Skip to main content
Log in

Genotype-Controlled Vertical Transmission Exerts Selective Pressure on Community Assembly of Salvia miltiorrhiza

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The plant’s endophytic fungi play an important role in promoting host development and metabolism. Studies have shown that the factors affecting the assembly of the endophyte community mainly include host genotype, vertical transmission, and soil origin. However, we do not know the role of vertically transmitted endohytic fungi influences on the host-plant’s endophytic community assembly. Salvia miltiorrhiza from three production areas were used as research objects; we constructed three production area genotypes of S. miltiorrhiza regenerated seedlings simultaneously. Based on high-throughput sequencing, we analyzed the effects of genotype, soil origin, and vertical transmission on endophytic fungal communities. The results show that the community of soil origins significantly affected the endophytic fungal community in the regenerated seedlings of S. miltiorrhiza. The influence of genotype on community composition occurs through a specific mechanism. Genotype may selectively screen certain communities into the seed, thereby exerting selection pressure on the community composition process of offspring. As the number of offspring increases gradually, the microbiota, controlled by genotype and transmitted vertically, stabilizes, ultimately resulting in a significant effect of genotype on community composition.

Furthermore, we observed that the taxa influencing the active ingredients are also selected as the vertically transmitted community. Moreover, the absence of an initial vertically transmitted community in S. miltiorrhiza makes it more vulnerable to infection by pathogenic fungi. Therefore, it is crucial to investigate and comprehend the selection model of the vertically transmitted community under varying genotypes and soil conditions. This research holds significant implications for enhancing the quality and yield of medicinal plants and economic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: NCBI (accession: PRJNA756137 & PRJNA761573).

References

  1. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    CAS  PubMed  Google Scholar 

  2. Mejía Luis C, Herre EA, Sparks JP, Winter K, García Miltion N, Bael Sunshine A, Van SJ, Shi Z, Zhang Y, Guiltinan Mark J, Maximova Siela N (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479

    PubMed  PubMed Central  Google Scholar 

  3. Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103(8):3327–3340

    CAS  PubMed  Google Scholar 

  4. del Pilar Martínez-Diz M, Andrés-Sodupe M, Bujanda R, Díaz-Losada E, Eichmeier A, Gramaje D (2019) Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol 41:234–244

    Google Scholar 

  5. Latz MAC, Kerrn MH, Sørensen H, Collinge DB, Jensen B, Brown JKM, Madsen AMM, Jørgensen HJL (2021) Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Sci Total Environ 759:143804

    CAS  PubMed  Google Scholar 

  6. Chen H, Wu H, Yan B, Zhao H, Liu F, Zhang H, Sheng Q, Miao F, Liang Z (2018) Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism? Int J Mol Sci 19(3):672

    PubMed  PubMed Central  Google Scholar 

  7. Leopold DR, Busby PE (2020) Host genotype and colonist arrival order jointly govern plant microbiome composition and function. Curr Biol 30(16):3260–3266.e5

  8. Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12(2):231–240

    CAS  PubMed  Google Scholar 

  9. Yan J, Zhu J, He C, Benmoussa M, Ping W (1999) Molecular marker-assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci 39(2):538–544

  10. Huang W, Long C, Lam E (2018) Roles of plant-associated microbiota in traditional herbal medicine. Trends Plant Sci 23(7):559–562

    CAS  PubMed  Google Scholar 

  11. Shao F, Lu S (2013) Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genomics 14:1–12

    Google Scholar 

  12. Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568(1-3):213–221

    CAS  PubMed  Google Scholar 

  13. Zhang J, Jin Q, Deng Y, Hou J, Wu W, Guo D (2017) New depsides from the roots of Salvia miltiorrhiza and their radical-scavenging capacity and protective effects against H2O2-induced H9c2 cells. Fitoterapia 121:46–52

    CAS  PubMed  Google Scholar 

  14. Pan Y, Fu H, Kong Q, Xiao Y, Shou Q, Chen H, Ke Y, Chen M (2014) Prevention of pulmonary fibrosis with salvianolic acid a by inducing fibroblast cell cycle arrest and promoting apoptosis. J Ethnopharmacol 155(3):1589–1596

    CAS  PubMed  Google Scholar 

  15. Tang H, He H, Ji H, Gao L, Mao J, Liu J, Lin H, Wu T (2015) Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β–dependent epithelial to mesenchymal transition. J Surg Res 197(1):167–175

    CAS  PubMed  Google Scholar 

  16. Liu H, Ma S, Xia H, Lou H, Zhu F, Sun L (2018) Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J Ethnopharmacol 222:201–207

    CAS  PubMed  Google Scholar 

  17. Xu X, Lv H, Li X, Su H, Zhang X, Yang J (2017) Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro. Biochem Cell Biol 95(6):644–651

    CAS  PubMed  Google Scholar 

  18. Zhang D-W, Liu X, Xie D, Chen R, Tao X-Y, Zou J-H, Dai J (2013) Two new diterpenoids from cell cultures of Salvia miltiorrhiza. Chem Pharm Bull 61(5):576–580

    CAS  Google Scholar 

  19. Jiang G, Liu J, Ren B, Zhang L, Owusu L, Liu L, Zhang J, Tang Y, Li W (2017) Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. J Ethnopharmacol 205:33–40

    CAS  PubMed  Google Scholar 

  20. Wang X, Gao A, Jiao Y, Zhao Y, Yang X (2018) Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int J Biol Macromol 108:625–634

    CAS  PubMed  Google Scholar 

  21. Wang Y, Cao J (2016) Advances in the chemical and pharmacological studies of phenolic acids in Salvia miltiorrhiza. World Chin Med 11(6):1126–1130

    CAS  Google Scholar 

  22. Xing B, Liang L, Liu L, Hou Z, Yang D, Yan K, Zhang X, Liang Z (2018) Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Plant Cell Rep 37(12):1681–1692

    CAS  PubMed  Google Scholar 

  23. Dong Y, Morris-Natschke SL, Lee K-H (2011) Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat Prod Rep 28(3):529–542

    CAS  PubMed  Google Scholar 

  24. Zhou L, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45(12):1345–1359

    CAS  PubMed  Google Scholar 

  25. Sun J, Xia F, Cui L, Liang J, Wang Z, Wei Y (2014) Characteristics of foliar fungal endophyte assemblages and host effective components in Salvia miltiorrhiza Bunge. Appl Microbiol Biotechnol 98(7):3143–3155

    CAS  PubMed  Google Scholar 

  26. Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G (2020) Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol 10:3013

    PubMed  PubMed Central  Google Scholar 

  27. Zhai X, Luo D, Li X, Han T, Jia M, Kong Z, Ji J, Rahman K, Qin L, Zheng C (2018) Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front Microbiol 8:2694

    PubMed  PubMed Central  Google Scholar 

  28. Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16(7):580–587

    CAS  PubMed  Google Scholar 

  29. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    CAS  PubMed  Google Scholar 

  30. Xu G, Liu C, Huang L, Wang X, Zhang Y, Liu S, Liao C, Yuan Q, Zhou X (2013) Development of new EST-derived SSRs in Salvia miltiorrhiza (Labiatae) in China and preliminary analysis of genetic diversity and population structure. Biochem Syst Ecol 51:308–313

    CAS  Google Scholar 

  31. Lan Y, Liu M, Yan Z, Xie H, Sheng X, Zhang L, Lin C (2016a) Comparison of the characteristics of plant cloning and regeneration seedlings in different geographical sources. Jiangsu Agri Sci 44(10):103–103

  32. Lan Y, Sheng X, Yan Z, Wang H, He D, Wang S, Red B, Chen X (2016b) Comparative analysis of GC-MS of root exudates in salvia miltiorriza from different geographic sources. Jiangsu Agri Sci 44(1):301–305

    Google Scholar 

  33. Wang M, Dai G, Ma Y, Zhang Q, Chen X, Wan DG, Yan Z (2013) Study on correlation between active components and endophytic fungi in salvia miltiorriza. Chin J Exp Tradit Med Formulae 19(23):66–73

    Google Scholar 

  34. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66(10):4356–4360

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264

    CAS  PubMed  Google Scholar 

  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Team, R. C. (2013). “R: A language and environment for statistical computing.”

    Google Scholar 

  39. Stopnisek N, Shade A (2021) Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J 15(9):2708–2722

  40. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    PubMed  PubMed Central  Google Scholar 

  41. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Package ‘vegan’. Comm Ecol Package 2(9):1–295

    Google Scholar 

  42. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Google Scholar 

  43. Kolde R, Kolde MR (2015) Package ‘pheatmap’. R package 1(7):790

    Google Scholar 

  44. Wickham H (2011) ggplot2. Wiley Interdiscipl Rev : comput Stat 3(2):180–185

    Google Scholar 

  45. Putten P (1979) Mandelic acid and urinary tract infections. Antonie Van Leeuwenhoek 45(4):622–623

    Google Scholar 

  46. Li X, He C, He X, Su F, Hou L, Ren Y, Hou Y (2019) Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development. Plant Soil 439(1):259–272

    CAS  Google Scholar 

  47. Al-Hosni K, Shahzad R, Latif Khan A, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, Asaf S, Kang S-M, Yun B-W, Lee I-J (2018) Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact 13(1):112–118

    CAS  Google Scholar 

  48. Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin J-H (2016) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11(6):e0158207

    PubMed  PubMed Central  Google Scholar 

  49. Wang M, Xue J, Ma J, Feng X, Ying H, Xu H (2020) Streptomyces lydicus M01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternata on cucumbers. Front Microbiol 11:942

    PubMed  PubMed Central  Google Scholar 

  50. Mapperson RR, Kotiw M, Davis RA, Dearnaley JD (2014) The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Curr Microbiol 68(1):30–37

    CAS  PubMed  Google Scholar 

  51. Farh ME-A, Kim Y-J, Kim Y-J, Yang D-C (2018) Cylindrocarpon destructans/Ilyonectria radicicola-species complex: causative agent of ginseng root-rot disease and rusty symptoms. J Ginseng Res 42(1):9–15

    PubMed  Google Scholar 

  52. Fassatiová O (1983) Grzyby mikroskopowe w mikrobiologii technicznej. Wydawnictwa Naukowo-Techniczne, Poland

  53. Gilbert J, Tekauz A, Woods S (1995) Effect of Phaeosphaeria nodorum-induced seed shrivelling on subsequent wheat emergence and plant growth. Euphytica 82(1):9–16

    Google Scholar 

  54. Li C, Wu Y, Li L, Zhao C, Li B, Wu Y, Wang H, Yan Z (2023) Different techniques reveal the difference of community structure and function of fungi from root and rhizosphere of Salvia miltiorrhiza Bunge. Plant Biol. https://doi.org/10.1111/plb.13556

  55. Challacombe JF, Hesse CN, Bramer LM, McCue LA, Lipton M, Purvine M, Nicora C, Gallegos-Graves LV, Porras-Alfaro A, Kuske CR (2019) Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics 20(1):1–27

    Google Scholar 

  56. Eo JK, Eom AH (2022) Community of endophytic fungi from alpine conifers on Mt. Seorak. Mycobiology 50(5):317–325

    PubMed  PubMed Central  Google Scholar 

  57. Giampetruzzi A, Baptista P, Morelli M, Cameirão C, Lino Neto T, Costa D, D’Attoma G, Abou Kubaa R, Altamura G, Saponari M, Pereira JA, Saldarelli P (2020) Differences in the endophytic microbiome of olive cultivars infected by Xylella fastidiosa across seasons. Pathogens 9(9):723

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lê VA, Quaiser A, Duhamel M, Michon-Coudouel S, Dufresne A, Vandenkoornhuyse P (2017) Ecophylogeny of the endospheric root fungal microbiome of co-occurring Agrostis stolonifera. PeerJ 5:e3454

    Google Scholar 

  59. Bulgarelli D, Rott M, Schlaeppi K, Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95

    CAS  PubMed  Google Scholar 

  60. Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefer P (2017) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11(1):43–55

    CAS  PubMed  Google Scholar 

  61. Schlaeppi K, Dombrowski N, Oter RG, Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111(2):585–592

    CAS  PubMed  Google Scholar 

  62. Chen D, Jia L, Hou Q, Zhao X, Sun K (2021) Analysis of endophyte diversity of Rheum palmatum from different production areas in Gansu province of China and the association with secondary metabolite. Microorganisms 9(5):978

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang R, Zhang Q, Ju M, Yan S, Zhang Q, Gu P (2011) The endophytic fungi diversity, community structure, and ecological function prediction of Sophora alopecuroides in Ningxia, China. Microorganisms 10(11):2099

    Google Scholar 

  64. Yan K, Pei Z, Meng L, Zheng Y, Wang L, Feng R, Li Q, Liu Y, Zhao X, Wei Q, El-Sappah AH, Abbas M (2022) Determination of community structure and diversity of seed-vectored endophytic fungi in Alpinia zerumbet. Front Microbiol 13:814864

    PubMed  PubMed Central  Google Scholar 

  65. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M et al (2018) Structure and function of the global topsoil microbiome. Nature 560(7717):233–237

    CAS  PubMed  Google Scholar 

  66. Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK (2019) A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun 10(1):2369

    PubMed  PubMed Central  Google Scholar 

  67. Răut I, Călin M, Capră L, Gurban A, Doni M, Radu N, Jecu L (2021) Cladosporium sp. isolate as fungal plant growth promoting agent. Agronomy 11(2):392

    Google Scholar 

  68. Lou J, Fu L, Peng Y, Zhou L (2013) Metabolites from Alternaria fungi and their bioactivities. Molecules 18(5):5891–5935

    PubMed  PubMed Central  Google Scholar 

  69. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–17

    CAS  PubMed  Google Scholar 

  71. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes f oetida that produces Camptothecin. J Nat Prod 68(12):1717–1719

    CAS  PubMed  Google Scholar 

  72. East R (2013) Microbiome: Soil science comes to life. Nature 501(7468):S18–S19

    CAS  PubMed  Google Scholar 

  73. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, Lelie DVD, Gilbert JA, Jansson JK (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6(2):e02527–e02514

    PubMed  PubMed Central  Google Scholar 

  74. He C, Cui J, Chen X, Wang W, Hou J (2020) Effects of enhancement of liquorice plants with dark septate endophytes on the root growth, glycyrrhizic acid and glycyrrhizin accumulation amended with organic residues. Curr Plant Biol 23:100154

    Google Scholar 

  75. He C, Wang W, Hou J (2019) Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Front Microbiol 10:1364

    PubMed  PubMed Central  Google Scholar 

  76. Kumar R, Kundu A, Dutta A, Saha S, Das A, Bhowmik A (2021) Chemo-profiling of bioactive metabolites from Chaetomium globosum for biocontrol of Sclerotinia rot and plant growth promotion. Fungal Biol 125(3):167–176

    CAS  PubMed  Google Scholar 

  77. Xu XD, Liang W-X, Yao L, Paek K-Y, Wang J, Gao W-Y (2021) Production of ginsenoside by Chaetomium sp. and its effect on enhancing the contents of ginsenosides in Panax ginseng adventitious roots. Biochem Eng J 174:108100

  78. Kuchkarova N, Toshmatov Z, Zhou S, Han C, Shao H (2020) Secondary metabolites with plant growth regulator activity produced by an endophytic fungus Purpureocillium sp. from Solanum rostratum. Chem Nat Compd 56(4):775–776

    CAS  Google Scholar 

  79. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites* *Paper presented at the British Mycological Society symposium on Fungal Bioactive Compounds, held at the University of Wales Swansea on 22–27 April 2001. Mycol Res 106(9):996–1004

    CAS  Google Scholar 

  80. Zhou LS, Tang K, Guo SX (2018) The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. Int J Mol Sci 19(1):270

    PubMed  PubMed Central  Google Scholar 

  81. Khushdil F, Jan FG, Jan G, Hamayun M, Iqbal A, Hussain A, Bibi N (2019) Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus. Plant Physiol Biochem 144:127–134

    CAS  PubMed  Google Scholar 

  82. Lubna S, Asaf M, Hamayun H, Gul I-JL, Hussain A (2018) Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J Plant Interact 13(1):100–111

    CAS  Google Scholar 

  83. Amprayn KO, Rose MT, Pereg K, Nguyen HT, Kennedy and IR (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 61:295–299

    Google Scholar 

  84. Silambarasan S, Vangnai AS (2017) Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress. Ecotoxicol Environ Saf 139:472–480

  85. Stosiek N, Terebieniec A, Ząbek A, Młynarz P, Cieśliński H, Klimek-Ochab M (2019) N-phosphonomethylglycine utilization by the psychrotolerant yeast Solicoccozyma terricola M 3.1. 4. Bioorg Chem 93:102866

    CAS  PubMed  Google Scholar 

  86. He J-W, Chen G-D, Gao H, Yang F, Li X-X, Peng T, Guo L-D, Yao X-S (2012) Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 83(6):1087–1091

    CAS  PubMed  Google Scholar 

  87. Kellogg JJ, Raja HA (2017) Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev 16(2):271–293

    CAS  Google Scholar 

  88. Yeganeh T-B, Ganjeali A, Cernava T, Müller H, Javad, Asili (2019) Endophytic fungi of native salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol 10:3013–3013

    Google Scholar 

  89. Chang HS, Cheng MJ, Wu M, Chan HY, Hsieh SY, Lin CH, Yech YJ, Chen IS (2017) Secondary metabolites produced by an endophytic fungus Cordyceps ninchukispora from the seeds of Beilschmiedia erythrophloia Hayata. Phytochem Lett 22:179–184

    CAS  Google Scholar 

  90. Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61(3):279–291

  91. Shrestha B, Zhang W, Zhang Y, Liu X (2010) What is the Chinese caterpillar fungus Ophiocordyceps sinensis (Ophiocordycipitaceae)? Mycology 1(4):228–236

  92. Zjalic S, Reverberi M, Ricelli A, Granito VM, Fanelli C, Fabbri AA (2006) Trametes versicolor: a possible tool for aflatoxin control. Int J Food Microbiol 107(3):243–249

    CAS  PubMed  Google Scholar 

  93. Vujanovic V (2021) Tremellomycetes yeasts in kernel ecological niche: early indicators of enhanced competitiveness of endophytic and mycoparasitic symbionts against wheat pathobiota. Plants 10(5):905

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Meteyer CU, Dutheil JY, Keel MK, Boyles JG, Stukenbrock EH (2022) Plant pathogens provide clues to the potential origin of bat white-nose syndrome Pseudogymnoascus destructans. Virulence 13(1):1020–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Saunte DML, Gaitanis G, Hay RJ (2020) Malassezia-associated skin diseases, the use of diagnostics and treatment. Front Cell Infect Microbiol 10:112

    PubMed  PubMed Central  Google Scholar 

  96. Bonito G, Reynolds H, Robeson MS, Nelson J, Hodkinson BP, Tuskan G, Schadt CW, Vilgalys R (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23(13):3356–3370

    PubMed  Google Scholar 

  97. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez L, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209(2):798–811

  98. Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW (2018) The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6(1):1–14

  99. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7(1):12151

  100. Glynou K, Ali T, Buch AK, Kia SH, Ploch S, Xia X, Elik A, Thines M, Maciá-Vicente J (2016) The local environment determines the assembly of root endophytic fungi at a continental scale. Environ Microbiol 18(8):2418–2434

  101. Faddetta T, Abbate L, Alibrandi P, Arancio W, Siino D, Strati F, De Filippo C, Del Bosco SF, Carimi F, Puglia AM (2021) The endophytic microbiota of Citrus limon is transmitted from seed to shoot highlighting differences of bacterial and fungal community structures. Sci Rep 11(1):1–12

    Google Scholar 

  102. Vannier N, Mony C, Bittebiere A, Michon-Coudouel S, Biget M, Vandenkoornhuyse P (2018) A microorganisms’ journey between plant generations. Microbiome 6(1):1–11

    Google Scholar 

  103. Zhang X, Ma Y, Wang X, Liao K, He S, Zhao X, Guo H, Zhao DWH (2022) Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome 10(1):1–19

    Google Scholar 

  104. Nelson EB (2018) The seed microbiome: origins, interactions, and impacts. Plant Soil 422(1):7–34

    CAS  Google Scholar 

  105. Shade A, Jacques M-A, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22

    PubMed  Google Scholar 

  106. Griffiths SM, Antwis RE, Lenzi L, Lucaci A, Behringer DC, Butler MJ, Preziosi RF (2019) Host genetics and geography influence microbiome composition in the sponge Ircinia campana. J Anim Ecol 88(11):1684–1695

    PubMed  PubMed Central  Google Scholar 

  107. Busby PE, Newcombe G, Neat AS, Averill C (2022) Facilitating reforestation through the plant microbiome: perspectives from the phyllosphere. Annu Rev Phytopathol 60:337–356

    PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China(81173493).

Author information

Authors and Affiliations

Authors

Contributions

Hongyang Lv and Zhuyun Yan contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jin Zhao, Hai Wang, Dongmei He, Xin Chen, Yin Lan and Min Liu. The first draft of the manuscript was written by Hongyang Lv and Xiaoyu Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jin Zhao, Hai Wang or Zhuyun Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

ESM 1

(PNG 278 kb)

High Resolution image (TIF 7173 kb)

ESM 2

(PNG 2596 kb)

High Resolution image (TIF 11469 kb)

ESM 3

(XLSX 11 kb)

ESM 4

(XLS 57 kb)

ESM 5

(XLSX 9 kb)

ESM 6

(XLSX 9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Li, X., He, D. et al. Genotype-Controlled Vertical Transmission Exerts Selective Pressure on Community Assembly of Salvia miltiorrhiza. Microb Ecol 86, 2934–2948 (2023). https://doi.org/10.1007/s00248-023-02295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02295-7

Keywords

Navigation