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Abstract
Brownfields are unused sites that contain hazardous substances due to previous commercial or industrial use. The sites 
are inhospitable for many organisms, but some fungi and microbes can tolerate and thrive in the nutrient-depleted and 
contaminated soils. However, few studies have characterized the impacts of long-term contamination on soil microbiome 
composition and diversity at brownfields. This study focuses on an urban brownfield—a former rail yard in Los Angeles 
that is contaminated with heavy metals, volatile organic compounds, and petroleum-derived pollutants. We anticipate that 
heavy metals and organic pollutants will shape soil microbiome diversity and that several candidate fungi and bacteria will 
be tolerant to the contaminants. We sequence three gene markers (16S ribosomal RNA, 18S ribosomal RNA, and the fungal 
internal transcribed spacer (FITS)) in 55 soil samples collected at five depths to (1) profile the composition of the soil micro-
biome across depths; (2) determine the extent to which hazardous chemicals predict microbiome variation; and (3) identify 
microbial taxonomic groups that may metabolize these contaminants. Detected contaminants in the samples included heavy 
metals, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, and volatile organic compounds. Bacterial, eukaryotic, 
and fungal communities all varied with depth and with concentrations of arsenic, chromium, cobalt, and lead. 18S rRNA 
microbiome richness and fungal richness were positively correlated with lead and cobalt levels, respectively. Furthermore, 
bacterial Paenibacillus and Iamia, eukaryotic Actinochloris, and fungal Alternaria were enriched in contaminated soils 
compared to uncontaminated soils and represent taxa of interest for future bioremediation research. Based on our results, we 
recommend incorporating DNA-based multi-marker microbial community profiling at multiple sites and depths in brownfield 
site assessment standard methods and restoration.
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Introduction

About 15% of urban land parcels in the USA are brown-
fields—abandoned industrial or commercial facilities that 
can harbor hazardous contaminants, which constrain their 
development and limit their use due to risks posed to humans 
and wildlife [1]. In addition, because of the industrial 
activities, the soils found in brownfields are often nutrient-
depleted, highly saline or alkalinized, and highly compact, 
affecting plant, animal, and microbial communities [2–7]. 
The reduced nutrients in the soil of brownfields, particularly 
of C, N, P, Na, and K, can directly limit enzymatic activity 
and microbial biomass [7, 8]. Persistent organic contami-
nants at these sites can include polycyclic aromatic hydro-
carbons (PAHs), polychlorinated biphenyls (PCBs), and 
brominated flame retardants (BFRs) [9–11], which reduce 
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the availability of organic matter in soils, and in turn reduce 
microbial diversity [12]. Benzene which creates anoxic con-
ditions and reduces redox potentials during oxidation and 
trichloroethene (TCE) which affects microbial preferential 
C substrate uptake may also be present. Inorganic pollutants 
such as the heavy metals lead, cadmium, and mercury are 
also common in brownfield soils and toxic to many bacte-
ria and eukaryotes [13, 14]. Some heavy metals (e.g., zinc, 
cobalt, and manganese) are essential for bacterial survival 
and functioning but become harmful at high concentra-
tions [15]. Overall, heavy-metal, PAH, benzene, and TCE 
contamination exert selective pressures on soil microbial 
communities and can over time reduce microbial diversity 
by eliminating sensitive taxa and disrupting soil health and 
function [16].

Nonetheless, these same selective pressures can also favor 
the growth of taxa that are tolerant or resistant to the pol-
lutants and may be involved in contaminant biodegradation 
or bioaccumulation [17]. A variety of bacteria and fungi 
have mechanisms that transform, neutralize, accumulate, 
or excrete pollutants [18–20]. Thus, brownfield sites can 
sustain diverse, active ecological communities despite the 
hazardous soil characteristics. Microbial group assemblages 
capable of biodegrading petroleum hydrocarbons in brown-
field sites include Acinetobacter, Brevibacterium, Brevundi-
monas, Corynebacterium, Microbacterium, and Steno-
trophomonas [21]. Micrococcus sp. has been found to be 
tolerant and potentially resistant to chromium and nickel in 
industrial wastewaters [22, 23]. The abundances of Rhodofe-
rax ferrireducens and Dechloromonas aromatica increase in 
groundwater contaminated with benzene [24]. Several bac-
terial groups (Desulfuromonas, Pelobacter, Desulfovibrio, 
and Fusibacter) increase in abundance in surface sediments 
exposed to PCE and TCE [25]. Furthermore, filamentous 
fungi isolated from the genera Aspergillus, Penicillium, 
and Fusarium show tolerance to various heavy metals (Zn, 
Pb, Cr, Cd, Ni, and Co) in vitro, and Alternaria specifically 
has been isolated for its PAH-degrading capabilities [26, 
27]. The abundances of Cryptomycota, Dothideomycetes, 
Preussia, and Corynespora increase in the presence of heavy 
metals or PAHs in contaminated soils, suggesting that these 
might be bioindicators of contamination [28].

Despite the growing research on the microbial ecology 
of brownfields, few studies have focused on soil microbi-
ome responses to long-term contamination across mul-
tiple depths in brownfield sites, which is necessary for 
capturing contamination that may have leached from the 
surface to deeper layers. Furthermore, baseline surveys of 
the soil microbiome in brownfields can aid in assessing 
the levels of biodiversity, nutrient cycling, and ecosystem 
services supported at these sites, and inform restoration 
plans. Here, we use eDNA metabarcoding to characterize 
the soil microbiome across varying depths at a former rail 

yard that ceased operations in the late 1980s (Fig. 1). The 
study site is contaminated with heavy metals and organic 
pollutants including total petroleum hydrocarbons (TPHs) 
and polycyclic aromatic hydrocarbons (PAHs). Specifi-
cally, our study objectives were to (1) characterize bacte-
rial, eukaryotic, and fungal soil microbiome composition 
and diversity using 16S rRNA, 18S rRNA, and the fungal 
internal transcribed spacer (FITS) markers; (2) determine 
whether hazardous substances are correlated with soil 
microbiome variation; and (3) highlight the microbial 
taxa that are enriched in contaminated soils to assist in the 
identification of potential candidates for bioremediation. 
We anticipate that heavy metals and organic pollutants will 
shape soil microbiome alpha and beta diversity, and that 
certain fungi and bacteria will be enriched in contaminated 
soils and potentially tolerant to contamination as previ-
ously documented for other brownfield sites. Collectively, 
our study will provide a greater understanding of soil 
microbiome resiliency and the impacts of environmental 
pollutants on the soil communities at an urban brownfield 
site, which can inform future restoration efforts.

Materials and Methods

Study Site

This study was conducted at the “Bowtie property” located 
within Taylor Yard, a former rail yard in Los Angeles that 
was operated by the Union Pacific Railroad since the 
1920s (Fig. 1) [29, 30]. The railyard was used for rail-
road car engine maintenance and fueling, and pollutants 
that were commonly used at the site included diesel fuel, 
lubrication oils, gasoline, acids, cleaning solvents, alkaline 
soaps, paint and thinners, lead, pesticides, and herbicides 
[29, 30]. Operations ceased in 1985 and in 2003, the land 
was purchased by California State Parks.

The study site is adjacent to the channelized, natural 
soft-bottom Los Angeles River and is surrounded by a mix 
of residential and industrial facilities (Fig. 1). The soil at 
this site is hydrophobic, compact, and nutrient-depleted, 
thus, much of the property remains barren apart from 
small patches of weeds [30]. The soil consists of gravel, 
asphalt, and sand layered with concentrations of silt and 
clay from the surrounding hillsides. Currently, detected 
pollutants in the surface soils of Taylor Yard include 
heavy metals (lead, arsenic, cadmium, cobalt, mercury, 
and vanadium), benzene, chlorinated solvents (PCE), and 
petroleum hydrocarbons [30]. The City of Los Angeles 
plans to redevelop the former rail yard as a public river 
park with vibrant greenspace that will bring back native 
wildlife and plants.
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Sample Collection and Pollutant Quantification

Soil samples (N = 55) were collected from 5 distinct depths 
(0.1524 m, 1.524 m, 3.048 m, 4.572 m, and 6.096 m) at 12 
sites within two acres of the location (Fig. 1) (Table S1). 
Three samples at 0.15 m were also collected from an uncon-
taminated neighboring site to serve as controls (Table S1); 
subsurface samples were not collected due to permit require-
ments. Soil was insufficient sampled for two samples and a 
buried pipe inhibited the collection of three samples from 
site 9. Therefore, the final sample sizes for each depth 
were as follows: 0.15 m (N = 12), 1.52 m (N = 11), 3.04 m 
(N = 11), 4.06 m (N = 10), and 6.09 m (N = 11). Disposable 
scoops or a hardened steel-core barrel lined with an ace-
tate sleeve were used to collect samples. The 55 samples 
were subsampled three times to obtain triplicate samples, 
and these were stored in 15-oz sterile glass containers at 
4 °C. Samples were transported to the University of Cali-
fornia, Los Angeles for DNA extraction (Fig. 2). Sampling 
methods are described in further detail in the supplementary 
materials.

Of the 55 soil samples collected, only samples from three 
depths (0.15 m, 1.52 m, and 6.09 m) were screened for pol-
lutants to quantify the penetration of the contaminants from 

the surface to the deeper areas (N = 34, Table S2). Specifi-
cally, they were processed for total petroleum hydrocarbons 
as diesel (TPH-d), total petroleum hydrocarbons as motor 
oil (TPH-mo) [31], 17 California Assessment Manual (CAM 
17) heavy metals, and 16 polycyclic aromatic hydrocarbons 
(PAHs) (Table S2). Samples from the other surveyed depths 
were not processed for pollutants to reduce costs associated 
with the project.

Sample Processing: Environmental Parameters 
and eDNA Metabarcoding Library Preparation

Triplicate soil samples, subsampled from each of our 55 
original soil samples, were taken to reduce the effect of ran-
dom variation and to capture a representative sample of the 
microbial community at our site. These were then pooled 
for DNA extractions using QIAGEN DNeasy PowerSoil 
kits, along with three extraction blanks (Fig. 2). Two rounds 
of polymerase chain reaction (PCR) were used to amplify 
three targeted metabarcodes for microorganisms from the 
Earth Microbiome Project: 16S rRNA [32], 18S rRNA [33], 
and fungal ITS (FITS) [34, 35]. The three-marker approach 
was used to reduce primer bias and obtain more robust 

Fig. 1   Study site and sampling design. Aerial view of the sampling 
location, known as the “Bowtie” property within Taylor Yard—a for-
mer rail yard in Los Angeles, CA, that is owned and managed by Cal-
ifornia State Parks. Soil samples were taken from below ground (at 
0.1524 m, 1.524 m, 3.048 m, 4.572 m, and 6.096 m) at 12 ordinary 

sites, labeled B-01 to B-12. Samples from the surface (0.15 m) were 
collected by hand, and all other samples were collected using a direct-
push drill rig in an acetate sleeve. Sampling locations with a red dot 
signify contaminants present at the surface as contamination at excess 
levels was only found at the surface
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conclusions (De Gruyter et al. 2020). Detailed PCR instruc-
tions can be found in the Supplementary Materials.

The DNA concentration was quantified with the Qubit 
dsDNA HS Assay (Life Technologies) so libraries could be 
pooled to equal molar concentrations for Illumina MiSeq 
sequencing (Fig. 2). The sequencing was conducted at the 
Genomics and Bioinformatics center in Notre Dame Univer-
sity (IN, USA), using the MiSeq Reagent Kit v3 (600-cycle, 
2X300-bp paired end). A single PCR negative control was 
included, using sterile water in place of template DNA.

Sequence Processing

Raw sequences were processed using the Anacapa QC 
toolkit [36] (Fig. 1). Briefly, reads were quality-controlled, 
sorted, and assigned into amplicon sequence variants 
(ASVs) using the Divisive Amplicon Denoising Algorithm 
(DADA2) module embedded in Anacapa [36]. The DADA2 
pipeline filters, dereplicates, identifies chimeras, and merges 
paired end reads [37]. The Anacapa classifier was used to 
assign taxonomic origins for ASVs that include forward, 
reverse, and merged reads from compiled GenBank data-
bases [38]. Taxonomic assignment tables were used with a 
bootstrap confidence cutoff of 60.

The R [39] decontam package v. 3.4.2 [40] was used to 
remove contaminant ASVs for each metabarcode marker 
(16S rRNA, 18S rRNA, and FITS) and sequencing run, 
based on their prevalence in extraction blank control 
samples. ASVs with decontamination scores below the 
specified threshold (0.1) or not assigned a taxonomic path 
were removed from the dataset unless they had the same 
taxonomic classification as an uncontaminated ASV. After 
sequence processing, samples had an average of 145,789 
sequences for 16S rRNA data, 78,568 sequences for 18S 
rRNA data, and 1971 sequences for FITS data. Due to their 
low number of reads (< 200 sequences), a total of 35 out of 
55 samples were removed from the FITS dataset and were 
excluded from all subsequent analyses.

Assessing Microbial Community Composition

Unless otherwise stated, all statistical analyses and figures 
were generated using the statistical software package R (v. 
3.6) [39]. Community composition for each marker (16S 
rRNA, 18S rRNA, and FITS) was visualized through stacked 
bar plots using the ggplot2 package [41]. The plots showed 
the relative abundances of dominant phyla and orders to 
compare community composition across depths. Microbial 
abundance data was not rarefied for these plots, but identical 

Fig. 2   Overview of the laboratory and computational workflow of 
this study. Briefly, soil samples were collected from five depths at 
the “Bowtie” site within Taylor Yard, a former rail yard in Los Ange-
les, CA, that is now owned and managed by California State Parks. 
After DNA extraction, two rounds of PCR amplified three targeted 
metabarcodes for microbes (16S rRNA marker, 18S rRNA marker, 

and fungal ITS marker). Sequences were processed in Anacapa and 
DADA2, generating a table of amplicon sequence variants counts 
for each sample. This ASV table along with sample metadata was 
uploaded into the R statistical program for statistical analyses and 
visualizations
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plots using rarefied data are provided as supplementary 
figures.

Alpha Diversity Analyses

Prior to assessing alpha diversity, samples were rarefied to 
42,000 reads per sample (for 16S rRNA data), 21,000 reads 
per sample (for 18S rRNA data), and 370 reads per sample 
(for FITS data) using mothur [42, 43]. These cutoffs repre-
sented the third lowest number of sequences in each dataset; 
selecting the lowest number of sequences as the cutoff would 
have been too restrictive. A total of 4 different samples did 
not meet this sequencing cutoff for 16S rRNA, 18S rRNA, 
and FITS data, and were excluded from alpha diversity anal-
yses. Rarefaction curves of ASV richness reached saturation, 
indicating that sequencing depth was sufficient for analyzing 
these communities (Fig S1).

Community alpha diversity was estimated using Chao 2 
richness from ASV presence/absence (e.g., incidence) data 
using the fossil package [44]. To identify significant driv-
ers of soil microbiome alpha diversity, we constructed three 
linear mixed models using the lme4 package [45]. All three 
models set soil site (e.g., soil core) as a random factor and 
Chao 2 richness (on the log scale) as the independent vari-
able. Log transformation is typically recommended for data 
that is spread out or when the relationship between x and 
y is not linear [46]. The transformation helps with model 
linearity, which is an important mathematical assumption of 
the regression model, and it overall improves the accuracy 
of the model [46].

Model 1 included sample depth (m) as a predictor. Model 
2 only analyzed data from the surface, including data from 
the uncontaminated neighbor lot, and related Chao 2 rich-
ness (log) with a binary category for contamination (con-
taminated vs. uncontaminated). The category was based on 
whether the concentrations of heavy metals or hydrocarbons 
in the sample exceeded regional screening guidelines (see 
Supplementary Materials for more information). Model 
3 was restricted to samples with known concentrations of 
hydrocarbons and heavy metals, and specified depth, and 
concentrations of arsenic, cobalt, chromium, lead, and 
benzo(a)pyrene (all on log scale) as predictors of commu-
nity diversity (see Supplementary Materials and Table S2 for 
how these particular pollutants were selected). After assess-
ing model fit using residuals, likelihood ratio tests (LRT) 
were conducted on these models using the R car package 
[47] to identify the significant predictors.

Beta Diversity Analyses

Microbial beta diversity was estimated using Jaccard dis-
tances calculated from unrarefied bacterial ASV presence/
absence data using the vegan package [48]. Permutational 

multivariate analysis of variance (PERMANOVA) tests with 
999 permutations were used to identify significant predic-
tors of soil microbial community structure. PERMANOVA 
models identical to the alpha diversity models were con-
structed to identify predictors of soil microbiome varia-
tion. All three PERMANOVA models set the soil site as 
strata. The clustering of ecological communities for each 
marker was visualized via principal coordinate analysis 
(PCoA) plots constructed from Jaccard distance matrices 
using ggplot2. To further evaluate whether heavy-metal or 
hydrocarbon concentrations (Table S2-S3) were correlated 
with soil microbiome structure, constrained correspondence 
analysis (CCA) was conducted using the cca function from 
the vegan package. Results from CCA analyses were visual-
ized using ggplot2.

Lastly, to identify microbial groups that may be tolerant 
to contamination, we ran linear discriminant analysis effect 
size (LEfSe) tests with default parameters [49]. The sam-
ples analyzed were from the surface and were categorized 
as “contaminated” or “uncontaminated,” similarly to what 
was done for alpha and beta diversity analyses. The category 
was based on whether the concentrations of heavy metals or 
hydrocarbons in the sample surpassed regional screening 
levels. Unrarefied data was used and only microbial gen-
era > 0.01% average relative abundance across these samples 
were included in the data frames for each marker. When the 
microbial genus was unknown, the last known classification 
was used (e.g., family). Output from LEfSe of statistically 
significant microbial “genera” (LDA > 3) was visualized via 
diverging plots with the ggplot2 package. Similar methods 
were followed to identify microbial taxa that were differen-
tially abundant among depths (0.15–1.5 m vs. 3.05–4.60 m 
vs. 6 m). For this, bacterial, eukaryotic, and fungal commu-
nities were collapsed at the level of phylum, order, or genera. 
Only microbial groups with > 0.01% average relative abun-
dance across samples were retained for upload to LEfSe.

Results

Composition of the Soil Microbiome

We characterized the composition of soil microbial com-
munities across five depths in a site contaminated with 
heavy metals, petroleum hydrocarbons, and PAHs. At the 
phylum level, the 16S rRNA soil microbiome profiles were 
dominated by Proteobacteria (28% mean relative abun-
dance), Firmicutes (15%), Actinobacteria (12%), and Aci-
dobacteria (9%) (Fig S2). The Proteobacteria mostly con-
sisted of Alpha (8.3%), Gamma (6.5%), Beta (4.82%), and 
Deltaproteobacteria (4.83%) (Fig. 3). 18S rRNA microbi-
ome profiles were mostly composed of unclassified Eukar-
yota (54% mean relative abundance), Ascomycota (12%), 
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Chordata (9%), Basidiomycota (7.4%), and Streptophyta 
(4.91%) (Fig S2). Fungal communities were dominated 
by a single phylum, Ascomycota (94%) (Fig S2), specifi-
cally by the Dothideomycetes (37.7%), Sordariomycetes 
(34.9%), and Eurotiomycetes (21.8%) classes. For the pol-
lutant quantities at each depth, see Table S2.

For the three markers, soil microbiome composition 
appeared to vary with depth (Fig. 3). Statistically, LEfSe 
analyses identified several taxa at the phylum, order, and 
genera level as being differentially abundant among depths 
(Table  S4). For bacterial profiles, samples from 0.5 to 
1.5 m harbored greater abundances of Longimicrobium and 

Fig. 3   Community composi-
tion of the soil microbiome in 
a contaminated brownfield site. 
Stacked bar plots showing the 
relative frequency of sequences 
assigned to each microbial order 
across samples for A 16S rRNA 
profiles, B 18S rRNA profiles, 
and C fungal ITS profiles. 
Samples are grouped by depth 
(m), and each color represents 
a microbial order. Microbial 
abundance data was rarefied for 
these plots
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Thermoleophilum compared to the other depths, while the 
deepest samples (6 m) had relatively more Pedomicrobium 
(LEfSe LDA > 3, p < 0.05; Table S4). No phyla were dif-
ferentially abundant among the different depths for 16S 
rRNA profiles. For eukaryotic profiles, the abundances of 
only two phyla—Cryptophyta and Ciliophora were distinct 
among depths; specifically, they were enriched in samples 
from 0.5 to 1.5 m relative to samples from the other depths 
(LEfSe LDA > 4, p < 0.05; Table S4). None of the orders 
or genera varied with depth for this dataset according to 
LEfSe analyses. Lastly, for fungal communities, several 
taxa including Sordariales, Hypocreales, and Pleosporales, 
were particularly abundant at 0.5–1.5 m than at other depths. 
Preussia were more abundant in samples from deeper depths 
compared to surface samples (LEfSe LDA > 4.5, p = 0.03; 
Table S4).

Correlates of Soil Microbiome Alpha Diversity

Soil microbiome Chao 2 richness decreased with depth for 
18S rRNA and fungal ITS profiles (LMM LRT p < 0.05; 
Table S5). No significant relationship was observed between 
microbiome richness and sample depth for the 16S rRNA 
data (LMM LRT p > 0.05; Table S5). Furthermore, micro-
biome richness did not differ between contaminated and 
uncontaminated surface samples for any of the three mark-
ers analyzed (LMM LRT p > 0.05; Table S5). Lastly, while 
the microbiome alpha diversity of 16S rRNA data did not 
significantly correlate with concentrations of heavy metals 
or hydrocarbons, those of 18S rRNA and fungal ITS profiles 
did (LMM LRT p < 0.05; Table S5). Specifically, 18S rRNA 
community richness was positively correlated with lead con-
centrations (1.6–140 mg/kg) while fungal community rich-
ness was positively associated with cobalt concentrations 
(3.5–11 mg/kg) (Table S5, Fig S3). See the Supplementary 
Materials for a more in-depth report of the levels of contami-
nation found across our study samples.

Correlates of Soil Microbiome Beta Diversity

Similar to alpha diversity analyses, beta diversity analyses 
evaluated whether soil depth and degree of contamination 
accounted for variation in soil microbiome profiles, after 
accounting for variation among soil sites. Soil microbial 
communities were partitioned by depth, and this variable 
explained 6–9% of the variation in 16S rRNA, 18S rRNA, 
and FITS profiles (PERMANOVA p < 0.05; Table 1). Fur-
thermore, surface samples from sites with elevated levels 
of heavy metals and hydrocarbons (i.e., where contaminant 
concentrations exceeded regional screening guidelines) did 
not harbor significantly different soil communities than sur-
face samples from uncontaminated sites (PERMANOVA 
p > 0.05; Table  2). Nonetheless, in a PCoA ordination 

contaminated samples do cluster separately from uncontami-
nated sites, particularly from samples of the neighboring lot 
(Fig S4).

Lastly, of the 6 heavy metals and hydrocarbons 
included in our statistical models, concentrations of cobalt 
(3.5–11 mg/kg) and lead (1.6–140 mg/kg) significantly 
predicted microbiome structure for 16S and 18S rRNA 
profiles, even after accounting for variation attributable 
to sample depth (PERMANOVA p < 0.05; Table 3). 16S 
rRNA profiles were also correlated with concentrations 
of arsenic (1–4.3 mg/kg) and chromium (8–110 mg/kg; 
Table 3). Fungal community structure was not signifi-
cantly associated with any of the heavy metals analyzed 
(PERMANOVA p > 0.05; Table 3). These findings were 
consistent with the output of constrained correspondence 
analysis (CCA) with a few exceptions (Fig. 4, Table S6): 
16S rRNA communities were not strongly associated with 
chromium concentrations but 18S rRNA profiles were 

Table 1   Soil microbiome structure varies with sampling depth

Shown here are the R.2 values (% variance explained) and p values for 
PERMANOVA models that tested the influence of sample depth and 
included soil site as strata. The PERMANOVA tests were based on 
Jaccard distance matrices and all samples were included in the analy-
sis except samples from the uncontaminated neighboring lot. Results 
for each marker are shown above. Statistically significant values 
(α = 0.05) are bolded

Marker Model parameter % variance 
explained

p value

16S rRNA Depth 5.91 0.001
18S rRNA Depth 7.66 0.001
FITS Depth 9.06 0.052

Table 2   Soil microbiomes are not distinct between contaminated and 
non-contaminated surface soils

Shown here are the R.2 values (% variance explained) and p values 
for PERMANOVA models that tested the influence of contamina-
tion (yes vs. no) in surface soils on microbiome structure, while set-
ting soil location as strata. The PERMANOVA tests were based on 
Jaccard distance matrices and only samples from the surface were 
included in the analyses. Surface samples from an uncontaminated 
neighboring lot were also included. Results for each marker are 
shown above

Marker Model parameter % 
variance 
explained

p value

16S rRNA Contaminated vs. uncontaminated 
soils

8.6 0.9

18S rRNA Contaminated vs. uncontaminated 
soils

9.26 0.9

FITS Contaminated vs. uncontaminated 
soils

15.71 0.9
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strongly associated with this metal. Fungal communities 
were significantly predicted by cobalt and arsenic concen-
trations in this analysis (Fig. 4, Table S6).

Heavy‑Metal Tolerant Microbial Taxa Enriched 
in Contaminated Soils Relative to Uncontaminated 
Soils

We compared the abundances of microbial taxa in contam-
inated vs. uncontaminated surface soils using linear discri-
minant analysis effect size (LEfSe) to identify microbial 
taxa that may be potentially tolerant to elevated levels of 
heavy metals and hydrocarbons. For the 16S rRNA marker, 
nine bacterial taxa including Iamia, Paenibacillus, Altero-
monas, and Blastococcus were enriched in contaminated 
soils compared to uncontaminated soils (LEfSe LDA > 3, 
p < 0.05; Fig. 5A). Furthermore, Actinochloris and Colpo-
dida were strongly associated with contaminated soils for 
18S rRNA microbiome profiles (LEfSe LDA > 3, p < 0.05; 
Fig. 5B). Three fungal groups (Alternaria, Furcasterig-
mium, and Stachybotrys) were significantly more abun-
dant in contaminated than uncontaminated soils (LEfSe 
LDA > 4, p < 0.05; Fig. 5C).

Discussion

Principal Findings of Study

We used eDNA metabarcoding to assess the soil microbi-
ome dynamics in response to long-term contamination at 
a former rail yard and urban brownfield site. We quanti-
fied contamination levels by measuring soil concentrations 
of heavy metals, petroleum hydrocarbons, and polycyclic 
aromatic hydrocarbons, and related their concentrations 
to bacterial, eukaryotic, and fungal community alpha and 
beta diversity. The data showed that soil eukaryotic and 
fungal richness increased at higher concentrations of lead 
and cobalt, respectively. Furthermore, soil microbiomes 
were partitioned by depth but did not differ between con-
taminated and uncontaminated surface soils. Concentra-
tions of cobalt, chromium, and lead partially explained the 
variation in bacterial and eukaryotic community structure, 
while fungal communities were more sensitive to arse-
nic and cobalt. 16S rRNA bacterial communities were 
also significantly correlated with arsenic levels. Lastly, 
we identified several microbial groups that were enriched 
in contaminated surface soils relative to uncontaminated 
soils for all three markers studied. Among these groups 

Table 3   Concentrations of heavy metals and hydrocarbons predict soil microbiome structure

Shown here are the R.2 values (% variance explained) and p values for PERMANOVA models that determined whether five soil contami-
nants were associated with variation in soil microbiomes. The PERMANOVA tests were based on Jaccard distance matrices and only samples 
screened for soil analytes were included in the analyses. Soil location was set as strata and depth was also included as a predictor in the model. 
Results for each marker are shown above. Statistically significant values (α = 0.05) are bolded

Marker Statistic Arsenic Cobalt Chromium Lead Benzo(a)pyrene Depth

16S rRNA % variance explained (p value) 4.05 (0.032) 6.38 (0.01) 4.56 (0.001) 5.43 (0.001) 2.12 (0.85) 4.17 (0.12)
18S rRNA % variance explained (p value) 2.98 (0.26) 7.51 (0.001) 3.7 (0.12) 5.5 (0.001) 2.1 (0.93) 4.82 (0.027)
FITS % variance explained 9.47 (0.12) 6.24 (0.56) 5.07 (0.12) 7.88 (0.56) 5.15 (0.43) 14.54 (0.062)

Fig. 4   Soil microbiome structure varies with concentrations of heavy 
metals and hydrocarbons in a brownfield site. Canonical correspond-
ence analysis (CCA) correlated soil microbiome structure at the sam-
pled depths with concentrations of arsenic, cobalt, chromium, lead, 
and benzo(a)pyrene. Only samples from depths with known concen-

trations of contaminants (0.15 m, 1.52 m, and 6.10 m) are included. 
The two primary CCA axes are shown and samples are color-coded 
by depth for each marker. Arrows indicate the direction and mag-
nitude of statistically significant relationships (at α = 0.05). See 
Table S6 for the detailed statistical output
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were the bacterial genera Paenibacillus, Alteromonas, and 
Iamia, the eukaryotic genus Actinochloris, and the fun-
gal genus Alternaria. Collectively, our findings show that 
heavy metals are significantly correlated with soil micro-
biome composition and diversity at this urban brownfield 
site. Several microbial groups are potentially tolerant to 
heavy metals and future studies should determine their 
functional capacity to metabolize, excrete, or bioaccumu-
late the heavy metals found in brownfield soils.

Brownfield Site Soil Microbiome Composition 
Resembles That of Other Brownfield Sites

Broadly, the study site’s soil microbiome profiles resem-
ble those of surface soils polluted with heavy metals 
in other urban railyards [8], Pb/Zn smelters [50], con-
taminated forest soils [51], and coastal aquaculture areas 
[52]. As was observed in this study, Proteobacteria, 

Acidobacteria, and Actinobacteria were also the most 
dominant bacterial phyla found in chromium-contam-
inated soils in the Yunnan Province (China) [53]. Our 
brownfield site mirrored former steel industry soils from 
northeastern France, which reported Ascomycota as the 
dominant fungal phylum [28]. Furthermore, similar to our 
study Alphaproteobacteria and Deltaproteobacteria were 
abundant bacterial classes in the soils of an urban brown-
field rail yard located in Jersey City, NJ [8, 54]. This same 
site also noted Sordariomycetes and Eurotiomycetes as 
abundant fungal classes. Our findings are consistent with 
a prior study that detected the eukaryotic phyla Basidi-
omycota and Streptophyta (land plants and green algae) 
at high abundances in a silver-lead–zinc mine from New 
South Wales, Australia [55]. In conclusion, the microbial 
communities at the “Bowtie” brownfield site are simi-
lar to other heavy-metal contaminated sites from varying 
geographic regions.

Fig. 5   Microbial groups associ-
ated with contaminated surface 
soils represent potential sources 
for bioremediation efforts. Taxa 
enriched in contaminated vs. 
uncontaminated surface samples 
as determined by LEfSe for A 
16S rRNA, B 18S rRNA, and C 
fungal ITS community profiles. 
Each dot represents a unique 
group and is color-coded by 
soil contamination (yes vs. no). 
Statistically significant genera 
(LDA > 3) are displayed and 
their most specific taxonomic 
classifications are on the x-axis. 
See methods for more details 
regarding the analysis
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Hazardous Chemicals Are Associated 
with Microbiome Alpha and Beta Diversity

In our study, heavy-metal concentrations were associated 
with microbiome alpha and beta diversity. The richness of 
18S rRNA profiles increased with greater concentrations 
of lead while the richness of fungal communities increased 
with high cobalt concentrations.

In our study, the soil community has been exposed to 
heavy metals for over 30 years, potentially allowing the 
microbial communities to develop resistance or tolerance. 
This could give rise to a diverse soil community over time. 
Resistance mechanisms can take a variety of forms in organ-
isms, including the expulsion of heavy metals to outside of 
the cell via efflux pumps, transformation of toxic metals into 
less toxic forms, absorption into the cell wall, or sequestra-
tion into subcellular compartments [18, 20]. Without these 
resistance mechanisms, heavy metals can damage cells and 
interfere with chromosome replication, DNA synthesis, 
protein synthesis, nucleic acid metabolism, cellular respira-
tion, and the citric acid cycle, or lead to oxidative stress and 
enzyme inhibition [56, 57].

Several genera of filamentous fungi (Trichoderma, Peni-
cillium, Paecilomyces, Pythium, Rhizopus, Mortierella, and 
Aspergillus) belonging to orders of fungi recovered from 
this brownfield site (e.g., Eurotiales, Hypocreales) show bio-
absorption of cobalt in serpentine soils from the Andaman 
Islands, India, which contain high levels of heavy metals 
[58]. Other studies show that vacuolar sequestration of heavy 
metals is a common detoxification mechanism in eukaryotes, 
particularly in yeast cells [59]. Thus, it appears that mecha-
nisms for cobalt and lead tolerance are found in fungi and 
other eukaryotes.

In our study, concentrations of cobalt, chromium, and 
lead partially predicted bacterial and eukaryotic community 
structure, whereas fungal communities varied with arse-
nic and cobalt concentrations. A plethora of studies have 
detected associations between heavy-metal levels and soil 
microbiome structure in pastures, phytoremediation experi-
mental plots, government transportation dump sites, agricul-
tural soils, and heavy-metal experimental plots [60–64]. A 
previous brownfield railyard similarly reported that bacterial 
community structure was correlated with lead, in addition 
to copper and zinc but found that none of the heavy metals 
were significantly associated with fungal community struc-
ture [8].

In our study, both bacterial and fungal communities cova-
ried with arsenic concentrations. These findings are unex-
pected since genes that can detoxify or metabolize arsenic 
(ArsB, ArsM, AioAB) are widespread among bacteria [65], 
so we would have expected a weak correlation with arse-
nic concentrations. Arsenic is typically present as arsenite 
(As(III)) in soils, and bacteria can pump out As(III) via an 

efflux pump, or reduce less common forms of arsenic to 
As(III) [66]. Furthermore, another study showed that the 
most abundant metal-resistance genes in soils from an aban-
doned copper mine were associated with Cu, As, and Fe 
resistance [67]. Nonetheless, a silver-lead–zinc mine also 
reported the soil bacterial community to vary with As con-
centrations [55]. Thus, the relationship between bacterial 
community structure and heavy-metal concentrations likely 
depends on soil properties like pH, mineral content, and 
moisture. For fungi, arsenic resistance is more limited than 
in bacteria and has mostly been observed in arbuscular myc-
orrhizal fungi [68]. These fungi can reduce As(V) to As(III) 
and pump As(III) out of cells. However, at our study site 
arbuscular mycorrhiza-forming fungi were absent, which is 
perhaps why fungal communities were shaped by arsenic 
levels.

Both bacterial and eukaryotic communities were sig-
nificantly associated with lead concentrations, while fungal 
communities were not. Similarly, in a heavy-metal contami-
nated reservoir in China, the relative abundances of bacterial 
groups were associated with Cr, Pb, and Zn [69]. In a lead 
smelter that recycles lead acid batteries, bacterial communi-
ties were primarily shaped by soil type and secondarily by 
Pb content [70]. Lead lacks a significant biological function, 
is regarded as toxic for nearly all microorganisms [71], and 
has been shown to reduce microbial biomass and metabolic 
activity via enzyme inactivation [72]. At very low Pb levels 
(< 10 mg/kg) however, microbial development can occur 
[73]. Thus, different groups of bacteria could survive at high 
or low Pb levels. Plants can accumulate lead as well if asso-
ciated with rhizospheric bacteria or mycorrhizal fungi [74, 
75]. Fungi on the contrary are a versatile biosorption group 
[76, 77] and have the ability to potentially bind and bioac-
cumulate lead, which may have contributed to their general 
tolerance to Pb at the “Bowtie” brownfield site.

Microbial Taxa with the Potential for Heavy‑Metal 
Bioremediation

LEfSe analyses identified several microbial taxa that were 
enriched in contaminated surface soils (Fig. 5) compared 
to uncontaminated surface soils. These microbial taxa are 
tolerant of heavy metals and may contain the metabolic 
machinery required for soil bioremediation. Identified 
groups came from the bacterial genera Iamia, Paenibacil-
lus, and Alteromonas. In active nonferrous mine tailings 
in China and in areas of mining and ore smelting, Iamia 
is positively correlated with the heavy metals Zn, Sb, Pb, 
As, and Cd [78]. This genus however remains poorly under-
stood because few species have been isolated and additional 
research is required to understand their potential for heavy-
metal resistance and tolerance. Bacterial members from the 
genus Paenibacillus [79] possess metal-resistant genes as 
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an adaptation to metal pollution [80], and several strains 
have the capacity to bioadsorb heavy metals (Zn, Cd, Cr, Co, 
and Pb) from industrially polluted soils [81]. They can also 
reduce arsenic to less toxic forms [82]. Alteromonas sp. from 
marine environments can uptake mercury and two species 
from the Red Sea can remove a range of heavy metals from 
aqueous solution [83–85].

Two eukaryotic genera, Actinochloris and Colpodida, 
were also enriched in contaminated surface soils and may 
possess genes which confer multiple metal resistance [86]. 
They may do this by accumulating metals in their cell walls 
and secreting them via extracellular polymeric substances 
[87–90]. Actinochloris is a genus of green algae that forms 
part of the soil phycoflora [91] in aerotechnogenically pol-
luted spruce forest soils [92] and high-salinity biocrusts 
[93]. Their potential for bioremediation has not yet been 
explicitly examined. Colpodida is an order of bacterivorous 
ciliates [94] and contains certain species that can be used 
as a bioassay for heavy metals in sewage sludge [95]. They 
can also enhance the in vitro microbial degradation of crude 
petroleum [96].

Lastly, at the study site three fungal genera, Alternaria, 
Furcasterigmium, and Stachybotrys, were more abundant in 
contaminated soils than uncontaminated soils. These three 
groups have the ability to leach, absorb, and transform heavy 
metals [97]. Filamentous fungi can accumulate heavy metals 
and metalloids [98, 99] and the genus Alternaria specifi-
cally can tolerate a range of heavy metals including copper, 
lead, silver, and mercury [26, 100]. This group of fungi can 
degrade PAH in vitro [26]. On the contrary, much less is 
known about the fungal genus Furcasterigmium; it is a fun-
gal group commonly found in drinking water storage tanks 
and within wet walls [101]. Stachybotrys are filamentous 
fungi common in soil, decaying plant material, and sub-
merged wood in mangroves [102]. One species of this genus, 
S. chartarum can absorb copper ions but other studies show 
that their growth can be affected by high levels of cobalt 
and copper [103]. Thus, the organic or inorganic pollutant 
degrading capacities of Stachybotrys are inconclusive.

Limitations

Soil communities are strongly shaped by a variety of soil 
parameters, including soil pH, moisture, compactness, salin-
ity, acidity, and alkalinity, as well as by nutrient content, 
including organic carbon, nitrogen, oxygen, phosphorus, 
sodium, and potassium [104–106]. In our study, we did not 
quantify any of these soil parameters, beyond concentrations 
of heavy metals and polycyclic hydrocarbons, which limits 
our conclusions. Our results would be more comprehen-
sive if measurements of soil characteristics had been taken. 
Nonetheless, even with these missing parameters, our find-
ings enhance the body of literature and shed light on the 

microbial ecology of this brownfield site which was previ-
ously unexplored. Another limitation of our study involved 
our measurements of heavy metals; the measurements were 
not very granular, detection was low, and future studies will 
need to assess each heavy metal individually [107] across a 
diversity of depths. This will be critical for detecting pollu-
tion of heavy metals at and below the surface; of heavy met-
als that may have leached to deeper layers in the soil, which 
may have occurred at our site. Heavy metals will also need 
to be observed in tandem as the bioavailability, and hence, 
toxicity of a heavy metal is dependent on its interactions 
with other elements (e.g., chromium with manganese and 
iron forms a less biologically active species) [107]. Thus, 
we recommend future studies consider soil parameters and 
assess heavy metals holistically.

Additionally, our findings, particularly from the fungal 
data should be interpreted with caution, as the majority of 
reads for over half of the samples were unclassified and 
these samples were excluded from statistical analyses. All 
extant ITS primers are designed based on databases of avail-
able sequences; however, there are still large gaps in fungal 
databases, as they poorly represent the estimated 6.2 million 
species [108]. Taxonomic resolution was also low for the 
18S rRNA marker data, since over 50% of sequences in any 
given sample could not be classified beyond kingdom level 
(Eukaryota). For these reasons, we highly recommend that 
future studies employ metagenomic surveys to assay micro-
bial community structure and function [109]. Metagenom-
ics sequencing is a promising avenue to further research on 
soil microbiome tolerance and resistance to heavy metals, 
particularly in soil environments that have not been studied 
before.

Implications in Restoration Ecology of Urban 
Brownfields

Urban brownfield restoration and rehabilitation plays a sig-
nificant role in reducing urban sprawl [110, 111], boosting 
the economy [112], and improving quality of life in under-
served neighborhoods [113]. Additional ecological benefits 
include carbon sequestration, flood control, and climate 
regulation [114]. However, in order to develop strategies to 
achieve this restored state, we need to understand the unique 
ecological community and environmental characteristics of 
the contaminated site [8]. Sustainable alternatives for res-
toration include phyto- and bioremediation, which combine 
the ability of plants, microbes, and fungi to accumulate, 
transform, translocate, and biodegrade contaminants onsite 
for land decontamination [115]. Therefore, identification 
of candidate native microbial species is a crucial compo-
nent in optimizing the removal of the specific contaminants 
at brownfields. Once identified, native microorganisms 
including plant-associated mycorrhizae [116] and compost 
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enhanced with natural amendments can be applied [117]. 
The use of next-generation sequencing can be used to ana-
lyze the treated soil overtime to provide insight into the pro-
gress and effectiveness of the treatment. Future studies can 
use metagenomics and metatranscriptomics to provide the 
simultaneous results of community composition and gene 
expression [118] to better understand the metabolic capacity 
of microorganisms to bioremediate heavy-metal pollutants 
at brownfield sites.
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