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Abstract
The amphibian skin microbiome is important in maintaining host health, but is vulnerable to perturbation from changes in 
biotic and abiotic conditions. Anthropogenic habitat disturbance and emerging infectious diseases are both potential dis-
rupters of the skin microbiome, in addition to being major drivers of amphibian decline globally. We investigated how host 
environment (hydrology, habitat disturbance), pathogen presence, and host biology (life stage) impact the skin microbiome 
of wild Dhofar toads (Duttaphrynus dhufarensis) in Oman. We detected ranavirus (but not Batrachochytrium dendroba-
tidis) across all sampling sites, constituting the first report of this pathogen in Oman, with reduced prevalence in disturbed 
sites. We show that skin microbiome beta diversity is driven by host life stage, water source, and habitat disturbance, but 
not ranavirus infection. Finally, although trends in bacterial diversity and differential abundance were evident in disturbed 
versus undisturbed sites, bacterial co-occurrence patterns determined through network analyses revealed high site specific-
ity. Our results therefore provide support for amphibian skin microbiome diversity and taxa abundance being associated 
with habitat disturbance, with bacterial co-occurrence (and likely broader aspects of microbial community ecology) being 
largely site specific.
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Introduction 

The skin microbiome of vertebrates such as amphibians 
has gained increasing recognition for its importance in 
broader aspects of host health including maintaining sur-
face integrity [1], educating the immune system [2–4], and 
interacting with invading pathogens [5, 6]. As the primary 
interface between the host and its environment, the skin and 
its diverse microbiota are influenced by myriad variables 
including host factors [7], diet [8], the environment [9–12], 
and microbial invaders [11, 13–18]. Changes to skin micro-
bial community structure driven by perturbations to any one 
of these factors (or their interaction) can therefore have pro-
found consequences for host health [19].

Major threats to amphibians include habitat disturbance 
and emerging infectious diseases, which have contributed 
to the global decline of this vertebrate group, with over 
40% of species at risk of extinction [20–25]. Anthropo-
genic disturbances such as environmental contamination or 
habitat disruption not only provide dispersal opportunities 
for environmental microbes [26], but also are major stress-
ors on amphibians that can drive perturbations of the skin 
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microbiome [12, 27–30] as well as influence disease epide-
miology [31, 32]. For example, environmental contamina-
tion through run-off from livestock farming can promote the 
growth of faecal coliform bacteria, subsequently altering the 
skin microbiome of resident amphibians by colonisation of 
pathogen-facilitating bacteria, that in turn have been linked 
with increased prevalence of the fungal pathogen Batra-
chochytrium dendrobatidis (Bd) [30]. Conversely, another 
study found that habitat disturbance increased skin micro-
biome dispersion, but was linked to lower Bd prevalence 
[33]. Deciphering the impacts of biotic and abiotic variables 
(including habitat disturbance) on the microbiome and dis-
ease ecology is therefore integral to our understanding of 
amphibian health and conservation [34]. The sensitivity of 
amphibians to environmental change also makes them use-
ful ecological indicators [35, 36]. Further, the skin microbi-
ome’s close coupling with the environment lends itself as a 
novel diagnostic target, providing a non-invasive snapshot of 
host health, as well as responding to subtle disturbances to 
the wider ecosystem that might otherwise go unnoticed [37].

We investigated how host biology (life stage), environ-
mental parameters (local hydrology, habitat disturbance), 
and pathogen presence shape the skin microbiome of Dhofar 
toads (Duttaphrynus dhufarensis) in the Dhofar Mountains 
of Oman. This toad is one of two amphibian species present 
in Oman and the only one present in the south. To investi-
gate disease epidemiology, we surveyed wild populations 
of D. dhufarensis for Batrachochytrium dendrobatidis (Bd) 
and ranavirus. Whilst these pathogens have caused severe 
declines in wild amphibians [25, 38–40], their presence on 
the Arabian peninsula has been overlooked [41, 42], with 
no prior reports of either pathogen in Oman. We assigned 
major water sources to the sampling sites, in addition to 
estimating anthropogenic disturbance by quantifying roads 
and built-up area using OpenStreetMap (OSM) [43] and 
World Settlement Footprint (WSM) [44] data. Importantly, 
prior studies have demonstrated that water source and habitat 
disturbance can influence the amphibian skin microbiome, 
yet much remains to be understood regarding their relative 
importance in shaping the microbiome and disease when 
considered together [12, 27, 45, 46].

We found that ranavirus but not Bd is prevalent across 
wild D. dhufarensis locations, with reduced prevalence in 
disturbed sites, and representing the first detection of rana-
virus in Oman. We further demonstrate that host life stage 
exhibits significantly higher alpha diversity in adults com-
pared to larvae. Among post-metamorphic animals, habitat 
disturbance, water source, and ranavirus infection were not 
associated with bacterial alpha diversity. Conversely, we 
found that dermal bacterial beta diversity was strongly struc-
tured by water source, habitat disturbance, and life stage, but 
not ranavirus presence. Despite differences in beta diversity 
and taxa abundance between disturbed and undisturbed sites, 

we show that bacterial co-occurrence as measured through 
correlation networks was largely site specific, with very few 
shared bacterial associations across sites. Our results there-
fore progress our understanding of the key parameters driv-
ing dermal bacterial community composition in an amphib-
ian species from a semi-arid habitat, and further raise the 
potential of the amphibian skin microbiome as a novel tool 
in measuring wider ecosystem health.

Methods

Field Sampling

Individuals of the Dhofar toad (Duttaphrynus dhufaren-
sis) were sampled from six sites in the Dhofar Mountains, 
Oman, in August 2017 (Fig. 1A). The sampling sites were 
situated in ephemeral water sources or wadis (Wadi Na’ar, 
Wadi Adaunib), groundwater spring sites (Ain Hamran Ain 
Athoom), in an underground cave (Qashrab Cave Interior), 
and directly outside the entrance to the underground cave 
(Qashrab Cave Exterior). Our sampling primarily focused on 
post-metamorphic animals (adults, both males and females, 
who gathered for reproduction, snout to vent length range 
of 5.5–7 cm), with exception of Wadi Na’ar where larvae 
(approximately 1–2 days old), were also sampled to allow 
for comparison of life stage effects in the microbiome. To 
sample the microbiome, post-metamorphic and larval D. 
dhufarensis were captured (either with a net or by hand 
with nitrile gloves) and swabbed over the head, tail, and 
ventral abdomen using single sterile MW100 rayon tipped 
dry swabs (MWE Medical Wire, Corsham, UK). In post-
metamorphic animals, Batrachochytrium dendrobatidis 
(Bd) and ranavirus (RV) were sampled by rolling the swab 
tip over the head, tail, ventral abdomen, and cloaca. In 
larvae, Bd was sampled from the keratinised mouthparts. 
Environmental water microbiome was sampled by filtering 
250 mL of environmental water on a sterile Millipore cel-
lulose acetate filter (0.22 µm) with a hand vacuum pump. We 
strictly applied international standards on hygiene protocol 
to prevent dissemination of pathogens when working with 
amphibians [47].

Hydrological Profiling

The six sampling sites are fed by precipitation and river run-
off, as well as by groundwater springs. We classified the two 
wadi sampling sites (Wadi Na'ar and Wadi Adaunib) that are 
mostly supplied by surface water as “Surface Water” fed and 
Ain Hamran and Ain Athoom as “Ground/Surface water” 
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fed, whilst we classified Qashrab Cave Exterior and Interior 
as being “Groundwater” fed.

Anthropogenic Disturbance

The Dhofar Mountains are home to the unique semi-arid 
Dhofar cloud forest [48]. Due to anthropogenic pressures 
such as livestock grazing and infrastructure developments, 
the cloud forest now has a patchy distribution throughout the 
Dhofar mountain range [49]. Road network data from Open-
StreetMap (OSM) used to calculate road density (road length 
[m] per  km2) were extracted for a 2 km radius around each 
sampling site. For the same 2 km radius, built-up area was 
extracted from the World Settlement Footprint (WSF 2019) 
dataset [44]. OSM data were downloaded through GeoFab-
rik (http:// downl oad. geofa brik. de/ asia/ gcc- states. html) in 
August 2019. We grouped sites as disturbed or undisturbed 

based on high or low road density and built-up area, respec-
tively (Table 1). Sites classified as undisturbed were Wadi 
Na’ar, Wadi Adaunib, and Ain Athoom. The disturbed sites 
included Qashrab Cave Exterior, Qashrab Cave Interior, and 
Ain Hamran.

Pathogen Detection

Genomic DNA from Bd swabs was extracted using a bead-
beating protocol [50] before being diluted 1/10 in distilled 
water for subsequent qPCR amplification. Samples were run 
along with negative controls  (H20, TE buffer) and positive 
controls at dilutions of 100, 10, 1, and 0.1 genomic equiva-
lents (GE). The raw genomic equivalents output was mul-
tiplied by 150 to account for the dilution factor of 1:150, 
giving a relative measure in terms of genomic equivalents 
(GE). The presence of ranavirus was assayed by real-time 
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PCR [51] with the inclusion of a negative control  (H2O, TE 
buffer) and positive controls at dilutions of 3, 30, 300, and 
3000 major capsid protein (MCP) gene equivalents. Raw 
MCP output was multiplied by 250 to account for the dilu-
tion factor of 1:250. A sample was considered positive if the 
amplification curve was sigmoidal with an MCP/GE value 
greater than zero.

16S rRNA Gene Sequencing

Skin bacterial communities and water samples were ana-
lysed using 16S rRNA gene amplicon sequencing. DNA 
was extracted using the Macherey Nagel Nucleospin soil 
kit (Macherey–Nagel GmbH and Co. KG, Düren, Germany) 
using the established protocol, and the hypervariable V3-V4 
region of the bacterial 16S gene was amplified in triplicate 
using primers with overhang adaptors. Each 25 µL reac-
tion consisted of 12.5 µL KAPA HiFi HotStart ReadyMix 
(KAPA Biosystems, Wilmington, MA, USA), 5 µL forward 
and reverse primers (1 M), and 2.5 µL template. PCR condi-
tions were 95 °C for 180 s, followed by 25 cycles of 95 °C 
for 30 s, 60 °C for 15 s, 72 °C for 45 s, and a final extension 
of 72 °C for 120 s. PCR replicates from each sample were 
pooled and purified using solid phase reversible immobilisa-
tion (SPRI) beads (Agencourt AMPure XT, Agencourt Bio-
science Corporation, Beverly, MA, USA). All samples and 
negative controls (either swabs or filters going through the 
same extraction procedures as the samples) were visualised 

using gel electrophoresis. Dual indices, provided by the 
Illumina Nextera Index Kit  (Illumina, Inc., San Diego, 
CA, USA), were attached to the purified amplicons using 
PCR. Each 25 µL reaction consisted of 12.5 µL Kapa HiFi 
HotStart ReadyMix, 1 µL forward and reverse primers 
(1 µM), 0.5 µL BSA, 5 µL PCR-grade water, and 5 µL tem-
plate. PCR conditions were 95 °C for 180 s, followed by 10 
cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s, and 
a final extension of 72 °C for 300 s. PCR product was puri-
fied and visualised as described above. DNA concentrations 
were quantified using Qubit fluorometric quantification (Life 
Technologies, California, USA), and samples were diluted 
and pooled at equimolar concentrations. Sequencing was 
performed on an Illumina MiSeq using a MiSeq Reagent 
Kit v3 (600 cycle) (Illumina, Inc., San Diego, CA, USA).

Microbiome Sequence Processing and Analysis

We performed sequence processing in DADA2 [52] v1.16.0 
using the default pipeline to infer amplicon sequence 
variants (ASVs). Primers were removed, and reads were 
trimmed. Sequence data was quality filtered by trimming 
reads at the first appearance of a base with a quality score 
of two or lower, excluding reads with non-assigned bases, 
and removing reads with an expected error rate higher than 
two. Reads matching the PhiX sequencing standard genome 
were also removed. Since data was generated across two 
sequencing runs, we learned error rates individually for 

Table 1  Summary of sites

Site Water source Buildings 
 (m2) within 
2 km

Road length 
(m) within 
2 km

Disturbance 
category

Number of 
individuals 
sampled

Number 
of infected 
individuals

Infection 
prevalence 
(%)

Average 
infection 
intensity 
(MCP)

Range (MCP)

Wadi Na’ar 
(Adults)

Surface 0 1316 Undisturbed 10 5 50.00 8.64 0.00–24.20

Wadi Na’ar 
(Larvae)

Surface 0 1316 Undisturbed 10 2 20.00 8.00 0.00–15.98

Ain Athoom 
(Adults)

Ground/sur-
face water

400 2835 Undisturbed 10 4 40.00 219.30 0.00–273.93

Wadi 
Adaunib 
(Adults)

Surface 
water

0 3226 Undisturbed 10 6 60.00 1925.66 0.00–
10,731.68

Qashrab 
Cave 
Exterior 
(Adults)

Groundwater 22,000 18,751 Disturbed 9 3 33.33 21.10 0.00–45.86

Qashrab 
Cave 
Interior 
(Adults)

Groundwater 22,000 18,751 Disturbed 10 3 30.00 106.50 0.00–110.36

Ain Hamran 
(Adults)

Groundwa-
ter/surface 
water

2600 6445 Disturbed 10 1 10.00 173.66 0.00–173.66
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each run before merging data for chimaera removal. We 
assigned taxonomy using the Silva database version 138 
[53]. A phyloseq object [54] was created for further pro-
cessing and analysis. Contaminant sequences were removed 
using the decontam package v.1.6.0 [55]. ASVs taxonomi-
cally assigned as chloroplast along with unclassified phyla 
were removed leaving a total of 29,223 ASVs (sample range: 
13,302–107,992 reads).

Statistical Analysis

Analysis of Infection Data

We examined whether there was an association between 
ranavirus infection prevalence and habitat disturbance, 
water source, or skin microbiome Shannon diversity (site 
average) using a generalised linear model with a binomially 
distributed response variable. A starting model containing 
all predictors was simplified by backward step elimination 
to obtain a minimum adequate model based on Akaike infor-
mation criterion (AIC). Significance of predictors in the final 
model was calculated using a likelihood ratio test. Bd was 
not detected in our sampling and therefore not included in 
any models.

Alpha Diversity

For analysis of alpha diversity, to mitigate the effects of 
uneven sampling [56], microbiome samples were rarefied 
to 13,302 reads (post-metamorphic animals) and 32,804 (life 
stage analysis) corresponding to the depth of the lowest read 
samples in each case. To investigate differences in the micro-
biome associated with life stage, we focussed on Wadi Na’ar 
since we sampled both larvae and post-metamorphic ani-
mals from this site. We compared bacterial Shannon diver-
sity between life stages using a t-test. To examine whether 
bacterial Shannon diversity in post-metamorphic animals 
was predicted by disturbance, ranavirus infection intensity 
 (log10 + 1 transformed), or water source, we performed a lin-
ear mixed effects model using the lme4 package [57] with 
site included as a random intercept term to account for base-
line differences among locations. Due to the relatively small 
sample sizes of each site, significance of fixed effects were 
assessed using the Kenward Rogers method in afex [58] to 
reduce type I error rate [59].

Beta Diversity and Differential Abundance Analysis

To analyse beta diversity and determine differentially 
abundant bacterial taxa, we considered the compositional 
nature of microbiome data [60]. First, to reduce the spar-
sity (abundance of zeros) in our datasets, we filtered the 
unrarefied microbiome data to include taxa with a relative 

abundance > 0.01%. We centred log ratio (CLR) transformed 
ASV abundances using the microbiome package in R [61].

We performed permutational multivariate analysis of var-
iance (PERMANOVA) on the Euclidean distance matrix of 
bacterial data using the adonis function in the vegan package 
[62] with 10,000 permutations to examine if beta diversity 
differed by disturbance, water source, and site in post-met-
amorphic animals. Since the output of adonis is dependent 
on the order of explanatory variables (a terms explanatory 
power depends on what is fitted before it), we first fitted a 
model with only site as a predictor to estimate the over-
all variance that it explained. We subsequently performed 
a multivariate model including disturbance, water source, 
and site as predictors. We also performed adonis with rana-
virus presence/absence as the the predictor and permutations 
constrained within locations using the strata argument. To 
examine whether microbiome dispersion differed based on 
variables of interest in post-metamorphic animals, we cal-
culated the within-site divergence metric of beta diversity 
based on Euclidean distance using the microbiome pack-
age [61]. Log 10 transformed divergence values were then 
fitted as a response variable in a Gaussian mixed effects 
model with disturbance and ranavirus presence/absence as 
fixed effects and site ID as a random effect. We assessed 
whether ranavirus load was associated with beta diversity 
using partial Mantel tests to correlate a distance matrix of 
 log10 + 1 ranavirus load with Euclidean distances of bacterial 
composition, whilst also accounting for geographic distance 
between sites. PERMANOVA and beta dispersion were also 
performed with life stage as a predictor.

To identify taxa driving differences in beta diversity 
based on disturbance or life stage, we used ALDEx2 on the 
top 0.01% of ASVs [63]. To compare compositional simi-
larities between sites and categories of interest (e.g. host 
and environment or life stage), we calculated the number 
of ASVs that were shared among sites, using the top 0.01% 
of untransformed ASVs, and visualised the results using 
UpSetR [64].

Network Analysis

We performed network analysis on the top 0.01% of ASVs 
using the R package NetCoMi [65]. Using CLR-transformed 
ASV data, we calculated Spearman correlations between 
taxa and visualised interactions with ρ > 0.7 (strong posi-
tive interactions) or ρ < − 0.7 (strong negative interactions). 
Spearman’s correlation was selected as it can consider 
non-linear relationships between taxa (a common feature 
of microbial communities), which many other common 
co-occurrence methods do not [66]. Network properties 
including global network parameters and node topologies 
were estimated using the netAnalyze function. We also 
compared keystone/hub taxa between sites/life stage, which 
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were identified based on high closeness centrality and node 
degree values (greater than the 90% quantile of the fitted 
log-normal distribution of all nodes) [67, 68]. UpsetR [64] 
was used to calculate common edges among site networks.

Results

Pathogen Presence

Ranavirus was present at all sites, with great prevalence in 
Wadi Adaunib (Table 1). The average ranavirus infection 
intensity across all post-metamorphic individuals sampled 
was 220.86 MCP, with an average site prevalence of 37% 
across post-metamorphic animals and 20% in the single 
larvale site. The best binomial GLM model (lowest AIC) 
included disturbance only as a predictor and showed that 
undisturbed sites had significantly higher ranavirus preva-
lence than disturbed sites (χ2

1 = 4.292, p = 0.038). Bd was 
not detected in any animals sampled.

Host Environment and Anthropogenic Disturbance 
Shape the Adult Microbiome

Bacterial alpha diversity in post-metamorphic animals did 
not differ significantly based on disturbance, water source, 
or ranavirus infection load (LMM, p > 0.05). Host location 
was significant in explaining variance in beta diversity in 
both univariate (PERMANOVA, pseudo-F(5,53) = 12.484, 
R2 = 0.541, p < 0.001) and multivariate (PERMANOVA, 
pseudo-F(2,53) = 11.192, R2 = 0.194, p < 0.001) models. 
Anthropogenic disturbance and water source were also 
significant in explaining beta diversity (PERMANOVA, 
disturbance: pseudo-F(1,53) = 11.284, R2 = 0.098, p < 0.001; 
water source: pseudo-F(2,53) = 14.376, R2 = 0.249, p < 0.001, 
Fig. 1B and C). Ranavirus presence did not drive significant 
differences in beta diversity (PERMANOVA, ranavirus pres-
ence: pseudo-F(1,57) = 1.200, R2 = 0.021, p > 0.05, SI Fig. 1). 
Beta diversity divergence was not significantly associated 
with disturbance or ranavirus presence (LMM, p < 0.05). 
We found no significant correlation between ranavirus infec-
tion load and bacterial beta diversity (partial Mantel test, 
p > 0.05).

Differential abundance analysis using ALDEx2 based 
on habitat disturbance yielded a single ASV belonging to 
the Chroococcidiopsis genus which was associated with 
disturbance (SI Table 1, SI Fig. 2). Across all locations, a 
small subset of ASVs were common to both environmental 
samples and post-metamorphic animals (range: 7–28%) (SI 
Fig. 3). Analysis of ASVs among post-metamorphic ani-
mals revealed that Qashrab Cave Interior, Wadi Adaunib, 
and Wadi Na’ar had the highest number of common ASVs 
(80), with 56 ASVs common to all locations (SI Fig. 4). No 

ASVs were unique to all three undisturbed locations; how-
ever, 15 ASVs were present across all disturbed locations but 
were not detected in the undisturbed locations (SI Fig. 4).

We inferred bacterial associations on the amphibian skin 
based on Spearman correlations (SI Fig. 5). Despite hetero-
geneity in the data in terms of shared ASVs among locations 
and differences in community composition, we found that 
networks for post-metamorphic animals from each location 
were broadly similar in terms of the number of nodes (range: 
399–575), edges (range: 5198–22,357), and topological fea-
tures (Table 2). Networks across all post-metamorphic loca-
tions were dominated by positive correlations between bac-
terial taxa (% negative edges range: 8.66–25.85%) (Table 2). 
Networks for each location were all relatively poorly dense 
(0.06547–0.20459 edge density) and showed compara-
ble clustering coefficients (0.49756–0.71159). Modularity 
ranged between 0.24890 and 0.51784 (Table 2).

All networks were similar in taxonomic composition 
and were dominated by four phyla (Proteobacteria, Fir-
micutes, Cyanobacteria, and Bacteroidota), with Proteo-
bacteria or Firmicutes contributing to the largest number 
of nodes at each site. Bacterial keystone/hub taxa that are 
likely to be of functional importance within the microbial 
communities differed between sites, with the number of 
hubs per location ranging from 0 (Wadi Na’ar and Wadi 
Adaunib) to 56 (Qashrab Cave Exterior) (SI Table 2). Hub 
taxa were predominantly site specific, with the greatest 
number of hubs common to both Ain Athoom and Qashrab 
Cave Exterior (six), followed by Qashrab Cave Exte-
rior and Ain Hamran and Qashrab Cave Interior and Ain 
Athoom each having two hubs in common. A single hub 
taxon (ASV976_Sphingomonas) was common to Ain Ham-
ran and Ain Athoom (SI Fig. 6). The majority of edges were 
unique to each site, with 39 edges shared uniquely among 
undisturbed sites, 12 edges shared uniquely among disturbed 
sites, and zero edges common to all six sites (SI Fig. 7).

Microbiome is Structured by Life Stage

We identified 43 ASVs shared between adults and larvae 
in Wadi Na’ar, 15 ASVs shared between larvae and pond 
water, and 100 ASVs shared between adults and pond 
water (Fig. 2A). A total of 12 ASVs were common to pond 
water and both host life stages. Microbial alpha diver-
sity was significantly higher in adults compared to larvae 
(t(17.70) = 9.451, p < 0.001, Fig.  2B). Beta diversity dif-
fered significantly according to life stage (PERMANOVA 
pseudo-F(1,18) = 8.767, R2 = 0.328, p < 0.001, Fig.  2C). 
Beta dispersion significantly differed by life stage, with 
higher dispersion in adults than larvae (F(1,18) = 18.375, 
p < 0.001). We identified 68 differentially abundant ASVs 
between life stages that were dominated by members of the 
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Gammaproteobacteria, Cyanobacteria, Clostridia, Bacte-
roidia, and Alphaproteobacteria (SI Table 3).

Global network properties for adults and larvae at Wadi 
Na’ar were similar across all topological features measured 
(SI Fig. 8, SI Table 4). Bacterial co-occurrence however 
differed greatly, with only 0.1% of edges common to both 
adult and larval networks. In addition, whilst no hub taxa 
were identified for the adult network, a total of 11 hubs were 
present in the larval network (SI Table 5).

Discussion

As human activity expands, native species are increasingly 
exposed to new pressures such as habitat change/loss and 
emerging pathogens [69–71]. Identifying the major factors 
that shape the amphibian microbiome across host life stages 
is therefore critical in enhancing our understanding of host 
microbial ecology, enabling better monitoring of amphibian 
health, as well as potentially detecting the early stages of 
ecosystem distress.

Here, we investigated how environmental factors (habitat 
disturbance, local hydrology), pathogen presence, and host 
life stage impact the skin microbiome of the Dhofar toad. 
To our knowledge, we provide the first survey of ranavirus 
in Oman, demonstrating its presence across all sites sam-
pled, with reduced prevalence in disturbed sites. This finding 
is contrary to those of other ranavirus studies, which have 
found ranavirus spread and prevalence to be coupled with 
human activity and urban environments [72–74]. The lim-
ited ranavirus prevalence in disturbed sites observed here is, 
however, consistent with other amphibian disease systems, 
such as Bd [33, 75]. Given that ranavirus has broad host 
range in ectothermic vertebrates [76] and its prevalence has 
been shown to increase with amphibian and fish diversity 
[74], a potential driver for reduced disease prevalence in 
disturbed sites may therefore be fewer potential ranavirus 

carriers (in this case fish owing to already low endemic 
amphibian diversity). Alternatively, if disturbed locations 
have reduced predator abundance (therefore minimising 
host stress responses) [74, 77], infection may be minimised. 
Habitat disturbance may also alter the local microclimate 
[78, 79], and this has potential to limit pathogen proliferation 
[80]. Determining what underpins patterns of prevalence 
in disturbed and undisturbed sites will ultimately require 
further studies incorporating additional biotic and abiotic 
factors for each site, such as species diversity, temperature, 
and humidity.

We found that amphibian skin bacterial alpha diversity 
was not significantly linked to habitat disturbance, water 
source, or ranavirus infection, supporting results of prior 
studies [18, 27, 28]. We did however discover that site, water 
source, and habitat disturbance, but not ranavirus infection, 
were important predictors of post-metamorphic amphibian 
skin microbial community structure and composition. The 
large proportion of variance in beta diversity attributed to 
site and water source suggests that habitat-specific envi-
ronmental features are the major determinants of host skin 
bacterial community structure. Despite evidence of site 
and water source driving beta diversity, we found that the 
host-associated microbiome is distinct to that of the environ-
ment as indicated by the relatively low percentage of ASVs 
(7–28%) that were common to post-metamorphic animals 
and environmental samples. Consistent with prior studies 
[16], this finding may reflect a low abundance of host-asso-
ciated taxa in the environment that were not detected from 
sequencing or were excluded during bioinformatic process-
ing. Alternatively, the strong signature of site and water 
source in shaping microbiome community composition may 
be due to habitat-specific selection pressures that drive pro-
liferation of different bacterial taxa. The variability in host 
microbiome across water sources is not surprising given the 
documented abiotic differences between ground and surface 
water and the subsequent effects on the water microbiome 
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[81]. In particular, groundwater generally has a longer resi-
dence time, a lower concentration of dissolved organic mat-
ter, and differs in light and oxygen levels compared to sur-
face water [81–83]. Microbial community composition also 
varies between ground and surface water environments, as 
well as modes of microbial metabolism, with heterotrophy 
and chemoautotrophy associated with groundwater, and pho-
toautotrophy and heterotrophy occurring in surface water 
[81, 83]. Exploration of the specific hydrological param-
eters for each water source and how these influence the 
water microbiome may therefore provide a mechanistic link 
between abiotic factors, the environmental microbiome, and 
how these interact to shape the host skin microbiome. This 
line of research may be especially valuable when consider-
ing the host environment in species re-introductions or res-
toration ecology. That only a single ASV (Chroococcidiop-
sis) was discriminatory for habitat disturbance indicates that 
disturbance either drives stochastic, unpredictable changes 
in taxa abundance across sites, as has previously been dem-
onstrated [33], or is not driving large enough shifts in taxa 
abundance to be statistically significant. The latter scenario 
of minimal impact of habitat disturbance on the host skin 
microbiome may indicate that D. dhufarensis has a degree of 
resilience to microbiome perturbation. The higher capacity 
to cope with anthropogenic disturbances has been observed 
in the closely related Asian toad (Duttaphrynus melanostic-
tus), collected from areas that are impacted by human activ-
ity in Madagascar, and may contribute to the success of this 
species in invasively colonising novel habitats [84].

Our network analyses demonstrated comparable network 
properties across disturbed and undisturbed sites, with the 
majority of strong edge interactions (ρ > 0.7 or ρ < − 0.7) 
detected across networks being positive. The number of 
common edges between sites was relatively small compared 
to the number of common taxa (or nodes). This indicates that 
although amphibians from different sites may share common 
bacterial taxa, the patterns of co-occurrence between these 
taxa differ greatly, and host microbial community dynamics 
are therefore likely to vary. This finding suggests that fac-
tors unique to individual sites (e.g. local environment) are 
important in shaping skin bacterial community composition 
and assembly [85], with habitat disturbance not driving clear 
or predictable shifts in patterns of taxa co-occurrence.

Our finding that the microbiome is strongly structured 
by host life stage, with increased alpha diversity in adults 
compared to larvae, along with significant differences in 
beta diversity, is consistent with results of prior studies 
[16, 86–88]. The small percentage of ASVs (9%) with a 
relative abundance > 0.01% present in the post-metamor-
phic microbiome that were also found in larvae, large 
number of differentially abundant taxa, and few common 
bacterial co-occurrences further demonstrates significant 
restructuring of the skin microbiome from larvae to adults, Ta
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in line with findings from other amphibian species [16, 
87–90]. Although larval and adult networks differed sub-
stantially in taxa composition, the broad similarities in 
network topologies indicate that amphibian skin supports 
similarly complex bacterial ecosystems across host life 
stages. These changes in community composition and bac-
terial co-occurrence likely reflect the extensive physiologi-
cal reprogramming that occur during amphibian metamor-
phosis [91, 92] and the resulting shift in microbial niche 
that arises.

Overall, our findings support those of prior studies, as 
well as generate novel insight into the factors that shape 
the amphibian skin microbiome. As one of only two 
amphibian species endemic to Oman, understanding the 
link between host environment, pathogen presence, dermal 
microbiome, and host health is crucial to help maintain the 
long-term viability of the Dhofar toad. What is more, as a 
desert/semi-arid living species, D. dhufarensis may prove 
valuable as a comparative model of skin microbial com-
munity dynamics with hosts from other climates. Finally, 
our work hints at the potential value of the microbiome as 
a metric for habitat disturbance, with future work neces-
sary to determine whether signatures of ecosystem distress 
can be detected across greater spatial scales.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 022- 02130-5.
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