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Abstract

Globally,substantial research into endophytic microbes is being conducted to increase agricultural and environmental sus-
tainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all
plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species
and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and
stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and
bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and
metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such
as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds
with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endo-
phytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses.
Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and
abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes
from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and
degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed
molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in
manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research
trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating
environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance,
and their contribution to sustainable remediation of hazardous environmental contaminants.

Keywords Endophytes - Bioactive secondary metabolites - Biotic and abiotic stress - Biocontrol - Phytoremediation -
Bioaccumulation
Introduction

Plants interact with diverse microbial species thriving in the
rhizosphere and phyllosphere, thereby resulting in altered
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essential hormones and/or indirectly through minimizing the
negative impacts of a myriad of pathogens [18, 35, 79, 147,
161, 162, 171, 186, 240, 263] (Fig. 1).

The microbial species surviving on plant surfaces are
epiphytes, whereas endophytes are those that inhabit the
plant tissues [149, 203, 253]. In 1866, De Barry introduced
the term “endophyte” for those organisms, including bacte-
ria, fungi, or their associations multiplying intracellularly
or intercellularly into host plants at least once in a lifetime
without producing any marked signs of disease. Recent stud-
ies have illustrated that the growth and development of host
plants depend to a greater extent on such symbiotic micro-
bial species [55]. For example, in the most widely studied
endosymbiotic association of rhizobium and legume, the
bacterial counterpart is reported to regulate and meet the
host plant nitrogen requirement [200, 201].

Endophytes facilitate the successful establishment of
symbiotic association via the synthesis and secretion of
plant growth—promoting compounds responsible for host
adaptation under given environmental conditions. Several
fungal, bacterial, and actinomycetes species are described
to participate in the synthesis and secretion of biologically
active compounds and secondary metabolites [7, 14, 46, 56,
64, 144, 189, 198, 230, 273].

Biomolecules belonging to classes of alkaloids, phenols,
peptides, etc. synthesized by bacterial endosymbionts show a
promising future in agriculture and medicine [163, 215]. For
example, microbially synthesized bio-insecticide azadirachtin
was found to be an effective inhibitor toward the desert
locust (Schistocerca gregaria) [33]. Since its first discovery,
azadirachtin has been found to be effective against more than
200 insect species and has become an active component of
many commercial pesticides, including TreeAzin, AzaMax,
BioNEEM, AzaGuard, and AzaSol [38, 59, 62, 80, 85, 94, 156,
196]. Many experimental investigations have reported the dif-
ferential impact of factors such as specific host tissue, climatic
conditions, and soil characteristics on bioactive compounds
synthesized by endophytic microbial species [205]. The clue
about the important role of endophytic microorganisms in the
governance of the composition of metabolic products of host
plants has attracted plant biologists to decipher the complexi-
ties of endophytic associations to improve crop plants.

Based on life strategies, endophytic bacteria were classi-
fied as facultative, obligate, opportunistic, and passenger endo-
phytes [84] (Fig. 2). Currently, different biotic factors (e.g.,
insects and phytopathogens) and abiotic stress (e.g., extreme
temperatures, salinity, drought, flood, low/excess nutrients,
and organic/inorganic contamination) resulting from climate
change have emerged as important limiting factors for agri-
cultural and horticultural crop productivity worldwide [274].
Biotic stress has been estimated to reduce annual production
of about 30% of crops [66]. In particular, combined effects of
multiple abiotic stress factors such as drought and heat in a
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particular stage of growth of the plant are more detrimental
than individual stress factors. Apart from abiotic stress fac-
tors, plants are constantly challenged with biological stresses
through pathogenic bacteria, viruses, fungi, insects, and pests,
causing considerable losses in food productivity worldwide
[76, 152,202, 234]. Various approaches, such as the selection
of tolerant varieties, molecular breeding, and genetic engineer-
ing are being used to improve crop varieties against different
stressors. However, the majority of these methods are time
consuming, costly, and not well accepted in some areas [12].
Therefore, to neutralize the negative consequences of various
factors connected with abiotic and biotic stress, host plants
have developed many biological mechanisms that can function
simultaneously. In this context, the mutualistic association aris-
ing from interconnections between the host and the microbe
is considered an effective and sustainable means of improving
plant development and growth [54, 132, 173, 195].

Unlike other plant growth—promoting microorganisms,
endophytes have a direct relation with plants. They possess
rapid adaptability under given conditions of biotic and abiotic
stress, thereby improving host plant growth and survivability
[9, 25, 61, 101, 149]. Furthermore, endophytic microbes can
be an integral part of the rhizospheric region with the poten-
tial to synthesize and secrete metabolic products and enzymes
[27, 188]. They facilitate in neutralizing harmful impacts of
plant pathogens. They may also allow the host plant to mul-
tiply even in polluted soil by degradation of contaminants in
a manner similar to those harbored by plant growth—promot-
ing rhizobacteria (PGPR) [31, 37]. The application of high-
throughput current “omics”-based technology such as gene
sequencing, metabolomics, and microarray could compre-
hend the complex associations existing between plants and
their endophytes and can be a promising tool for sustainable
environmental development [40, 105]. Their high coloniza-
tion efficacy and stability against abiotic stress make them a
potential candidate for environmental management [12, 47,
116, 128].

The novelty of the present review is the current under-
standing pertaining to the colonization strategy of endo-
phytes into host plants and their promising role in the
alleviation of multiple abiotic and biotic environmental
constraints limiting crop productivity. Noteworthy, the
review has included comprehensive bibliometric informa-
tion using the “SCOPUS” research database to illustrate the
current research trend in the area of endophyte and possible
implications in environmental stress management. In addi-
tion, the extensive information dealing with the possible
roles of endophytes in eco-friendly removal of contaminants
of hazardous nature including heavy metals, and diverse
organic pollutants along with the future opportunities of
endophytic microbes in crop improvement under changing
climatic conditions, not considered in previously published
reviews, are extensively taken into account.
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Fig. 1 Overview of the
plant-microbe interactions at
phyllospheric and rhizospheric
zone: endophytic microbes
and rhizospheric microbes are
capable to induce growth of
the plants directly by increas-
ing macronutrient and mineral
uptake or indirectly through
plant protection against patho-
gens. Naturally synthesized
bioactive compounds with
antimicrobial activities can be
exploited in various sectors,
especially in the agricultural
and medicinal sectors
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Fig.2 Categorization of
endophytic bacteria based on
their lifestyle. Opportunistic
endophytes: they are bacteria
which occasionally enter plants
for their own needs. Passenger
endophytes: they are bacteria
which enter the plant by chance.
Obligate endophytes: they

are bacteria which are strictly
bound to life inside a plant.
Facultative endophytes: they are
bacteria which can live inside
plants and in other habitats also
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Study Design

This review was designed after a literature search and analy-
sis using the following criteria to provide a critical, effec-
tive, and comprehensive analysis of the literature on endo-
phytic microbes. A search was carried out with the SCOPUS
database considering titles, abstracts, and keywords fields
of all available literature. The search contained only two
keywords: “endophytic” (or “endophyte”) and “stress.” It
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showed the publication of 2949 papers starting from 1960.
To highlight the more recent results, the review was specifi-
cally addressed to the publications of the last 10 years (from
2012 until December 3, 2022), resulting in a total of 2532
publications.

To obtain a suitable and systematic synthesis of all bib-
liographic information, including the article title, abstract,
authors, and keywords, a cluster analysis was performed using
VOSviewer software (“VOSviewer version 1.6.16,” 2020).
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Figure 3 reports the cluster analysis provided from the co-
occurrence network of keywords of the papers extracted from
the SCOPUS platform. The results can be grouped into five clus-
ters. The first cluster (241 items), highlighted by green balls, is
devoted to stress factors and adaptation. Keywords are related to
abiotic stress (e.g., salinity and drought) and biotic (pathogen).

Cluster 2 (224 items) keywords highlight the reactivity
of endophytes, the endophytic production of metabolites,
and the antibacterial activity of the obtained bioactive com-
pounds (blue balls highlight this cluster). The third clus-
ter is represented by yellow balls (192 items), and mainly
concerns colonization mechanisms, with several keywords
devoted to culture, and bacterial and fungi growth.

Cluster 4 (175 items), represented by violet balls, is
devoted to remediation, with keywords related to contami-
nation and detoxification. The keywords contaminants refer
to heavy metals and organic pollutants. Finally, cluster 5
(168 items), represented by red balls, is mainly devoted to
genome and genetic expressions.

Based on the study design, the review was conceived in
the following sections:

Impact of Stress Conditions on the Plant

The green revolution remarkably improved food availability
in developing and developed countries. However, the indis-
criminate use of chemical fertilizers reduced the biodiversity
of soil microorganisms and frequently resulted in the loss

Fig.3 The keywords co-
occurrence network, obtained
from the articles extracted

by SCOPUS, selecting two
keywords: “endophytic” (or
"endophyte") and “stress,”

in the titles, abstracts, and
keywords fields of all avail-
able literature. The review was
specifically addressed to the
publications of the last 10 years
(from 2012 until December 3,
2022). The map highlights the
most frequently used biblio-
graphic terms to understand the
most active research fields that
are grouped into 5 clusters.
Data analysis was performed by
“VOSviewer version 1.6.16,”
2020
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of beneficial microbes necessary for soil health [126, 138].
Meanwhile, the predicted expansion of the human popula-
tion beyond 10 billion in the next half a century requires
doubling food production [232]. Therefore, ensuring stable
global food production and supply is among the main chal-
lenges of the twenty-first century.

The biotic and abiotic stresses have a negative impact
on agricultural productivity. Biotic stress includes path-
ogens that cause plant diseases (e.g., fungi, bacteria,
viruses, and nematodes) and insects that feed on plant
parts and compete with plants to get nutrients [178].
Phytopathogens can cause various plant diseases such as
leaf spot, necrosis, wilt, head rot, fruit rot, root rot, and
black foot [122, 146, 165]. In addition, insect feeding can
cause bore formation on leaves, stems, flowers, and bark.
Some insects are also potential vectors of microbial patho-
gens, so the disease becomes epiphytotic to healthy plant
populations.

The main abiotic stress includes salinity, drought, nutri-
ent-deficient, temperature (low/high), flood, heavy metal
contamination stress, and ultraviolet radiation, which mas-
sively limit the overall yield and growth of crop plants [86,
231, 238, 246, 264, 271]. Drought stress alters the diffu-
sion of nutrients, and the relationship between plants and
water, and hampers normal functions, altering the plant
morphological and physiological features. For example,
drought stress can decrease chlorophyll content and cause
an excess of reactive oxygen species (ROS) that can damage
nucleic acids, proteins, and lipids [3, 41, 241, 255, 256].
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Furthermore, salinity stress reduces the growth of plants and
productivity through specific ion toxicity and osmotic effects
that lead to nutritional imbalance, changes in morphology
and biochemistry, and a decrease in photosynthesis [102,
137, 214]. In addition, the acidic condition can produce a
nutrient deficiency in plants, leading to an acute loss of the
physiological growth and development sequence. Heavy
metals have a similar effect on plants,they are released into
the soil, water, and atmosphere as a result of various anthro-
pogenic activities such as industrialization, mining, and agri-
cultural activities such as the use of fungicides, pesticides,
and fertilizers, including organic ones. The concentration
of heavy metals in the environment depends on different
activities, then it can become toxic when it exceeds accept-
able limits [199]. Finally, high- and low-temperature stress
diminishes enzyme functioning, cell division, and excessive
denaturation of membranous proteins that leads to cell death
when the condition persists in the case of long-term con-
ditions [28, 169]. Therefore, researchers need to develop
sustainable microbe-based strategies to cope with difficult
stress situations for food security and crop productivity. In
this regard, endophytic microorganisms are the alternative
that can contribute to plant health, nutrient supply, soil pro-
ductivity, and protection against biotic and abiotic stress [49,
174, 176, 183].

Colonization of Endophytes in the Host Plant

Plant endophyte colonization cannot be considered an
abrupt phenomenon, but a series of complex and organ-
ized events determined by chemotactic responses. The
intracellular colony development mechanism adopted by
bacteria and fungi is almost the same, but their strate-
gies and modes differ considerably. For example, bacterial
endophytes colonize intercellularly the host plant system
vasculature, whereas fungal endophytes colonize inter- and
intracellularly within the entire root system [103, 114, 129,
149, 179, 259]. The entry and colonization of endophytes
involve different mechanisms comprising of (1) host avail-
ability and identification through a receptor and specific
plant protein interaction, and (2) interaction with the phyl-
losphere followed by entry into the cellular environment
(Fig. 4). Successful colonization by microbial endophytes
is influenced by various factors such as the host plant
genotype, the type of plant tissue, the microbial taxon and
species, as well as abiotic and biotic stresses [135, 136].
Plant root exudates serve as chemical signals to attract
bacterial endophytes. Bacteria use flagella to move toward
the root surface and eventually leading to interaction with
the plant system through pili and fibers [34, 113, 153].
During the moving process from the rhizosphere environ-
ment to the endosphere region, microbial endophytes can

rapidly adapt to the contrasting environment (e.g., redox
status, oxygen availability, nutrient composition, and the
osmotic balance of the host cell system). Furthermore,
microbial endophytes invading the endosphere region
must cope with the host’s antioxidant defense machinery
to internalize and colonize successfully [32, 113, 170]. In
conclusion, the successful endophyte invasion and colo-
nization within the host plant are largely determined by
the timely identification of signaling substances, quorum
responses, the potential to invade host defense machinery,
and, most strikingly, the efficiency of tuning up with the
entirely different complex host cellular system [119, 153].

Role of Endophytes in the Management
of Abiotic Stress

Endophytes and Their Role in Mitigation of Drought
and Temperature Stress

Plants in natural environments are bound to expose to dif-
ferent abiotic stresses. Drought is one of the main limiting
factors for the growth and productivity of crops around the
world [58, 67, 177, 231]. Under water-limiting conditions,
crop growth and productivity in the early stages are arrested
due to low energy supply, low water uptake, and hindered
functions of enzymes [52, 60, 121]. Furthermore, all con-
siderable characters of plant—water relations, such as leaf
relative water content (RWC), phenology, osmotic potential,
water potential, pressure potential, photosynthesis, respira-
tion, nutrition uptake, and rate of transpiration, are signifi-
cantly impacted by drought, leading to decreased crop pro-
ductivity (Fig. 5) [69, 83, 229]. Considerable research has
been conducted for the development of resistance in various
model and crop plant species using conventional and molec-
ular techniques that are tedious and expensive. Therefore,
researchers are seeking a sustainable approach and numer-
ous studies recognize that plant-associated microbes have
tremendous potential to develop resistance against drought.

The literature so far revealed that endophytes induce toler-
ance to drought by certain molecular and biochemical changes
in plants [70, 208, 265, 269]. In field tests, the Bukholderia
phytofirmans PsJN bacteria endophyte was inoculated in wheat
plants that maintained metabolic balance due to higher anti-
oxidant activity compared to control under drought conditions
(Table 1) [164]. Furthermore, inoculation of the Piriformospora
indica fungal endophyte also demonstrates drought resistance
by upregulating antioxidant enzymes, drought-regulated genes,
and CAS mRNA levels in drought-challenged leaves [223]. The
pot experiment conducted on rice inoculated with Trichoderma
harzianum TH-56 showed better drought tolerance by modulat-
ing SOD, proline, lipid peroxidation, and growth attributes, and
the level of DHN/AQU transcript, under drought stress [181].

@ Springer
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Fig.4 Entry and colonization of endophytic microorganisms in host
plants. The successful colonization of the host plant by endophytes
is a crucial component of advantageous plant—microbe interactions.

The accumulation of total soluble sugars, glucose, fruc-
tose, and starch content during endophyte infection plays
an important role in increasing the resistance and improv-
ing plant tolerance to drought stress. Bacillus subtilis B26
has been found to reduce the negative effects of drought
stress, which was linked to an increased level of starch
content and total soluble sugars in inoculated stressed
Brachypodium distachyon [71] and in Phleum pratense
grasses [70]. The inoculation of the Bacillus subtilis B26
endophytic bacterium with Phleum pratense was found
to have a significant effect on metabolism of plants. For
instance, higher levels of fructans and sucrose, and key
amino acids such as glutamic acid, glutamine, and aspara-
gine were found in the roots and shoots of plants colonized
compared to non-colonized ones. Furthermore, inoculation
of plants with endophytes resulted in an increased level
of a non-protein amino acid, i.e., gamma-aminobutyric
acid (GABA), in shoots and roots [70, 92]. A Trichoderma
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Inter and intracellular entry

Water Organic acids

Entry and colonization of endophytes into the host plant include sev-
eral events that occur within the host plant, including endophytic pop-
ulation entrance, motility, transmission, and multiplication

hamatum DIS 219b fungal endophyte delayed the onset of
drought response in Theobroma cacao by changing gene
expression, possibly corresponding to changes in net pho-
tosynthesis, stomatal conductance, and green fluorescence
emissions [21]. A recent study indicated that Ampelomyces
sp. colonized tomato plants and improved the promotion
of plant growth under drought conditions, representing a
sustainable form of biofertilizer that could improve agro-
nomic production [160]. The recent finding revealed that
P. indica confers drought tolerance by the regulation of
promoter genes, resulting in morphophysiological changes
in tomatoes [19]. In summary, the endophyte-mediated
drought resistance mechanism is based on phytohormone
production, antioxidant-mediated ROS scavenging activity,
induction of microbial genes, and accumulation of compat-
ible solutes (Fig. 5).

In turn, to alleviate heat/temperature stress (HS),
some studies have identified the potential role of plant
hormones and other secondary metabolites produced by
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fungi endophytes such as Paecilomyces formosus LWL1 in
the Dongjin japonica rice cultivar. This fungus protected
rice plants against HS compared to the control, as shown
by lower endogenous stress signaling compounds, such
as jasmonic acid (34.57%) and abscisic acid (25.71%),
and the overall protein content increased (18.76-33.22%)
[245]. The Rhizopus oryzae endophytic fungus inocu-
lated in soybean (Glycine max L.) and sunflower (Heli-
anthus annuus L.) also has the potential to alleviate ther-
mal stress. Namely, both crops also showed low levels of
abscisic acid (ABA), while high levels of catalase (CAT),
ascorbic acid oxidase (AAO), phenolics, proline, sug-
ars, flavonoids, lipids, and proteins were also observed.
It was also found that the endophytic fungus stimulates
chlorophyll content, length of shoots and roots, and dry
and fresh biomass compared to uninoculated plants [97].
Aspergillus japonicus EuR-26 endophytic fungus isolated
from the Euphorbia indica L. wild plant (Euphorbiaceae)
also mediated the growth of host plants under normal and
heat-stress conditions. Namely, A. japonicus—associated
sunflower and soybean seedlings improved the growth
of plant biomass and other plant traits and food quality
(flavonoids, phenolic, proteins, soluble sugars, and lipids)
under the stress of high temperature (40 °C) compared to
plants without endophyte [96]. These types of phenomena
are also observed in wild plants, e.g., in the desert plant
Cullen plicatum (Delile) C.H.Stirt. (Fabaceae) which,
if it is a co-inhabitant with another endophytic fungus,

Thermomyces lanuginosus, copes much better with heat
stress in its natural environment [11].

Endophytic Microorganisms and Their Role
in Alleviating Salinity Stress

Salinity is one of the most important environmental prob-
lems affecting plant productivity in dry and semi-dry cli-
mates [6, 216, 102, 133, 260]. The high salt content of the
soil has been described as the result of natural and human
activities leading to soil sodium salt accumulation. Further-
more, soil high salt concentration is frequently correlated
with the reduction in seedling formation and imbalance in
cellular homeostasis culminating in diminished photosyn-
thetic activities [13, 204, 222, 267].

Endophytic microorganisms develop strategies against
salinity, similar to drought-resistant mechanisms. Endo-
phytes stimulate the synthesis of antioxidant enzymes to
balance various free radicals and maintain the normal func-
tioning of the cell under salinity stress (Table 1). For exam-
ple, inoculation of poplar tree with Curvularia sp. stimu-
lates plant production of ascorbate peroxidase (APX) and
superoxide dismutase (SOD) [180]. Furthermore, exposure
of endophytic microbes to high salinity may stimulate the
synthesis of the ACC deaminase. For instance, Barnawal
et al. [23] observed an increase in the growth rate of salt-
sensitive spider plants (Chlorophytum sp., Asparagaceae)
with the presence of the bacterium Brachybacterium

Fig.5 An overview of plant
response to abiotic stress

Abiotic stress responses in plants

Endophytes assisted abiotic

(left): prolonged abiotic stress
(drought, salinity, and heavy
metals) causes regeneration

of ROS, desiccation, cellular
dehydration, hormonal imbal-
ance etc. that limit plant growth
and productivity. Endophytic
mediated abiotic stress tolerance
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mechanism (right): under abi-
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secretion of phytohormones
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paraconglomeratum that produce ACC deaminase and
diminishing the negative impact of gaseous hormone ethyl-
ene. Similar studies on the involvement of ACC deaminase
for improved rice plant growth and stress mitigation were
recently described [98, 193, 254].

In addition, osmolyte production was also recorded in
maintaining the sodium—potassium ratio to overcome the
osmotic effect of salinity (Table 1).

The pot experiment demonstrated that colonization with
P. pseudoalcaligenes improved Arabidopsis sp. growth
under salt stress conditions by likely modulating the expres-
sion levels of K* and Na* ion channels and genes involved
in Na*/K* homeostasiss [4]. Colonization of P. indica in
salinity-sensitive Brassica rapa (= B. campestris subsp.
chinensis) confers salinity tolerance by significantly higher
production of antioxidant enzymes such as catalase (CAT),
peroxidase (POD), and SOD and increased the plant hor-
mone level such as gibberellic acid (GA) and salicylic acid
(SA) [107]. Further study by Ravi et al. (2022) suggested
that fungal root endophyte (Fusarium haematococcum) can
resist salt stress and produces extracellular enzymes such as
amylase, cellulase, and protease under in vitro conditions in
addition to antioxidant production [192].

Recently, Eida et al. [50] have illustrated the role of
endophytes isolated from desert plants in mitigating plant
stress caused in the soil by the high salt content. The
model plant Arabidopsis thaliana exposed to different salt
levels exhibited tolerance to salinity after inoculation of
isolated endophytes. Recent findings of Zhang et al. [266]
concluded that apart from higher antioxidative enzymes
of proline content, upregulation of key genes involved
in IAA synthase and ethylene signaling were observed
in B. cereus KP120 inoculated with A. thaliana under
salt-stressed condition. In addition, a number of recent
research have shown that isolated endophytes are very
effective in enhancing physiological performance, plant
growth, root and shoot biomass, symbiotic performance,
energy production, osmoregulation, Na* sequestration,
and ion homeostasis under salt-stressed conditions [30,
48,110, 111, 123, 125, 157, 160, 219].

Role of Endophytes in the Management
of Biotic Stress

Plants are often exposed to harmful molecules produced
by microorganisms. These molecules alter plant metabo-
lism, causing diseases and significant crop loss [53, 76,
217]. Beneficial interactions between plants and microbes
play an important role in plant protection against phy-
topathogens. Plant-beneficial microorganisms release elic-
itors that alter biochemical and physiological plant prop-
erties in changing environments [5, 34, 99]. Plants have

@ Springer

physical and chemical barriers able to react to pathogens:
they activate signal transduction in response to pathogen
attacks directed to induce defenses. Important mechanisms
of tolerance to biotic and abiotic stress are ROS produc-
tion, antioxidative defense, and oxidative burst [72, 87,
151, 218, 261]. Like rhizosphere microbes, endophytes
trigger direct and indirect mechanisms of disease resist-
ance (Fig. 6). Direct mechanisms include the production
of antimicrobial compounds and the lytic enzymes of the
cell wall of fungi are capable of inhibiting plant patho-
gen growth and act as biological controls (Table 2). For
example, a study suggested that chitinase produced by
endophytic Streptomyces sp. can control plant pathogenic
fungi [187].

Many fungal and bacterial endophytes produce antimi-
crobial compounds with strong antifungal and antibacterial
activities that could be antagonistic to plant pathogens [7,
51, 108, 141, 142, 145, 155, 228]. For example, endophytes
Pseudomonas sp. isolated from Artemisia sp. roots (Aster-
aceae) known to produce the antibiotic DAPG (2,4-dia-
cetylphloroglucinol) can also induce the defense of plants
against pathogens such as Verticillium dahliae, Colletotri-
chum gloeosporioides, Fusarium oxysporum, and Phytoph-
thora capsici (Table 2) [39]. In addition, the DAPG-produc-
ing bacterium Paracoccus halophilus G062 can aggressively
colonize stems and leaves, and further suppress pathogen
establishment [10]. Populus trichocarpa and Salix sitchensis
(both Salicaceae) are dominant endophytes taxonomically
affiliated with Burkholderia, Rahnella, Pseudomonas, and
Curtobacterium genera. These genera are well known for
producing antifungal compounds (e.g., occidiofungin and
hydrogen cyanide) with proven biocontrol activities against
soil-borne plant pathogens, including Fusarium culmorum,
Rhizoctonia solani AG-8, Pythium ultimum, and Gaeumann-
omyces graminis var. tritici [103].

Like bacterial endophytes, it has been reported that fungal
endophytes produce antimicrobial compounds. For instance,
Soliman et al. [220] reported that the Paraconiothyrium
endophyte strain SSMO0O01 inhibits the growth of Heteroba-
sidion annosum, Phaeolus schweinitzii, and Perenniporia
subacida wood-decaying fungal species. Furthermore, the
3,11,12-trihydroxycadalene (sesquiterpenes derivatives) pro-
duced from the endophytic fungus Phomopis cassiae iso-
lated from Senna spectabilis (DC.) H.S.Irwin & Barneby
(= Cassia spectabilis DC., Fabaceae) has been reported as
a strong antifungal agent against Cladosporium cladospori-
oides and C. sphaerospermum [213]. Similarly, Flueggea
suffruticosa (= Securinega suffruticosa, Phyllanthaceae) and
Cucurbita pepo (Cucurbitaceae) were colonized by fungal
endophytic isolates that inhibited the growth of respective
pathogens of plants [45, 235].

A variety of microbial phyla, including Pseudomonas
sp., Bacillus sp., and Trichoderma sp., have been shown to
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lead to systemic resistance in plants against pathogen attacks
[117, 150, 168, 175, 184]. Microorganisms activate defense
reaction mechanisms that involve the induction of systemic
acquired resistance (SAR) and systemic resistance (ISR)
pathways. SAR is activated by pathogen infection, which is
connected with the activation of salicylic acid signaling and
the accumulation of pathogenesis-related proteins (PR). For
example, activation of B-1,3-glucanase (PR 2) was increased
in oilseed rape infected with Plasmodiophora brassicae
after colonization with Heteroconium chaetospira, a dark
septate endophyte [120]. Similarly, the endophyte Fusarium
solani, recovered from tomato, triggered ISR across the Sep-
toria lycopersici tomato foliar pathogen and activated the
expressions of PR7 and PRS in roots [106]. Experimental
studies on resistance induction mediated by the endophyte
Serendipita indica revealed that Blumeria graminis f. sp.
hordei inoculation resulted in induction of gene expressions
(notably Hsp70, PR1, PR2, and PRS, and barley chemically
induced 7 (BCI-7)) in barley foliage, which is supposed to
be involved in various functions including defense reactions
and protein synthesis and apoptosis [158].

Role of Endophytic Microorganisms
in Phytoremediation

Phytoremediation of Heavy Metals

Currently, the management of environmental pollutants
based on living agents has achieved considerable progress
worldwide. Pollutant removal by photosynthetic organ-
isms (e.g., phytoremediation) has emerged as an attractive
and light-driven decontamination technique and also an
emerging green sustainable technology [44, 63, 65, 89,
118, 185, 221, 226, 233, 236]. However, the low multipli-
cation rate along with the low amount of cell mass, phyto-
toxic impacts, and release of pollutants of gaseous nature
are the main drawbacks associated with phytoremediation
technology, making the process inefficient at field scale
[26, 73, 242, 252]. The solution to these limitations lies
in the development of microbe-assisted phytoremediation.
Previous studies have illustrated the use of rhizosphere-
dwelling microbes to improve pollutant removal [77, 81,
190, 250, 275]. Furthermore, it was suggested that endo-
phytes could facilitate phytoremediation more efficiently
[44, 112, 154].

The negative impacts of heavy metals on plants can
be described as reduced crop productivity resulting from
changes in growth rate, nutrient accumulation capacity, and
leaf area. In addition, heavy metal pollutions can cause con-
siderable changes in community structure of diverse micro-
bial populations and function associated with host plants

[29, 42, 224]. Numerous studies have discussed the impact
of various heavy metals on the diversity of endophytes, bio-
logical processes, and biomass production [57, 68, 123, 125,
127, 172].

However, current studies dealing with the interactions
between hyperaccumulator plants and endophytes have
attracted attention worldwide because of inherent pollutant
removal ability and possibilities for large-scale applications
[91, 109, 123, 125, 130, 131, 197, 225, 243]. Furthermore,
hyperaccumulators sequester a significantly high content
of hazardous heavy metals and therefore create the internal
environmental conditions suitable for the development of
metal resistance in endophytes exposed to high heavy metal
concentrations [172].

In terms of endophytic application, various metal-
resistant endophytic bacteria were isolated from leaves,
stem, and roots of plant hyperaccumulators, including
Thlaspi caerulescens, Th. goesingense, Alyssum bertolo-
nii (all Brassicaceae), and Nicotiana tabacum (Solan-
aceae) (Table 3). The association of these endophytes
with hyperaccumulators suggests the widespread habitat
choice of these microbes. For example, Thlaspi goes-
ingense stems under field conditions harbor different
bacteria including a-proteobacteria, y-proteobacteria,
Acidobacterium sp., Bacillus sp., Blastococcus sp., Cur-
tobacterium sp., Desulfitobacterium metallireductans,
Flavobacterium sp., Holophaga sp., M. mesophilicum,
M. extorquens, Plantibacter flavus, Propionibacterium
acnes, Rhodococcus sp., and Sphingomonas sp. These
isolates were shown to be resistant to nickel (Ni) con-
centrations between 5 and 12 mM [95]. The same results
were obtained in the field site experiment that the total
Ni uptake by Alyssum serpyllifolium (Brassicaceae)
was significantly enhanced by heavy metal-resistant
endophytic bacterial strains Microbacterium sp., Pseu-
domonas sp., and Staphylococcus sp. [24]. In the line of
the same experiment, Ma et al. [134] found that inocula-
tion with the plant growth—promoting Pseudomonas sp.
A3R3 endophytic bacterium significantly increased Ni
uptake by 10% in A. serpyllifolium. In a later experi-
ment, Achromobacter piechaudii was documented to
sequester more than 60% of zinc (Zn), lead (Pb), and
cadmium (Cd) from the corresponding hyperaccumula-
tors, namely, Sedum plumbizincicola (Crassulaceae),
Alnus firma (Betulaceae), and Solanum nigrum (Solan-
aceae), respectively [135, 136]. Similarly, another study
reported arsenic (As)-tolerant Bacillus sp. endophytes
isolated from the leaves, stem, and root of Pteris vittata
and P. multifida (Pteridaceae) [270] and concluded that
bacteria with less biomass had greater tolerance to As.
Surprisingly, fungal endophytes Fusarium sp. CBRF44,
Alternaria sp. CBSF68, and Penicillium sp. CBRF65

@ Springer



1466

U. Anand et al.

isolated from the hyperaccumulators Brassica napus
(Brassicaceae) showed significant tolerance to Cd and
Pb [211]. This finding supported the result of Zhu et al.
[272] where dark septate endophytes Phialophora mustea
inoculated tomato roots established remarkable tolerance
to Cd and Zn and promoted the tomato seedlings’ growth
under all metal stresses tested.

In addition, evidence of phytoremediation of Pb by
plants grown in soils contaminated by heavy metals has also
been confirmed. [209, 210] reported that Brassica napus
inoculated with Pseudomonas fluorescens G10 improved
the total uptake of Pb from 76 to 131% of the shoot, while
it was 59 to 80% (p <0.05) for Microbacterium sp. G16,
respectively. Mastretta et al. [148] supported the same
finding and reported that Sanguibacter sp. Cd-resistant
endophyte inoculated Nicotiana tabacum (Solanaceae)
increased Cd concentration in shoot tissues. Yamaji et al.
[257] revealed that Clethra barbinervis (Clethraceae) could
tolerate high metal concentrations (Zn, 21-2600 pg/g; Cu,
2-1123 pg/g; Pb, 32-1506 pg/g) due to the support of root
fungal endophytes, including Rhizodermea veluwensis,
Phialocephala fortinii, and Rhizoscyphus sp. through K
uptake promotion, growth enhancement, and decrease of
heavy metal concentrations. Further studies revealed that
the metal resistance mechanisms in endophytes surviving
within hyperaccumulators can be attributed to activities
such as metal extracellular precipitation, intracellular stor-
age and sequestration [20, 212], conversion of hazardous

metal into less or non-hazardous forms [270], and surface
binding/detachment of metal [82, 130, 131].

In addition, some endophytes were isolated from dif-
ferent parts of non-hyperaccumulators, such as Salix
caprea (Salicaceae) and Oryza sativa (Poaceae). The
reported metal-resistant endophytes belonged to numer-
ous taxa, including Burkholderia sp., Methylobacterium
oryzae, Frigoribacterium sp., Microbacterium sp., and
Sphingomonas sp. (Table 3). Kuffner et al. [115] revealed
that inoculation of Salix caprea with Microbacterium
sp., Frigoribacterium sp., Sphingomonas sp., and Methy-
lobacterium sp. increase leaves Cd and Zn accumula-
tion. Sharma et al. [207] concluded that seed endophytes
FXZ2 inoculation in Dysphania ambrosioides induced
increased Zn/Cd tolerance by changing Zn/Cd speciation
in rhizospheric soils, as well as exogenous production
of phytohormones to promote growth, lowering oxida-
tive damage while enhancing antioxidant properties.
Enhanced metal bioaccumulation in the inoculated plant
was attributed to siderophores, indole acetic acid, and
ACC deaminase secretion.

In general, the basic mechanism of metal adsorption
involves two distinct steps: (1) passive binding/loading of
metals onto the wall of dead/inactive cell without integrat-
ing energy [239] and (2) active removal (bioaccumulation),
involving the movement of metals through the plasma mem-
brane driven by energy input and followed by intracellular
storage [143].

Fig.6 An overview of plant
response to biotic stress (left):
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. 4

activity of biotic
stress factors

Harmful to agriculture,
biodiversity and environment

Beneficial for agriculture,
biodiversity and environment
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[120]

Heteroconium chaetospira PR2 (p-1,3-glucanase) Club rot; Plasmodiophora

Roots of Chinese cabbage

Lab experiment; British Colum-

brassicae

bia, Canada

Root tissue of tomato Fusarium solani PRS5 and PR7 Fusarium oxysporum [106]

Lab experiment; Institute of

Environmental Biotechnology,

Greece

[158]

PR1, PR2, and PR5 Powdery mildew; Blumeria

Piriformospora indica

Roots

Lab experiment; Research

graminis f. sp. hordei

Center for BioSystems, Justus
Liebig University, Giessen,

Germany

Phytoremediation of Water and Soil Contaminated
with Organic Pollutants

Industrialization and intensive agriculture are the main
sources of hazardous contaminants that have deteriorated the
quality of the natural ecosystem [15]. Even a small quantity
of contaminants can reduce plant growth performance cou-
pled with significant changes in soil microbe physiological
processes, thus affecting critical soil biological processes
[1, 139].

Phytoremediation can be used to detoxify or stabilize
organic and inorganic pollutants. It is considered to be
the most promising technology because it is the least
disturbed at the site, cheap, and eco-friendly in nature
compared to conventional remediation technologies [166,
247, 258]. Despite public acceptance, the application in
the field of phytoremediation faces several obstacles,
such as low biomass and slow growth, volatile con-
taminant evapotranspiration, and plant toxicity. Further
research experiments revealed that microbe-assisted
phytoremediation enhances the efficiency of phytoreme-
diation due to its plant growth—promoting activity (e.g.,
siderophore production) [247]. Compared to rhizosphere
microbes, endophytic microbes have been considered a
better candidate for the remediation process due to their
internal inhabitation that offers the opportunity to adap-
tation inside host cells [16, 262]. In addition, once plant
growth—promoting endophytes (PGPEs) are formed in
plant tissues, they are less susceptible to soil conditions’
changes but depend more on plant tissues and physiologi-
cal status, such as plant health, plant growth stage, and
the nutritional state [74, 191, 194, 200, 201].

Generally, the endophyte-associated phytoremediation
process involves three distinct steps: (1) development,
plant growth, and biomass production; (2) availability of
pollutants to the host system; (3) rapid increase in endo-
phyte population responsible for contaminant degrada-
tion. So far, many endophytic microorganisms are isolated
from contaminated and non-contaminated soils capable of
degrading herbicides and polyaromatic hydrocarbons pol-
lutants (Table 4). Moore et al. (159) found that bacterial
genera belonging to Arthrobacter, Pseudomonas, Bacil-
lus, and Enterobacter recovered from different organs of
poplar inhabiting near the automobile industries could
remove a volatile organic compound BTEX, a component
of petroleum product [159]. The mineralization of the her-
bicide 2,4-D was also documented by Pseudomonas putida
VM1450 [75]. The results confirmed that 2,4-D was not
detected in the soil of inoculated plants exposed to 7 or
13 mg of 2,4-D. Pseudomonas ITRI53 inoculated Lolium
multiflorum var. taurus greatly degrades 68% of diesel-con-
taminated soil compared to control treatments [17]. Other
bacterial endophytes such as Achromobacter xylosoxidans
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Table 3 (continued)

&

Heavy metal tolerance capacity References

Heavy metals

Metal-resistant endophytes

Plant parts

Hyperaccumulators (H)/non-
hyperaccumulators (NH)

Site

Springer

Showed Ni and Cd tolerance up [140]

to 3 mm concentration

Ni, Cd
Zn/Cd

Burkholderia sp. and Methylo-

NM

Oryza sativa L. (NH)

Greenhouse experiment

[207]

bacterium oryzae
Fungal endophyte FXZ2 Epico-

Dysphania ambrosioides

Pb—Zn mining sites of Huize

FXZ2 inoculation in Dyspha-

County, Yunnan Province,

Southwest China

nia ambrosioides induced
increased Zn/Cd tolerance

ccum nigrum

by exogenous production of
phytohormones to promote

growth, lowering oxidative
damage while enhancing
antioxidant properties

F3B and Pantoea sp. noted similar degradation capac-
ity of diesel/petroleum products ITSI10 and inoculated
in Arabidopsis thaliana and Italian ryegrass under con-
trolled conditions, respectively [8, 90, 262]. Endophytic
bacteria have also been studied to remove other aromatic
compounds such as naphthalene and toluene. The inocu-
lated pea plant with P. putida VM 1441 (pNAH7) degraded
40% more naphthalene than the non-inoculated plant [74].
The toluene volatilization experiment suggested less tolu-
ene released from the leaves of the inoculated poplar plant
with B. cepacia FX2 [244, 249]. Moreover, pyrene degra-
dation increased by 43-65% in the live Enterobacter sp.
12J1 inoculated planted soils compared to dead bacterium
inoculated planted soils [209, 210]. Furthermore, microbial
species that catalyze the degradation of volatile organic
contaminants, including trichloroethylene (TCE) degrading
microbes, are described from Quercus robur (Fagaceae),
Fraxinus excelsior (Oleaceae), and poplar growing in sites
enriched with TCE [104, 248, 251]. The results of all these
studies indicated that endophytic inoculation such as B.
cepacia VM 1468, P. putida W619-TCE, and Enterobacter
PDN3, respectively, highly resist the release of TCE vapor
in the environment, indicating the increased degradation
efficiency.

In addition to soil remediation, plant endophyte asso-
ciations have also been deployed to manage ground and
surface water contaminated with organic contaminants
(Table 5). An experimental investigation described a more
than 50-70% reduction in toluene volatilization through
inoculated yellow lupine with engineered B. cepacia VM
1330 compared to control plants grown in a hydroponic
culture system [22]. Taghavi et al. [227] revealed that
B. cepacia VM1468 inoculated poplar plants released
five times less toluene in the air through the leaves.
Furthermore, this study also concluded that horizontal
gene transfer in natural endophytes could improve the
phytoremediation of environmental contaminants. In
addition, genetic modification of endophytes carrying
foreign genes with degradation capacity has been proven
to improve the phytoremediation of contaminants of aro-
matic and organic substances. An engineered P. putida
W619TCE endophytic bacterium inoculated to poplar
cuttings alleviated growth promotion and reduced TCE
toxicity when grown in water that was contaminated with
TCE [251].

Comprehensive research on endophytes proposed that the
use of bacteria (preferably endophytes) that promote both
plant growth and pollutant-degrading activities is superior
to the use of bacteria that only promote plant growth or have
pollutant-degrading activities. Therefore, an attempt is made
to isolate and characterize endophytic bacteria that have
plant growth—promoting and pollutant-degrading activities
when growing on a contaminated site.
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Conclusion and Future Perspectives
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The application of microbial endophytes in agriculture, as well as
environmental sustainability, is a growing research field. During
the past two and a half decades, many studies have revealed rising
interest in endophytic microbes. Endophytic microbes are known
to improve host plant performance under abiotic and biotic stress
conditions by altering the plants’ response. Recent advances in
biotechnology and bioinformatic tools such as CRISPR (Clus-
tered Regularly Interspaced Palindromic Repeats)—Cas system,
RNA interference (RNA1), metabolomics, and next-generation
sequencing systems have made the possibility of studying endo-
phytes at the molecular level [167]. The present concept of iso-
lation, purification, and characterization of endophytes and the
research connecting biology to chemistry is now being devel-
oped. This opens new interdisciplinary dimensions and actively
allows bachelor and master research students to participate in
this domain of research. Research must focus on microbial endo-
phytes to come up with new ideas to improve crop productivity
on a pilot scale. Endophytes play an important role in produc-
ing a wide variety of naturally occurring secondary metabolites
(such as tyrosol, saadamycin, and munumbicins) showing the
industrial application in pharmaceutics and thus human health. In
this regard, researchers from all over the world are continuously
exploring hidden endophytic microbes for novel potent bioactive
compounds that can be used as potential therapeutics. Figure 7
shows the importance of the biological activities of endophytic
metabolites. Endophytes are reported to be a warehouse of new
metabolites that can be widely used as antimicrobial, antican-
cer, immunosuppressant, antiarthritic, and anti-insect drugs.
Although several bioactive compounds produced by endophytes,
such as camptothecin, vinblastine, hypericin, and podophyllo-
toxin, have already been commercialized, novel bioactive com-
pounds seem promising in the case of most pathogenic micro-
organisms in overcoming the problem of antibiotic resistance.

Taken together, new bioactive compounds emitted by
endophytes, particularly endophytic actinomycetes, could
make a significant contribution to the current and future
challenges of agriculture, the environment, and medicine.
To isolate and characterize new endophytes with specific
features that could be useful for crop production, compre-
hensive bioprospecting research of endophytic microbes
from various ecological niches (e.g., harsh habitats, the
marine environment, etc.) is required. We anticipate a
shift in practice in the future, with a greater emphasis
on optimizing the interaction between plants and soil
microorganisms and endophytes. However, molecular
mechanisms that explain the interaction between plants
and endophytes have yet to be discovered. They will open
a new door to the isolation and characterization of new
molecules for humans and provide a new way to improve
crops and environmental sustainability.

Compared to control plants and plants inoculated with [22]

B. cepacia BU0072, yellow lupine inoculated with
cessful Ni uptake and reduced TCE evaporation by

compared to non-inoculated plants or plants inocu-
90% in contaminated groundwater

released about 5 times less toluene from the leaves
lated with B. cepacia BU61

B. cepacia VM1330 released 50-70% less toluene

in the upper compartment
phytotoxicity of TCE when grown hydroponically

Poplar cuttings inoculated with B. cepacia VM 1468
induced plant growth promotion and reduced the

Inoculation of B. cepacia VM 1468 resulted in suc-
Inoculation of Pseudomonas putida W619-TCE

Organic pollutants Degradation capacity

Toluene
TCE and Ni
TCE

VM1330, and B. cepacia G4
B. cepacia VM 1468, B. cepacia BU61 Toluene

B. cepacia VM 1468
Pseudomonas putida W619-TCE

Endophytes
Root and shoot B. cepacia BU0O072, B. cepacia

Plant parts

Populus sp. (Salicaceae)
Populus sp. (Salicaceae)

Yellow lupine
Yellow lupine

Host

ment; Hasselt Uni-
versity campus;

ment; Hasselt Uni-
Belgium

versity campus;

Belgium

Table 5 Bacterial endophytes involved in the phytoremediation of organic pollutants from contaminated water (a summary of the endophyte’s potential for deterioration is also provided)

In vitro experiment
In vitro experiment

Greenhouse experi-
Greenhouse experi-

Site

(5
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Fig.7 Biological activities of
importance to humans present
in endophytes’ metabolites.
Endophytes have been reported
to have the ability to produce
novel metabolites which can
serve as anticancer agents,
glucosidase inhibitors (antidia-
betic), and immunosuppressive
agents; some of these endo-
phytes also show antioxidant,
antituberculosis, anti-inflamma-
tory, and antimalarial activ-
ity, and serve as inhibitors of
viruses

Anticancer
Activity

Antimalarial
Activity

Immunosuppressive
Activity
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