 
Statistica 13.2 (StatSoft Inc., Tulsa, OK, USA) and Graph-
Pad Prism 5.04 (GraphPad Software Inc., San Diego, CA, 
USA) and R-project 4.1 (packages vegan and stats; https:// 
www.r- proje ct. org). P-values less than 0.05 were considered 
statistically significant.

Results

Mycobacteria in Water Samples

NTM were rarely recovered from water samples. Only 3 
(7.1%) out of a total of 42 water samples yielded five NTM 
species (from two samples, two different NTM were iso-
lated) belonging to three sp. and one complex: M. terrae 
(1 isolate), M. avium complex (1 isolate), M. fortuitum (2 
isolates), M. septicum (1 isolate), and M. terrae (1 isolate). 
NTM were cultured only from the water samples collected 
in three localities (V5–7) from sampling sites SS-C collected 
within the village and downstream of the WWTP’s outflows 
(Table 1).

Mycobacteria in Sediment Samples

Compared to the water samples, sediment samples yielded 
more NTM; specifically, 48.8% of the 41 water sediments 
yielded NTM. There were no statistically significant dif-
ferences in NTM yields between different sampling sites: 
50.0% upstream (SS-A), 42.9% inside the village and 
upstream to the outflow of the WWTPs (SS-B), and 53.6% 
downstream of the village’s WWTP’s outflows (SS-C). A 
total of 28 NTM isolates representing different species, 
subspecies, or complexes were identified. M. fortuitum (8 
isolates) and M. avium ssp. hominissuis (8 isolates) were 
the most frequently detected NTM found in all sampling 
sites. A total of 17 isolates were identified only to genus 
level by PCR method; further identification by sequencing 
due to indolent contamination by another microbiota was 
not possible (Table 1).

Mycobacteria Species Diversity in Water 
and Sediment Samples

The NTM species diversity was significantly lower (p < 0.01; 
Hutcheson test for Shannon’s H index) in samples collected 
upstream of the villages (SS-A) with the detection of only 
five NTM species and subspecies (7 isolates): M. avium 
ssp. hominissuis (2 isolates), M. intracellulare (1 isolate), 
M. flavescens (1 isolate), M.  fortuitum (2 isolates), and 
M. psychrotolerans (1 isolate) compared to sampling sites 
within the villages to the WWTPs (SS-B; 15 NTM sp. and 
ssp., 19 isolates) and sampling sites within the village, and 
downstream of the WWTP’s outflows (SS-C; 19 NTM sp. 
and ssp., 29 isolates). The NTM positivity was significantly 
higher in sampling sites within the village and downstream 
of the WWTP’s outflows in comparison to upstream of the 
villages (Fisher’s exact test, p < 0.001). NTM positivity did 
not differ with the village and downstream of the WWTP’s 
outflows. Six NTM species were widely distributed through-
out the streams; namely, M. avium ssp. hominissuis, M. chlo-
rophenolicum, M. fortuitum, M. peregrinum, M. septicum, 
and M. triviale. They were isolated from samples collected 
from different sites in the same village: the numbers of iso-
lates (gray color) showing these sp. and ssp. isolates from 
other sampling sites in the same village. The studies reported 
here agree with prior studies of NTM prevalence and species 
diversity. Specifically, in the Moravian Karst region studied 
here, two previous studies reported NTM species in Bull 
Rock Cave (Býčí skála) and Amaterská Cave System [47, 
48].

Water Physiochemical Characteristics

Field measurements showed lower water sample oxy-
gen concentrations (p < 0.01; ANOVA F-test) and higher 

https://www.r-project.org
https://www.r-project.org
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conductivity (p < 0.05; ANOVA F-test) and temperature 
(p < 0.01; ANOVA F-test) within the village and down-
stream of the WWTP’s outflows (SS-C) compared to the 
water in the village upstream of the WWTPs in SS-B. All 
these parameters measured in field also statistically differed 
(p < 0.01; ANOVA F-test) depending on season (Table 2).

Significantly higher (p < 0.05; Tukey’s test) concentra-
tions of total nitrogen were downstream of the WWTP’s 
outflows (SS-C) compared to upstream (SS-B). Higher 
ammonia (p < 0.05; Tukey’s test), potassium (p < 0.05; Tuk-
ey’s test), phosphorus (p < 0.05; Tukey’s test), and sodium 
(p < 0.05; Tukey’s test) concentrations were found in water 
under the village, downstream of the WWTP’s outflows (SS-
C) compared to the other two sampling sites upstream of 
the villages (SS-A) and in the village down to WWTPs (SS-
B). Higher chlorides concentration (p < 0.05; Tukey’s test) 
was in SS-C compared to SS-A. No differences (p > 0.05; 
ANOVA F-test) were found between all three sampling 
sites (SS-A, SS-B, and SS-C) in the rest of physicochemical 

parameters of water. The results of two physicochemical 
parameters of water measured in laboratory (ANC4.5 and 
sulfates) differed depending on season (p < 0.05; ANOVA 
F-test) (Table 2).

Sediment Physiochemical Characteristics

Sediments showed statistically significantly higher pH 
(p < 0.05; Tukey’s test) in the village samples up to WWTPs 
(SS-B) compared to samples collected within the village, 
downstream of the WWTP’s outflows (SS-C), and upstream 
(SS-A). Concentrations of calcium, copper, phosphorus, and 
zinc in sediments collected within the village and down-
stream of the WWTP’s outflows (SS-C) were significantly 
higher (p < 0.05; Tukey’s test) than other sampling sites 
SS-A and SS-B (Table 3).

Lower (p < 0.05; Tukey’s test) silicon concentrations 
were found in the water sediments in SS-B and SS-C com-
pared to sampling site upstream the villages (SS-A). Zn 

Table 1  Isolated nontuberculous mycobacteria from 42 water (two repeated collections) and 84 sediment samples (four repeated collections) col-
lected in 7 villages (V1–7) from three sampling sites A, B, and C

Risk Ge- Species, Subspecies, and No. of All Seven Villages V1 V2 V3 V4 V5 V6 V7
Group nus Complexes from One CFU Isolates A B C A B C A B C A B C A B C A B C A B C A B C

M. arcueilense 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M. chlorophenolicum 2 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M. chubuense *WS 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M. duvalii 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M. gilvum *WS 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

M. gordonae *F 4 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2
1 M. hassiacum 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

M. insubricum *WS, F, B, C 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

M. kumamotonense **CS 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M. montmartrense 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M. psychrotolerans 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

M. rhodesiae *B 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

M. terrae *WS, F, B, C 2 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1W 0 0 0 0 0 0

M. triviale 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
Subtotal No. of isolates 22 1 8 13 0 0 0 0 1 2 0 0 0 0 1 0 0 2 1 1 1 2 0 3 8
M. arupense *WS 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

M. avium complex 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1W 0 0 1 0 0 0

M. avium ssp. hominissuis *WS, B, F 8 2 3 3 0 0 0 0 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

M. flavescens *WS 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

M. fortuitum *WS, F, B, C 8 2 3 3 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1W 0 1 1W

M. intracellulare 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M. monacense **CS 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

2 M. mucogenicum 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

M. parascrofulaceum *WS, F, B 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

M. peregrinum *F, C 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
M. porcinum *F, B 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M. septicum 3 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1W

M. smegmatis 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
M. xenopi *B, C 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Subtotal No. of isolates 33 6 11 16 0 0 0 1 2 3 2 1 2 3 1 0 0 1 2 0 3 4 0 3 5
1+2 Species, Subspecies, and Complexes *** 28 5 15 19 0 0 0 1 2 4 2 1 2 3 2 0 0 3 3 1 4 6 0 6 11
NK M. species 17 9 3 5 2 0 1 1 1 1 1 0 1 1 1 1 0 1 0 2 0 0 2 0 1

Total No. of isolates 72 16 22 34 2 0 1 2 4 6 3 1 3 4 3 1 0 4 3 3 4 6 2 6 14

M. = Mycobacterium; Risk Group 1 of Agents (low individual and community risk) = includes those microorganisms, bacteria, fungi, viruses, 
and parasites, which are unlikely to cause disease in healthy workers or animals); Risk Group 2 of Agents (moderate individual risk, limited 
community risk) = includes pathogens that can cause human or animal disease but under normal circumstances, is unlikely to be a serious haz-
ard to healthy laboratory workers, the community, livestock, or the environment according to the European Union Directive 2000/54/EC (Risk 
Groups are taken from LPSN https:// lpsn. dsmz. de/) [68]; CFU = colony forming unit; V1–7 = villages 1–7 (V1 = Žďár, water stream: Žďárský 
potok; V2 = Vysočany, water stream: Bělička; V3 = Niva, water stream: Bílá voda; V4 = Ostrov u Macochy, water stream: Lopač; V5 = Kotvrdo-
vice, water stream: Kotvrdovický potok; V6 = Podomí, water stream: Podomský potok; V7 = Březina, water stream: Ochozský potok), A, B, and 
C = sampling sites: A = upstream (300–1500 m) the village, B = inside the village (100–300 m) up to wastewater treatment plants (WWTPs), and 
C = downstream the outflow of WWTPs (10–30 m downstream of the WWTP’s outflow); W water samples were positive only; NK = not known; 
*found in Bull Rock Cave (Býčí skála) located in Moravian Karst (Moravský kras) in previous study by Modra et al. [47]: WS = water sediments 
and/or alluvial material, F = bats and/or earthworms in the cave, B = inside the village up to WWTPs in Rudice and Jedovnice, C = downstream 
the outflow of WWTPs in Rudice and Jedovnice, **found in Amaterská Cave System located in Moravian Karst in previous study by Modra 
et al. [70]: CS = cave sediment contaminated by dripping water; numbers of isolates in gray color are showing the species or subspecies isolation 
from different sampling sites in the same village by Pavlik et al. [48]; ***identified NTM isolates into the species, subspecies, and complexes.

https://lpsn.dsmz.de/
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concentrations in SS-B and SS-C were statistically higher 
(p < 0.05; Tukey’s test) than its concentration upstream the 
villages (SS-A). No statistically significant differences were 
recorded in the rest of chemical parameters in water sedi-
ments collected in all sampling sites. The physicochemical 
characteristics of sediments were not dependent on season 
except for copper (Table 3).

Discussion

Water as Transport Medium of Mycobacteria

The relatively low frequency of NTM in water samples 
(7.1%) compared to sediments (48.8%) suggests that particu-
late associated NTM cells are the major sources of patho-
genic NTM. These data are in accordance with previously 
published studies [8, 50–53]. Drinking water reservoirs with 
biofilms and sediments, therefore, represent a significant 
source of NTM [54–56]. The range of sample types did not 
allow us to determine the individual contributions of NTM 
isolates in samples collected in villages or downstream of 
villages and WWTPs. Both village surface water runoff and 
sewage plant effluents will enter the streams and contribute 
to both numbers and diversity of NTM.

The chlorine and disinfectant resistance of members of 
the genus Mycobacterium [57] permit survival and prolif-
eration of NTM in drinking water distribution systems [58]. 
Biofilms in any water system, whether in nature or engi-
neered systems, are the primary habitats of NTM [7, 59]. 
Most of the NTM detected in sediments were cultured from 
samples collected inside the village (n = 22; SS-B) or down-
stream of the WWTP’s outflows (n = 29; SS-C) sediments 
in the contrast to the samples collected upstream the village 
(n = 16; SS-A; Table 1). The source of these NTM could be 
explained by reported NTM abundance in drinking water 
and household plumbing systems [7, 11, 59, 60].

E.g., in the Hawaiian Islands, NTM detection from home 
plumbing systems was significantly higher than NTM detec-
tion from outdoor environmental water biofilms [7]. In other 
studies, they also found that biofilms in drinking water pipes 
are also richly colonized by various NTM species [59, 60].

Villages Affected NTM Species Diversity

Both surface runoff and sewage plant outflows associated 
with villages had a positive effect on NTM species diver-
sity. Possibly, the introduction of water from those sources 
plays an important role in NTM spreading in surface water 
environment, as it was published previously [63]. This was 
found in our study also. Significantly higher (p < 0.05 at least 
PERMANOVA) numbers of NTM species and subspecies 
in water sediments in the villages up to WWTPs (SS-B) and Ta
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under the village, downstream of the WWTP’s outflows (SS-
C) in comparison with sampling sites above village, were 
detected (SS-A; Table 1). Higher NTM sp. and ssp. diversity 
in these ecological niches (SS-B and SS-C) could also be 
related with higher temperature caused by wastewater from 
households (mentioned above) and WWTPs [64–67].

Although we did not focus our study on WWTP’s tech-
nologies, we have found that wastewater (sampling sites 
SS-B and SS-C) had affected NTM diversity, which was the 
same in these both polluted sampling sites but was statis-
tically significantly lower in non-polluted water sediments 
upstream of the villages (SS-A; Table 1). Considering the 
proposed use of treated wastewater (i.e., reuse water), the 
findings here of NTM in WWTP’s effluents need to be taken 
into consideration. Recycling wastewater for human, animal, 
or agricultural production might relate to the increase of 
NTM due to their ability to survive disinfection [57].

Prevalence of Mycobacteria and Human Health Risk: 
Risk Group 1 of Biological Agents

The largest number of 99 (51.0%) sp. and ssp. is present in 
the Risk Group 1 of biological agents (that are unlikely to 
cause human disease); they are rarely associated with dis-
ease. In clinical laboratories, these mycobacterial species 
are isolated from clinical samples (sputum, tissue, urine, 
etc.) without clinical relevance [69]. A similar situation was 
documented in the Czech Republic [41]. In our study, we 
isolated 14 sp. and ssp. from this Risk Group 1 (Table 1).

The spectrum of NTM spp. varies widely depending upon 
the source of the environmental samples in different loca-
tions in the Czech Republic and the material sampled: bat 
guano, earthworm feces, woody material, soil, etc. Of the 
14 NTM sp. mentioned above in this study, only 6 sp. were 
demonstrated in other localities: M. duvalii, M. gordonae, 
M. hassiacum, M. kumamotonense, M. terrae, and M. triv-
iale [41]. The remaining 8 sp. (M. arcueilense, M. chlo-
rophenolicum, M. chubuense, M. gilvum, M. insubricum, 
M. montmartrense, M. psychrotolerans, and M. rhodesiae) 
were found only in this karstic watershed (Table 1). In the 
previous study in the Moravian Karst, four of these NTM 
were already proven; in the Bull Rock Cave, M. chubuense, 
M. gilvum, M. insubricum, and M. rhodesiae were detected 
[47]. The last four NTM (M. arcueilense, M. chlorophenoli-
cum, M. montmartrense, and M. psychrotolerans) were iso-
lated in this watershed for the first time (Table 1) [47, 70].

In Hranice Karst (Czech Republic; CR), 80 km from 
the Moravian Karst, eight NTM sp. and one complex were 
cultured. M. arupense, M. avium, M. florentinum, M. gor-
donae, M. intracellulare, M. mucogenicum, M. sediminis, 
and M. avium complexes were isolated from sediments in 
Hranice Abyss and Zbrašov Aragonite Caves [68]. Except of 
M. florentinum and M. sediminis, all other six NTM sp. were 

detected in the current study in Moravian Karst (Table 1); 
these two species remain unique in Hranice Karst [48].

The exact geochemical parameters and conditions for col-
onizing of these substrates by environmental NTM are not 
yet known and explained in the published literature. There-
fore, it is necessary to consider that people who live in this 
environment are exposed also to NTM species and subspe-
cies which are clinically irrelevant (esp. NTM included in 
Risk Group 2) [4, 71].

Risk Group 2 of Biological Agents

We detected 14 sp., ssp., and complexes included in the Risk 
Group 2 of biological agents (Table 1), which can cause 
human disease (it is unlikely to spread to the community, 
and there is usually effective prophylaxis or treatment avail-
able) [71]. In this Risk Group 2, there are 87 (44.9%) out of 
195 validated sp. and ssp.

In the Czech Republic, between the years 2003 and 2018, 
a total of 79% mycobacterioses were caused in children by 
M. avium (included in these statistics were M. avium and 
M. intracellulare) [72]. In adult patients with mycobacteri-
osis, members of the M. avium–intracellulare complex were 
among the most common causative agents of infection [73]. 
Our preliminary data shows these infections were caused 
especially by M. avium ssp. hominissuis (unpublished data). 
Not surprisingly, in this study, M. avium ssp. hominissuis 
was cultured from water sediments from all three different 
types of samples collected in our study (Table 1). Due to 
this fact, water sediments could represent an infection risk 
for susceptible children and adults.

Risk Group 3 of Biological Agents

We did not detect any of the members of Risk Group 3 
mycobacteria they are obligate pathogens and only tran-
siently isolated from the environment (Table 1).

Impact of Villages on Water Pollution in Area of Our 
Interest (Moravian Karst)

In a just published study about Moravian Karst, our area of 
interest, the impact of villages on pollution by allogeneic 
was analyzed and confirmed [27]. We have found a similar 
effect of settlements in the same villages and watersheds of 
streams (Tables 2 and 3; Figs. 1 and 2).

Higher phosphorus concentration in wastewater connected 
with villages could be beneficial for NTM growth as is in 
accordance with the results of the study published previously 
[74] where Mycobacterium spp. genes in reclaimed systems 
positively correlated with phosphorus. These findings sug-
gest that phosphorous could be a growth- or survival-limiting 
nutrient for NTM. The phosphorus concentration was only 
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one parameter statistically significantly increased in samples 
originating from sampling sites collected within the villages, 
downstream of the WWTPs outflows (SS-C). It is important 
to note that in our study, the spectrum of elements analyzed 
in water was lower than the spectrum of elements in sedi-
ments (Tables 2 and 3). However, nitrogen concentrations 
and its forms (ammonia and nitrates) did not correlate in 
water and water sediments (Table 3).

The predominance of NTM in drinking water distribution 
systems [75] also depends on “water age” (esp. long-time 
standing water in pipes or water reservoirs) and sufficient 
residual monochloramine in various sections of the potable 
water systems [59].

Only 6 (21.4%) of 28 detected NTM complex and sp. in 
sediments in our study (MAC, M. gordonae, M. arupense, 
M. fortuitum, M. peregrinum, and M. septicum) matched the 
12 NTM sp. detected in ponds and water reservoirs sedi-
ments in the Czech Republic [51]. The correlations between 
the occurrence of NTM and environmental, climatic, water, 
and water sediment characteristics have been described [76, 
77]. The critical factor increasing the occurrence of NTM 
in water and aerobic water sediments was acidification. This 
parameter did not affect NTM positivity in water sediments 
in our study because of a very narrow range of all pH values 
(5.83–6.96) among the studied types of sampling locations. 
However, pH values of sediments in both sites in investi-
gated areas (SS-B and SS-C) were statistically significantly 
higher compared to upstream of the sampling sites, where 
there were no differences in NTM positivity. While nutri-
ents and organic carbon concentrations have been frequently 
reported to influence microbial communities, we did not 
confirm higher nitrogen or carbon concentration in villages’ 
area sediments (SS-B and SS-C) as NTM nutrient factors.

Tourists often consider brooks, rivers, and adjacent areas 
as attractive recreational places. According to our findings, 
these water streams could represent a similar risk to urban 
recreational water [78]. The risk of infection is also posed 
by situations after extreme events (e.g., Hurricanes Harvey 
and Irma in 2017 in the USA), during which local flooding 
occurs. During them, various pathogenic bacteria, including 
representatives of the Mycobacterium genus belonging to 
the Risk Groups 1 and 2, are washed away and spread in the 
environment [79].

A higher population per square mile, proportion of area 
as surface water, evapotranspiration, and copper and sodium 
soil levels were described that significantly increase the risk 
for pulmonary disease caused by NTM in the USA [80]. Our 
study showed the presence of PPM (M. avium spp. hominis-
suis, MAC, M. chelonae, M. fortuitum, M. intracellulare, 
and M. monacense) in all types studied sampling sites, 
although their diversity was higher in sediments near vil-
lages (SS-B and SS-C). M. fortuitum and other NTM often 

be detected in wastewater and surface water in urbanized and 
suburbanized environments [56, 79, 91–84, 92–85].

Humane doctors are often asked by sick patients and par-
ents of child patients with mycobacteriosis, what are the 
risks of their possible reinfection. Very often, various com-
ponents of the environment are cited as sources of clinically 
relevant NTM [2, 11], including drinking water [9], water 
used for personal hygiene in heavy industry and collieries 
[40], water used for recreation [8, 13, 14], soil [3], indoor 
environment [7], and other environmental components. The 
results of this study point to the fact that even the immediate 
surroundings of the water stream in villages and below the 
villages can also be risky for these adult and child patients, 
including some other predisposed persons. From an eco-
logical point of view, it can be considered a significant fact 
that the water environment in and below municipalities can 
be a source of many types of NMT and water is their vector.
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