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immune function (e.g., [1]). Such effects of diet are often 
mediated by the gut microbiome, which can modulate host 
immunity, digestion, and metabolism [2]. Diet can influ-
ence gut microbial communities (“microbiota” hereafter) 
by introducing foodborne microbes and/or nutrients that 
alter dynamics of the existing community [3]. Thus, diet can 
influence host health directly and through its effects on the 
gut microbiome.

Bees are critical pollinators, and many populations have 
shown recent declines [4]. Reduced floral diversity has 
been implicated in those declines [5], yet the mechanisms 
behind this trend remain poorly understood for most taxa. 
Studies on bee nutrition, immunity, and the gut microbiota 
have mostly focused on the social and commonly managed 
taxa, such as honey bees and bumble bees (reviewed in [6]). 
However, the vast majority of bee species (~ 80%), includ-
ing many important wild bee pollinators, are solitary [7].

Previous studies have found varying effects of diet diver-
sity on bee growth, development, and immune function. 

Introduction

Reduced diet diversity due to landscape simplification can 
negatively impact wildlife populations by limiting nutrient 
availability and increasing foraging time. Low-diversity 
diets lacking protein and other nutrients can impair ani-
mal performance, particularly by weakening strength and 
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Abstract
Pollinators face many stressors, including reduced floral diversity. A low-diversity diet can impair organisms’ ability to 
cope with additional stressors, such as pathogens, by altering the gut microbiome and/or immune function, but these 
effects are understudied for most pollinators. We investigated the impact of pollen diet diversity on two ecologically and 
economically important generalist pollinators, the social bumble bee (Bombus impatiens) and the solitary alfalfa leafcutter 
bee (Megachile rotundata). We experimentally tested the effect of one-, two-, or three-species pollen diets on gut bacte-
rial communities in both species, and the melanization immune response in B. impatiens. Pollen diets included dandelion 
(Taraxacum officinale), staghorn sumac (Rhus typhina), and hawthorn (Crataegus sp.) alone, each pair-wise combination, 
or a mix of all three species. We fed bees their diet for 7 days and then dissected out guts and sequenced 16S rRNA 
gene amplicons to characterize gut bacterial communities. To assess melanization in B. impatiens, we inserted microfila-
ment implants into the bee abdomen and measured melanin deposition on the implant. We found that pollen diet did not 
influence gut bacterial communities in M. rotundata. In B. impatiens, pollen diet composition, but not diversity, affected 
gut bacterial richness in older, but not newly-emerged bees. Pollen diet did not affect the melanization response in B. 
impatiens. Our results suggest that even a monofloral, low-quality pollen diet such as dandelion can support diverse gut 
bacterial communities in captive-reared adults of these bee species. These findings shed light on the effects of reduced 
diet diversity on bee health.

Keywords Pollinator · Immunity · Gut microbiome · Diet diversity · Bombus impatiens · Megachile rotundata

Received: 15 August 2023 / Accepted: 23 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Pollen Diet Diversity does not Affect Gut Bacterial Communities or 
Melanization in a Social and Solitary Bee Species

Alison E. Fowler1,2  · Quinn S. McFrederick3  · Lynn S. Adler1

1 3

http://orcid.org/0000-0002-9263-2253
http://orcid.org/0000-0003-0740-6954
http://orcid.org/0000-0003-2125-5582
http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-023-02323-6&domain=pdf&date_stamp=2023-12-30


A. E. Fowler et al.

For example, bumble bees produced smaller and fewer off-
spring when fed a low-protein pollen (Cistus sp.) compared 
to those fed a mixed pollen diet [8]. In the field, Andrena 
bees in more diverse, natural landscapes were larger than 
those in homogenous agricultural landscapes [9] and Osmia 
nests with more diverse pollen provisions produced more 
female offspring [10]. Diet can also affect bee immunity. 
For example, bumble bees fed a sunflower pollen-only diet 
had different immune gene expression profiles compared to 
bees fed a polyfloral diet [11]. These studies demonstrate 
links between diet diversity, longevity, and pathogen resis-
tance in a limited number of bee species, but the mechanis-
tic links between diet diversity and bee health remain poorly 
understood.

Diet can influence the bee gut microbiota, but this has 
only been investigated in a few studies using social bees 
[12–14]; dietary effects on solitary bee gut microbes have 
not been assessed. Social behavior strongly influences 
routes of acquisition of gut microbes in bees and other 
animals. Thus, the gut microbiota in the highly social, cor-
biculate bee species is made up of a relatively small and 
consistent group of coevolved taxa [15] that contribute to 
individual digestion, growth, immune modulation, and 
detoxification (e.g., [16]). Solitary bees, however, typically 
host more diverse gut microbes. While some solitary bees 
host a core group of bacteria [17], which can overlap with 
social bees [18]), their microbes are primarily acquired from 
the environment rather than within-nest social contact [19]. 
The functions of solitary bee microbiota are also less under-
stood, although microbes on pollen provisions are impor-
tant for larval development [20]. Due to their different gut 
microbiota, bees that differ in sociality may respond differ-
ently to changes in diet breadth, such that studies on social 
bees may not translate to solitary bees.

We tested the effect of one-, two-, and three-species pol-
len diets on immunity and the gut microbiota of the social 

common eastern bumble bee, Bombus impatiens, and the 
gut microbiota of the solitary alfalfa leafcutter bee, Mega-
chile rotundata. We used sterilized pollen to test solely 
the effects of pollen nutrient input on the existing micro-
bial community, rather than evaluating pollen as a source 
of novel microbial diversity. We predicted that higher diet 
diversity would result in higher gut microbial diversity and 
a stronger immune response. Further, we predicted that the 
gut microbiota of M. rotundata would reflect changes in 
diet more than B. impatiens due to B. impatiens’ coevolu-
tion with a core group of bacterial taxa. Lastly, we predicted 
that dandelion pollen would result in a microbiota rich in 
Lactobacillaceae, since these bacteria have been associated 
with Asteraceae pollen in bumble bee pollen baskets [21] 
and Megachile nests [22]. Understanding the mechanisms 
by which diet diversity affects both social and solitary wild 
bees is critical for supporting their populations, particu-
larly in agricultural settings where crop monocultures are 
common.

Methods

Overview

We tested the effect of pollen diet diversity on gut bacte-
rial communities in Bombus impatiens and Megachile 
rotundata, and on the melanization immune response in 
B. impatiens (Fig. 1). For all experiments, we placed bees 
in individual containers with assigned pollen diets (steril-
ized) and 30% sucrose solution (not sterilized). Sucrose was 
accessible to the bee through a cotton wick. We replaced 
sucrose and pollen every other day and measured consump-
tion over a 48-hr period. After 7 d, we anesthetized bees on 
ice and froze them at -80 °C for later processing. We col-
lected the right forewing and measured marginal cell length 

Fig. 1 Experimental design 
diagram. We tested the effect of 
pollen diet on the gut microbiome 
in B. impatiens and M. rotundata 
(top portion) and the effect of 
pollen diet on the melanization 
response in B. impatiens (bottom 
portion)
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as a proxy for bee size. Additional details for all methods 
can be found in the supplement.

Pollen Diets

We used pollen from dandelion (Taraxacum officinale, 
Asteraceae), staghorn sumac (Rhus typhina, Anacardia-
ceae), and hawthorn (Crataegus sp., Rosaceae). Pollens 
were honey-bee collected from Quebec, Canada and con-
firmed to be > 95% one species by microscopic assessment 
of morphology (using fuchsin dyed glycerin jelly). We chose 
these species in part because they are abundant bee-collected 
resources in an area where B. impatiens is common, and in 
part because we could obtain a sufficient quantity from these 
species of single-species pollen for feeding trials. These 
pollens differ in nutritional content (see Supplement for 
references), and Taraxacum pollen may have chemical or 
mechanical defenses that reduce performance in B. terres-
tris [23]. Pollens were sterilized by ethylene oxide (USDA, 
Logan, Utah [24]; see Supplement for protocol), ground by 
mortar and pestle, and sorted into seven treatments: each 
species alone (three 1-species treatments), each pair-wise 
combination (three 2-species treatments), and one combina-
tion of all three species. We made multifloral treatments by 
combining the pollen species in equal parts by weight and 
then mixed each treatment with deionized water to make a 
paste (see Table S2 for pollen:water ratios). We measured 
pollen and sucrose consumption per bee in the first 48 h by 
weighing before and after delivery.

Bombus impatiens Gut Microbiota

We used Bombus impatiens (Apidae) workers derived from 
wild-caught queens collected in Amherst, Massachusetts 
in spring of 2021. Bombus impatiens are generalist forag-
ers, and workers consume pollen in addition to foraging for 
pollen for the colony (personal observations). We reared 
queens in the laboratory until colonies were large enough to 
remove workers without affecting colony survival. Colonies 
were fed non-sterilized, honey bee-collected wildflower mix 
pollen (Koppert Biological Systems, Howell, Michigan). 
All queens were screened for Crithidia sp. infections via 
microscopy of feces, and only uninfected queens were used.

We used 90 workers from six colonies, of which 56 
were newly emerged, also known as callows (identified by 
silver body hair, which turns black after about 1 day post-
eclosion). We placed callows in individual vials for 2 h, and 
hand-inoculated them with 10–15 µL of pooled feces from 
five nestmates mixed with 50% sucrose. Similar inocula-
tion protocols result in microbiomes indistinguishable from 
those of mature, in-colony workers [25, 26]. We initially 
only used callows to control for worker age and starting 

microbiome. However, callows were reluctant to consume 
fecal inoculum, and we switched to non-callow adults 
for the last 34 bumble bees. The non-callows were taken 
straight from their colony and did not receive fecal inocu-
lum; we presume they were inoculated with nestmate feces 
prior to removal (bumble bees’ gut microbiomes stabilize 
within 4 days of eclosion; [27]). We included age (callow/
non-callow) in analyses. Bees were housed in 16-oz deli 
cups in darkness with access to 30% sucrose and their pol-
len diet. Bumble bees were placed in the experiment on ten 
start dates between August 11–26, 2021. Five bees died, 
resulting in 85 samples (Table S1).

Megachile rotundata Gut Microbiota

We used commercial Megachile rotundata (Megachilidae; 
masonbeesforsale.com, Deweyville, Utah). Bees arrived 
as pupae, which we kept at 7 °C until use. We then placed 
pupae in darkness inside a mesh cage at 27 °C until indi-
viduals emerged (based on methods from [28]. Megachile 
rotundata is a solitary bee that nests in cavities and lines 
brood cells with leaves. Females provision cells for a single 
egg, then seal the cell and provide no additional care to the 
developing larva. Megachile rotundata are highly valued 
and managed in North America for alfalfa pollination, but 
they are also generalist foragers [29].

To ensure that the leafcutter bees were exposed to bacte-
rial cells for an initial microbiome, we created an ecolog-
ically-relevant microbial inoculum using deionized water 
sonicated with flowers collected from Amherst, Massachu-
setts on the first trial date and frozen at -80 °C in a glyc-
erol solution. The flower species included Solidago sp. 
(Asteraceae), Cosmos sp. (Asteraceae), Impatiens capensis 
(Balsaminaceae), Lobelia siphilitica. (Campanulaceae), 
Trifolium repens (Fabaceae), Pycnanthemum virginianum 
(Lamiaceae), Satureja hortensis (Lamiaceae), and Allium 
tuberosum (Amaryllidaceae). We prepared inoculum for 
each trial by mixing 1:1 flower water and 50% sucrose (see 
Supplement for additional details). While we are unaware 
of previous studies that have used such a floral inoculum, 
the concept is similar to inoculating individual Bombus 
with feces from nestmates (as in [25, 26]); our goal here 
was to simulate exposure to a floral microbiome that M. 
rotundata might encounter from flowers. We placed the 
bees in their individual containers (60 mm diameter petri 
dish; with drilled holes) and pipetted 10 µL of the flower 
inoculum directly onto a cotton wick, which was placed in 
a 30% sucrose solution. We entered 74 bees in the experi-
ment on September 14, 15 and 16, 2021. Four bees died and 
two samples could not be PCR amplified, resulting in 68 
samples (Table S1).
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To investigate alpha diversity, we modeled the number 
of ASVs (“ASV richness” hereafter) and Shannon index by 
diet treatment (both composition and diversity in separate 
models). For B. impatiens, full models included age (cal-
low/non-callow) and bee size (estimated by wing marginal 
cell length) as additional fixed effects and start date and 
colony as random effects. For M. rotundata, full models 
included bee size as an additional fixed effect, and start 
date and PCR plate ID as random effects. All final models 
(except those with host as a predictor) retained diet treat-
ment as a fixed effect since it was our variable of interest. 
To analyze pollen consumption, we used a similar approach, 
using a linear model with a normal distribution (lme4 pack-
age) [39] and analyzed survival using the coxme function 
(coxme package [40]), survfit, and Surv functions (survival 
package [41]). For pollen consumption and survival mod-
els, we used pollen diet composition (not diversity) as the 
treatment predictor. We ran full linear mixed models (lme4 
package) [42] and then used Akaike information criterion 
(AIC) for model selection [43]. We report results from the 
best-fitting models in the tables. We tested the significance 
of terms using likelihood ratio χ2 tests. We validated models 
using the simulateResiduals function [44] and produced fig-
ures with emmeans [39] and ggplot [45].

To investigate beta diversity, we calculated Bray-Curtis 
distance matrices (results using unweighted UniFrac, and 
weighted UniFrac were generally similar and are reported 
in Supplement Tables S4, S5). We then analyzed three com-
munity metrics: (1) community dispersion among treatment 
groups using the betadisper function, (2) overall commu-
nity composition between treatment groups using the adonis 
function, and (3) similarity percentages to identify taxa 
that contributed most to the dissimilarity between groups 
using the simper function. Betadisper models are limited to 
one predictor variable at a time, therefore we ran disper-
sion models for each predictor. For the B. impatiens adonis 
models, we included diet composition, age, and colony as 
predictors. We did not include start date as a block since it 
was confounded with age. For M. rotundata, we included 
diet as a predictor and start date as a block. We visualized 
beta diversity using Principal Coordinates Analysis (PCoA) 
ordinations.

Bombus impatiens Melanization

Experimental Design

We measured melanization of an implant in the bee abdo-
men, a commonly used method for estimating immune func-
tion in bumble bees (e.g., [46]). We used 135 B. impatiens 
workers from three commercial colonies (Koppert Bio-
logical Systems, Howell, Michigan), reared in the lab. We 

Microbiome Processing and Analysis

Sample Processing and Sequencing

We stored each bee at -80 °C until gut dissection and DNA 
extraction. We dissected out the gut of each bee under sterile 
conditions and placed each (excluding the crop and rectum) 
into a tissue collection plate (Qiagen, Germantown, Mary-
land). We included four blank extractions as no-template 
controls in all downstream procedures and analyses. To 
characterize bacterial communities, we prepared amplicon 
libraries using the 799 F (CMGGATTAGATACCCKGG) 
and 1115R (AGGGTTGCGCTCGTTG) 16S rRNA gene 
primers (e.g., [30]). The Genomics Core at the University 
of California, Riverside checked DNA quality and concen-
tration using the 2100 Bioanalyzer (Agilent, Santa Clara, 
California) and then sequenced the libraries in a single run 
on the MiSeq (Illumina, San Diego, California) using the 
V3 2 × 300 reagent kit.

Bioinformatics

We used QIIME2 to process the Illumina fastq files [31]. We 
removed the barcodes and concatenated them into a sepa-
rate file to be compatible with QIIME2, and then demul-
tiplexed the sequences. To trim low quality sequences and 
bin reads into amplicon sequence variants (ASVs), we ran 
DADA2 with default parameters and read trimming of 253 
bases for forward reads and 211 bases for reverse reads [32]. 
We assigned taxonomy to genus level by using the QIIME2 
sklearn classifier trained to the 799 to 1115 region of the 
SILVA 16S rRNA gene database [33, 34]. We additionally 
used the NCBI database to conduct local BLAST searches 
for ASVs that required further classification. We used R ver-
sion 4.2.1 for decontamination and QIIME2 for final filter-
ing, including the removal of singletons [35]. We identified 
contaminants using the “prevalence” method in the decon-
tam package [36], with a conservative threshold of 0.5, 
which identifies ASVs that were more prevalent in negative 
controls than in samples. We then filtered out the 22 identi-
fied contaminants as well as mitochondria and chloroplast 
ASVs. We rarefied to 8000 reads per sample.

Statistics

To assess community diversity, we used the vegan [37] 
and phyloseq packages [38] in R [31]. We first ran models 
to assess community metrics in response to host bee spe-
cies. After finding significant effects of host species (see 
Results), we analyzed effects of diet within each host. Mod-
els for each species included diet composition (7 levels) or 
diet diversity (3 levels; 1-, 2- or 3-species), but not both.
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to drive dissimilarities between hosts, based on the simper 
function, were Neokomagataea, Rosenbergiella, Pantoea, 
and ASVs that matched to genera within the Enterobacteria-
ceae, which were prominent in M. rotundata guts, while B. 
impatiens harbored more Candidatus Schmidhempelia and 
Snodgrassella, which are common members of their core 
microbiota.

Bombus impatiens Gut Microbiome

Bumble bee guts contained previously-documented core mem-
bers, including Snodgrassella, Bifidobacterium, Lactobacillus, 
and Candidatus Schmidhempelia (Fig. 3A). However, they 
were missing a commonly dominant member, Gilliamella [15]. 
Communities also included other genera previously associated 
with bees and flowers, Acinetobacter, Asaia, Pantoea [19], 
Neokomagataea [49]) and soil bacteria (ASVs in Enterobac-
teriaceae, multiple of which shared 100% sequence identity to 
Citrobacter, Enterobacter, and Pantoea species).

For B. impatiens, top models and results are reported in 
Table 2. We found a significant diet composition by age inter-
action on ASV richness (Fig. 2D), and subsequently assessed 
effect of diet within callows and non-callows using the joint_
tests function. Diet composition affected ASV richness in non-
callows, but not callows; non-callows fed the sumac + hawthorn 
diet had particularly low ASV richness, with an average of 16.2 
ASVs (all pairwise comparisons were non-significant except 
dandelion; z = -3.05, P = 0.035). When diets were combined 
by levels of diversity, we found no significant effects of diet 
diversity, bee size, or the diet by age interaction on ASV rich-
ness (Fig. 2E). Diet (whether composition or diversity) did not 
affect Shannon diversity.

Beta diversity was significantly affected by colony, but not 
diet (composition or diversity), or age (Table S4, Figure S3). 
Community composition was affected by colony, but not diet 
composition (Fig. 3A), diversity, or age (Figure S3). One bacte-
rial genus, Bombella, was only present in bees from one colony 
(detected in 11 out of 18 bees from this colony; seven of which 
were callows and four non-callows; Figure S4). We also note 
that Bifidobacterium was detected in 18 bees, however was 
only found at abundances > 1% in non-callows (Figure S4).

placed non-callow workers into individual deli cups with 
their pollen diet (same as previous experiments) and 30% 
sucrose. On day 7, we anesthetized bees by placing them 
in the freezer for 3–5 min, punctured the pleural membrane 
between the 3rd and 4th abdominal tergite using a sterile 
needle, and then inserted a sterile, transparent 1-mm long 
microfilament (Sufix Elite) into the abdominal cavity using 
forceps. The bee then recovered in its container for 2 h in a 
dark room with access to sucrose and its pollen diet. After 
2 h, bees were frozen at -20 °C. We later dissected abdo-
mens to recover implants, mounted implants to microscope 
slides using clear nail polish, and photographed implants 
using a dissecting microscope at 20X magnification. Bees 
initiated the experiment on five dates between November 
29-December 13, 2021. Twelve bees died, 7 escaped, 9 died 
after being anesthetized, and we could not find the implants 
in 5 bees, resulting in 102 samples (Table S1). We imported 
photographs of each implant to ImageJ [47] and estimated 
percent of the implant covered by melanin (see Supplement 
for further methods and discussion).

Statistics

We modeled proportion melanization with a generalized lin-
ear mixed model with a beta error distribution [48]. Initial 
models included diet treatments (composition or diversity) 
and bee size as fixed effects and start date and natal col-
ony as random effects. We built separate models using diet 
composition or diversity as predictors and performed model 
selection using AIC.

Results

Gut Microbiomes in Both Host Species

After quality control and removing contaminants, we 
retained an average of 25,177 reads per sample across 153 
samples. We identified 334 ASVs. Top models and results 
assessing effect of host species are in Table 1. The host 
species differed significantly in community composition 
(Fig. 2C). Compared to M. rotundata, B. impatiens had 
higher alpha diversity (Fig. 2A and B) and wider dispersion 
among replicates (Fig. 2C). The bacterial taxa that appear 

Table 1 Statistics from final models predicting alpha diversity (Shannon index and ASV richness) and beta diversity (community dispersion and 
composition) in microbial communities based on host species. Beta diversity metrics are based on Bray-Curtis distance. Italics and bold indicate 
P < 0.05
Top model F or χ2 d.f. P value
Shannon ~ Host 9.699 1 0.002
ASV richness ~ Host 32.212 1 < 0.0001
Community dispersion ~ Host 11.345 1 0.001
Community composition ~ Host 41.93 1 < 0.0001
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Bombus impatiens Melanization

Most implant samples (93.2%) showed evidence of mela-
nization. On average, bees melanized about 11% (± 0.984 
SE) of the implant surface area. The top models included 
diet (composition or diversity in separate models) as the 
predictor and start date and colony as random effects. Pro-
portion melanization was not affected by diet composi-
tion (χ2 = 2.693, d.f. = 6, P = 0.846; Fig. 4) nor diversity 
(χ2 = 1.219, d.f. = 2, P = 0.544).

Discussion

We predicted that a low-diversity pollen diet would result in 
less diverse gut microbial communities due to lower nutri-
tional diversity, but our results did not support this prediction. 
We found no obvious relationship between pollen diversity and 
gut bacterial diversity, suggesting that initial bacterial commu-
nities were relatively stable despite nutritional change. Even 
single-species diets still contributed adequate resources for 
the persistence of diverse communities over seven days. We 
used sterile pollen to rule out effects of foodborne microbes, 

Megachile rotundata Gut Microbiome

Leafcutter bees guts contained flower-associated bacteria, 
including Neokomagataea, Rosenbergiella, Acinetobacter, 
and Asaia, as well as soil-associates, including multiple 
genera in the Enterobacteriaceae (Klebsiella, Kluyvera, and 
ASVs that matched Citrobacter, Enterobacter, Klebsiella, 
and Pantoea; Fig. 3B; [19]). Megachile rotundata contained 
other genera at lower abundances that were also in bumble 
bee guts, including Acinetobacter and Asaia (Fig. 3B) as 
well as Snodgrassella and Candidatus Schmidhempelia 
(found at < 1% abundance and therefore not included in 
Fig. 3).

For M. rotundata, top models and results are reported in 
Table 3. Neither ASV richness nor Shannon diversity was 
affected by diet composition (Fig. 2F), diversity (Fig. 2G), 
or bee size (Table S5). Community dispersion and composi-
tion were not affected by diet composition, diversity, or start 
date (Fig. 3B, Figures S5, S6, Table S5).

Table 2 Statistics from final best-fit models predicting alpha diversity (Shannon index and richness) and beta diversity (community dispersion 
and composition) in microbial communities in Bombus impatiens. Beta diversity metrics are based on Bray-Curtis distance. “Diet composition” 
refers to the seven diet treatments, while “diet diversity” refers to the number of pollen species (i.e., one, two, or three); each model included diet 
composition or diversity as a predictor but not both. Italics indicates P < 0.1 and bold indicates P < 0.05
Top model Predictor F or χ2 d.f. P value
Shannon ~ Diet composition Diet composition 0.239 6 0.962
Shannon ~ Diet diversity Diet diversity 0.529 2 0.591
ASV richness ~ Diet composition * Age + Wing size + 
(1|Colony) + (1|Date)

Diet composition 8.439 6 0.208

Age 2.015 1 0.156
Wing size 0.786 1 0.375
Diet * Age 19.541 6 0.003

Post-hoc test by age for above model:
 Non-callow Diet composition 2.835 6 0.017
 Callow Diet composition 1.365 6 0.243
ASV richness ~ Diet diversity * Age + Wing size + (1|Col-
ony) + (1|Date)

Diet diversity 4.894 2 0.087

Age 1.483 1 0.223
Wing size 3.117 1 0.077
Diet diversity * Age 5.926 2 0.052

Community dispersion ~ Diet composition Diet composition 1.003 6 0.430
Community dispersion ~ Diet diversity Diet diversity 1.824 2 0.168
Community dispersion ~ Age Age 0.129 1 0.720
Community dispersion ~ Colony Colony 2.714 5 0.026
Community composition ~ Diet comp + Age + Colony Diet composition 1.073 6 0.363

Age 1.785 1 0.068
Colony 1.433 5 0.050

Community composition ~ Diet div + Age + Colony Diet diversity 1.458 2 0.101
Age 1.567 1 0.123
Colony 1.497 5 0.035
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results suggest that simple, low-diversity diets of sterile pollen 
can still support established microbial communities.

Our results are consistent with previous studies that found 
little to no correlation between diets and host microbial diver-
sity. For example, multiple studies found weak or no correlation 
between landscape, pollen and microbial diversity in pollen 
provisions of several bee species [22, 30, 52]. Conversely, 
our results contradict studies that found a positive relationship 
between diet and host microbial diversity, for example in ante-
lope [53]. These contrasting patterns may be due to host taxa 
differing in levels of microbial filtering, which can also vary 
by ecological context [54]. While correlations between dietary 
and microbial diversity vary, short-term dietary changes can 

thereby allowing us to attribute any effects of diet on microbial 
communities to nutritional differences. We recognize this may 
not be reflective of nature, since pollen commonly harbors its 
own microbial community [50], but nonetheless sheds light on 
diet-microbiome dynamics. The stability of these communi-
ties suggests that priority effects and drift play important roles 
in long-term assemblages. Additionally, pollen diet may not 
affect gut microbiota if these microbes are more dependent on 
carbohydrates, such as pectin of the pollen wall [51] or nec-
tar sugars, than the proteins and lipids inside pollen. Indeed, 
nectar qualities such as the concentration of different sugars 
can affect bumble bee gut bacterial composition [13]. While 
the relevance of these results may be limited for wild bees, our 

Fig. 2 Bee species differed in their gut bacterial communities. Com-
pared to M. rotundata, B. impatiens had higher (A) ASV richness, (B) 
Shannon diversity, and (C) community variation, visualized as a PCoA 
ordination of Bray-Curtis dissimilarities. Ellipses are 95% confidence 

intervals. The effect of diet on bacterial ASV richness in B. impatiens 
depended on worker age (D, E). Diet did not significantly affect bacte-
rial ASV richness in M. rotundata(F, G). (Diets are D = Dandelion, 
H = Hawthorn, S = Sumac.)
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in Megachile nests and Bombus corbicula [21, 22]. We thus 
predicted that dandelion diet would be relatively rich in Lac-
tobacillus, but our results did not support this (Fig. 3, S4), 
suggesting that gut-inhabiting Lactobacillus does not preferen-
tially feed on Asteraceae pollen. Lactobacillus may be associ-
ated with Asteraceae resources in the wild; we would not have 
observed this relationship due to sterilizing pollen.

alter gut microbiome composition, demonstrating that certain 
diets are associated with certain bacterial taxa. For example, 
in humans, a shift to meat-eating increased clusters of bile-
resistant bacteria [3]. In nests of Ceratina bees, Acinetobacter, 
Lactobacillus, Pantoea, and Sodalis bacteria were positively 
correlated with pollen from multiple plant genera [30]. Lacto-
bacillus was also positively correlated with Asteraceae pollen 

Table 3 Statistics from final models predicting alpha diversity (Shannon index and richness) and beta diversity (community dispersion and com-
position) in microbial communities in Megachile rotundata. Beta diversity metrics are based on Bray-Curtis distance matrices. “Diet composition” 
refers to the seven diet treatments, while “diet diversity” refers to the number of pollen species (i.e., one, two, or three); each model included diet 
composition or diversity as a predictor but not both
Top model Predictor F or χ2 d.f. P value
Shannon ~ Diet composition Diet composition 1.104 6 0.371
Shannon ~ Diet diversity Diet diversity 0.953 2 0.391
Richness ~ Diet composition + Wing + (1|Plate ID) Diet composition 7.294 6 0.294

Wing size 0.0032 1 0.954
Richness ~ Diet diversity + Wing + (1|Plate ID) Diet diversity 2.470 2 0.291

Wing size 0.114 1 0.735
Community dispersion ~ Diet composition Diet composition 0.612 6 0.720
Community dispersion ~ Diet diversity Diet diversity 0.224 2 0.800
Community composition ~ Diet composition + (1|Start 
date)

Diet composition 0.751 6 0.826

Community composition ~ Diet diversity Diet diversity 0.944 2 0.514

Fig. 3 Relative abundance of genera (with > 1% abundance) across the seven diet treatments in B. impatiens(A) and M. rotundata(B). Plots are 
ordered by diet treatments (D = Dandelion, H = Hawthorn, S = Sumac). Each column represents one bee
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microbes through their wild-caught queen and/or the non-
sterilized honey bee-collected pollen they were fed prior to 
the experiment. Colony had a significant effect on community 
composition in bumble bees, and one bacterial genus, Bom-
bella, which is an acetic acid bacteria with antifungal effects 
[56], only occurred in workers from one colony. This suggests 
that the first microbes that arrive in the gut, likely originating 
from the queen during spring foraging, become established 
and then remain stable in the face of varying nutritional input. 
This significant effect of colony on bumble bee gut communi-
ties contrasts with recent work showing that honey bees from 
different locations around the United States harbored similar 
gut bacteria down to the strain level [57], suggesting that envi-
ronmental factors play a stronger role in shaping the gut micro-
biota of B. impatiens compared to A. mellifera. Megachile 
rotundata, which were dominated by nectar-inhabiting taxa, 
may have acquired floral microbes from the flower inoculum 
that we provided, or from larval pollen provisions (although 
bees shed their larval microbiome during metamorphosis), the 
nest cavity, or leaves lining the nest. This is consistent with 
the hypothesis that flowers are transmission hubs for pollinator 
microbes [19].

Captive rearing likely affects the bee gut microbiota. In our 
study, individuals from both species were provisioned by wild 
mothers, but were then exposed to a subset of the microbes 
they would normally encounter as adults since they had no 
direct contact with the natural environment. Although we did 
not compare our bees to wild-caught bees, captive rearing 
likely limits the diversity of the adult gut microbiome. This 

Gut bacterial communities did not show distinct clusters 
by diet treatments in either species (Figure S3, S5), however 
this was dependent on worker age in bumble bees. Consistent 
with previous work [13], diet influenced bacterial diversity in 
older, but not newly emerged workers (Fig. 2D). A recent study 
found that bumble bee gut microbiomes exhibit a predictable 
successional trajectory, growing logistically in both abundance 
and diversity, and plateauing around 4 days old [27]. Given the 
non-callow group is a much wider age range (any age > 24 h), 
and therefore has opportunity for more variation, it is surpris-
ing that we found a significant effect of diet on diversity in this 
group and not callows. However, because the callows received 
a fecal inoculum pooled from multiple non-callows, they did 
not experience this succession process and may have devel-
oped a more diverse and therefore stable microbiome than 
expected naturally. Future studies using germ-free bees inocu-
lated with controlled microbiomes could assess how bee gut 
microbiomes are influenced by diet at different life stages and 
why certain diets, such as sumac and hawthorn, yielded rela-
tively low ASV richness in non-callows.

We found that bumble bees hosted many core bacterial taxa, 
including Snodgrassella, Lactobacillus, Candidatus Schmid-
hempelia, and Bifidobacterium, which have been shown to play 
important roles for the bee host including digestion, detoxifica-
tion, and pathogen defense (reviewed in [6, 55]). We also found 
multiple flower-associated bacteria including Neokomagataea, 
Acinetobacter, Asaia, and Pantoea in both host species [14, 19, 
49]. This is interesting given that we did not directly feed floral 
microbes to the bumble bees. They may have acquired floral 

Fig. 4 Pollen diets did not significantly affect the melanization response in B. impatiens, as measured by proportion of the implant melanized. 
Means are model estimates, produced with emmeans; error bars are standard error. (Diets are D = Dandelion, H = Hawthorn, S = Sumac.)
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